
Citation: Dulia, E.F.; Shihab, S.A.M.

Designing a Surveillance Sensor

Network with Information

Clearinghouse for Advanced Air

Mobility. Sensors 2024, 24, 803.

https://doi.org/10.3390/

s24030803

Academic Editor: Giovanni Pau

Received: 11 December 2023

Revised: 12 January 2024

Accepted: 23 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Designing a Surveillance Sensor Network with Information
Clearinghouse for Advanced Air Mobility
Esrat Farhana Dulia * and Syed A. M. Shihab

College of Aeronautics and Engineering, Kent State University, Kent, OH 44242, USA; sshihab@kent.edu
* Correspondence: edulia@kent.edu

Abstract: To ensure safe, secure, and efficient advanced air mobility (AAM) operations, an AAM
surveillance network is needed to detect and track AAM traffic. Additionally, a cloud-based surveil-
lance data collection, monitoring, and distribution center is needed, where AAM operators and
service suppliers, law enforcement agencies, correctional facilities, and municipalities can subscribe
to receiving relevant AAM traffic data to plan and monitor AAM operations. In this work, we devel-
oped an optimization model to design a surveillance sensor network for AAM that minimizes the
total sensor cost while providing full coverage in the desired region of operation, considering terrain
types of that region, terrain-based sensor detection probabilities, and meeting the minimum detection
probability requirement. Moreover, we present a framework for the low altitude surveillance infor-
mation clearinghouse (LASIC), connected to the optimized AAM surveillance network for receiving
live surveillance feed. Additionally, we conducted a cost–benefit analysis of the AAM surveillance
network and LASIC to justify an investment in it. We examine six potential types of AAM sensors
and homogeneous and heterogeneous network types. Our analysis reveals the sensor types that are
the most profitable options for detecting cooperative and non-cooperative aircraft. According to the
findings, heterogeneous networks are more cost-effective than homogeneous sensor networks. Based
on the sensitivity analysis, changes in parameters such as subscription fees, the number of subscribers,
sensor detection probabilities, and the minimum required detection probability significantly impact
the surveillance network design and cost–benefit analysis.

Keywords: advanced air mobility; uncrewed aircraft system; sensor placement model; optimization;
surveillance information clearinghouse; cost–benefit analysis

1. Introduction
1.1. Advanced Air Mobility

AAM is envisioned to allow emerging short-haul aircraft, such as small uncrewed
aircraft systems (sUAS) and electric vertical takeoff and landing aircraft (eVTOL), to operate
in the lower altitudes of national airspace for passenger and cargo transportation and other
use cases in the coming years. AAM is anticipated to offer a number of benefits to society
and the environment over traditional ground transportation systems, including a consid-
erable reduction in travel and delivery times, increased operational safety, and a reduced
negative impact on the environment [1,2]. Federal agencies, such as NASA and FAA, and
industry and academia have been focusing their research on AAM aircraft design [3], con-
cepts of operation [4], air traffic management [5], trajectory planning [6], deconfliction [7],
market studies [8,9], network planning [10–12], and operations planning [13,14]. A more
comprehensive review of past and recent AAM research can be found in [15,16].

1.2. Motivation and Contributions
1.2.1. Surveillance Sensor Network Design for Advanced Air Mobility

Motivation: While AAM research has been advancing on many fronts, one area of
research that is critical to enabling AAM but has not received much attention is surveil-
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lance sensor network design for AAM. New surveillance sensor networks are specifically
needed for AAM to detect and track AAM traffic to ensure efficient, safe, and secured
AAM operations. Much of the existing surveillance infrastructure for conventional aviation
is not adequate for AAM for mainly two reasons. Firstly, AAM is envisioned to involve
operations of aircraft within new urban and suburban surveillance areas, where no sensors
currently exist for aircraft surveillance. Secondly, traditional aviation sensors, which may
already exist in anticipated surveillance areas for AAM, will not be adequate because they
have not been designed specifically to detect small aircraft, such as sUAS and eVTOLs, or
accurately identify multiple aircraft flying near each other at lower altitudes in inclement
weather conditions [17], as would be the case for future high-density AAM operations.
Hence, AAM-specific sensors with specialized features and capabilities are needed that
enable real-time detection and tracking of AAM aircraft in various weather conditions,
simultaneous detection of multiple aircraft, and accurate identification and classification
of AAM aircraft. Keeping these requirements in mind, several different types of surveil-
lance sensors for AAM—including, radar, radio frequency sensors, Automatic Dependent
Surveillance–Broadcast (ADS–B) sensors, remote ID sensors, optical sensors, and acoustic
sensors—have been developed by various sensor manufacturers, such as Echodyne, De-
drone, and AVIONIX. Examples of such sensors are pictured in Figure 1. These sensors
use either electromagnetic or sound waves to determine the distance, angle, and radial
velocity of aircraft relative to their installation sites to detect and track aircraft. Such AAM
sensors need to be set up to form a surveillance network in future AAM surveillance areas.
While other research has focused on designing surveillance networks for both aviation and
non-aviation applications, the specific context of AAM remains largely unexplored.

Figure 1. Sensors of different types: (a) ADS–B receiver [18], (b) radio frequency sensor [19], (c) remote
ID receiver [20], (d) radar [21], and (e) acoustic sensor [22].

Contributions: To bridge this gap, our study is the first, to the best of our knowledge,
in solving the AAM surveillance sensor placement problem. In this study, we propose a
Surveillance for AAM Network Design (SAND) optimization model for identifying the
optimal locations for placing the sensors to build the AAM surveillance network such
that (1) full coverage is provided in the desired region of operation; (2) the minimum
detection probability requirement is satisfied; and (3) the total sensor cost is minimized.
Our study collectively considers several features that stand out, even in comparison to
relevant articles that have developed sensor location optimization models across other



Sensors 2024, 24, 803 3 of 42

fields. These features include incorporating multi-type sensors with varying radii and other
specifications for a heterogeneous sensor network, encompassing both the probability of
detection and misdetection of sensors and considering different terrain types of a given
area along with the detection probability of sensors based on terrain types. Our model
can perform in various cities of Ohio, handling both large- and small-scale problems,
adapting to irregular shapes of the surveillance area, and excluding infeasible blocks where
sensors cannot be placed. The inclusion of critical constraints in the field of AAM, such as
a minimum required detection probability and full coverage, is considered in our study.
Another notable feature of our model is its ability to ensure global optimal solutions at a
given minimum required detection probability value and a set of detection probabilities of
sensors based on the terrain types of a city. The collective consideration of these features,
which has not been done before, sets our study apart from other relevant studies.

1.2.2. Low Altitude Surveillance Information Clearinghouse

Motivation: The demand for AAM is expected to grow rapidly in the coming years
due to several factors, such as urbanization, population growth, and the ever-increasing
need for more efficient and sustainable transportation solutions [23]. Therefore, significant
amounts of AAM traffic surveillance data will be generated by the AAM surveillance
network, which would require efficient storage and processing solutions to ensure that the
data are easily accessible and available for real-time and offline analysis by relevant AAM
stakeholders, such as AAM operators, airspace service providers, and law enforcement
agencies. A digital LASIC can act as a central repository for this traffic data, allowing for
data accessibility and sharing among various entities for flight planning, aircraft routing,
air traffic control, counter uncrewed aircraft systems (UAS) operations planning, and better
coordination among low altitude airspace users. Some of the functions LASIC can enable
for its users include access to live surveillance feeds, real-time coverage maps, and archival
data; data analytics and visualization; tactical deconfliction; and querying current and
historical UAS positions by UAS ID and by location [24].

For implementing and hosting LASIC, a cloud server is considered to be more suitable
than a local server, as cloud computing can provide a scalable, flexible, and cost-effective
platform for ingesting, processing, storing, analyzing, and sharing large amounts of trans-
portation data [25] generated by AAM traffic. Cloud computing can improve the perfor-
mance and efficiency of transportation systems such as LASIC by relocating the hardware
and software components to the cloud network [26], which would allow LASIC to access
the computing resources and data storage capabilities of the cloud network. This can poten-
tially reduce the need for the expensive hardware and infrastructure associated with local
servers on-site while also providing greater flexibility and scalability for LASIC operations.

Contributions: In this study, the optimized AAM surveillance network is connected to
LASIC, efficiently handling AAM surveillance data generated through sensor tracking and
detection of AAM traffic. This integration is considered based on AAM traffic projections,
surveillance data types, interface standards, data sizes, ping rates, and cloud components.
An overview of the optimized AAM surveillance network and LASIC framework and
its associated cost and benefit factors are illustrated in Figure 2. Based on a survey of
the present AAM sensor market, we selected six different sensor types: a radar, radio
frequency sensor, ADS–B, remote ID, optical camera, and acoustic sensor. The surveillance
and telemetry data associated with sUAS, eVTOL, and general aviation traffic—such as
position, velocity, flight intent, and remote identification—can be captured and generated
by the optimized surveillance network, allowing the aircraft movement in the airspace to
be tracked. This surveillance data can then be ingested into LASIC, which will provide the
subscribers of LASIC with information about scheduled and real-time AAM operations
and relevant airspace activities so that they may plan for their flight operations accordingly.
The subscribers of LASIC will potentially include AAM operators engaged in different
AAM use cases such as passenger and cargo transportation, bridge inspections, medical
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delivery, etc., as well as airspace service providers, law enforcement agencies, correctional
facilities, and municipalities.

Figure 2. Overview of LASIC framework and associated cost and benefit factors.

As for any other major transportation infrastructure project, to justify an invest-
ment in the AAM surveillance network and LASIC, a rigorous cost–benefit analysis is
needed [27–29]. Such an analysis is crucial to identify, quantify, and evaluate the costs
and benefits associated with the surveillance network and LASIC. We conducted this cost–
benefit analysis for the State of Ohio by analyzing the associated cost and benefit factors of
LASIC. The analysis period was considered to be the next 10 years, from 2024–2033. The
two major cost factors of LASIC considered are as follows: (1) the surveillance sensor cost,
the cost to purchase the sensors needed in the AAM surveillance areas in Ohio, which we
estimate based on the results generated from the SAND model, and (2) the cloud computing
cost to store and process the surveillance data in LASIC. The monthly subscription fee that
a subscriber will pay to obtain access to the LASIC features is considered the main benefit
factor in this analysis. The cost–benefit analysis can be used to estimate the break-even
point (BEP) for the different sensor types and the time to reach break-even in terms of the
net present value (NPV) of the return generated in the AAM surveillance areas.

1.2.3. Summary of Contributions

This paper addresses the critical need for a surveillance network design in the rapidly
emerging landscape of AAM, offering insights into sensor selection, network optimization,
data management, and economic feasibility. Our key contributions are as follows:

(a) We developed the SAND model, which can determine the optimal locations for sensor
deployment to design a comprehensive AAM surveillance network that minimizes
the total sensor cost. The SAND model can provide full coverage in the desired
AAM surveillance areas and considers terrain types within those regions, as well
as terrain-based sensor detection probabilities and minimum detection probability
requirements. We considered the State of Ohio as our case study and applied the
SAND model to design an AAM surveillance network there.

(b) We considered several sensor types, such as radar, radio frequency, ADS–B, remote
ID, optical, and acoustic sensors, to design two types of AAM surveillance sensor
networks: homogeneous and heterogeneous. Our analysis of homogeneous sensor
placement indicates that ADS–B and remote identification sensor types are the most
profitable options for detecting cooperative aircraft, whereas the radio frequency
sensor type is the most profitable option for tracking both cooperative and non-
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cooperative aircraft. According to the findings, implementing a heterogeneous sensor
network composed of various sensor types is more cost-effective in reducing the
overall sensor cost compared to a homogeneous sensor network that employs only
one type of sensor.

(c) We present a cloud-hosted LASIC framework, which allows for the managing and
sharing of AAM surveillance traffic data. We computed the cost of operating the
framework while considering the AAM traffic projections and relevant surveillance
data generated in the AAM surveillance areas in Ohio, as well as the surveillance data
types, interface standards, data sizes, cloud components, and cloud pricing policies.

(d) We conducted a rigorous cost–benefit analysis of the proposed AAM surveillance
network and LASIC implementation for the State of Ohio to determine the break-even
points for different sensor types. We considered the uncertainty associated with AAM
demand to determine the possible range of costs, revenue, and NPV for the AAM
surveillance network and LASIC.

(e) We performed a sensitivity analysis on the key parameters of our study, including
the subscription fees, number of initial subscribers, terrain-based sensor detection
probabilities, and minimum required detection probability. The insights demonstrate
that changes in these parameters significantly impact the number of sensors required,
total sensor cost, and NPVs of the results generated from the study. Our study
provides policymakers with valuable insights to make informed decisions regarding
investment in an AAM surveillance network and LASIC.

1.3. Outline of the Paper

The remainder of this article is structured as follows. The relevant literature is analyzed
in Section 2. In Section 3, the SAND model is presented, and the potential cost and benefit
factors of LASIC are discussed. After that, the results are presented and analyzed in
Section 4. The paper is finally concluded in Section 5 with the summary of insights gained
from the analysis and potential extensions of this study.

2. Literature Review

A review of the research on AAM surveillance and the general surveillance network
design problem is presented in this section. For a more broader overview of the AAM
research, interested readers are referred to [15,16], where the authors collectively discussed
prior AAM research and unresolved AAM challenges related to aircraft specifications, regu-
lations, certification, policy, demand modeling, traffic management, ground infrastructure,
operational strategies, market structures, integration with existing transportation systems,
and public acceptance.

2.1. AAM Surveillance

A number of recent studies in the literature have concentrated on surveillance tech-
nologies, frameworks, and simulations aimed at tracking and monitoring AAM aircraft.
Notably, NASA’s recent work [30] has emphasized the necessity for surveillance of AAM
aircraft, underlining the difficulty of modifying present air traffic control and management
systems to accommodate the increased number of AAM aircraft in the lower airspace.
In response, they have introduced a ground-based vision tracker that employs a vision
tracking method with fixed cameras to monitor airborne objects, effectively sidestepping
issues related to electromagnetic interference. Additionally, ref. [31] developed a simulation
system to model and assess AAM flight operations in densely populated urban areas using
both air- and ground-based sensors such as radar, LiDAR, and vision-based sensors. The
purpose of this paper was to present the architecture and simulation setup for evaluating
airborne autonomy technologies for urban AAM operations. In [32], the authors mentioned
remote identification as an emerging technology that allows ground observers to identify
drones within airspace. Their objective was to provide a comprehensive overview and
tutorial on the current status of regulatory, standardization, design, implementation, and
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testing efforts in the field of remote identification technology. In another study [33], the
authors developed a surveillance framework to address the growing security threats facing
critical infrastructures such as airports, military bases, city centers, and other restricted
zones. This framework utilizes radio frequency (RF) sensors to efficiently detect, classify,
and identify drones operating within no-drone zones. However, comprehensive research
that explores various types of AAM surveillance networks, taking into account diverse
requirements, such as tracking different types of AAM aircraft and the use of different types
of sensors to build an AAM surveillance network, has not yet received sufficient attention.
While research has been conducted on state-of-the-art sensor types related to ground-based
detect-and-avoid systems for UASs, as presented in [34], these sensor types have not been
thoroughly examined to develop different types of AAM surveillance networks. In this
study, we investigate six potential sensor types suitable for AAM surveillance and assess
the different types of surveillance sensor networks: homogeneous sensor networks consist-
ing of a single sensor type and heterogeneous sensor networks consisting of various sensor
types. Additionally, we conduct a cost–benefit analysis of the AAM surveillance network
to provide justification for investing in AAM surveillance infrastructure.

2.2. Location Selection Problems and Surveillance Network Design

The motivating application of the SAND model is the AAM surveillance network
design, which involves solving a sensor location selection problem. In general, the location
selection problem is concerned with determining the best locations for new facilities and
services with respect to performance metrics such as cost, revenue, profit, travel time,
distance, customer satisfaction, etc. Such problems arise in various fields, such as remote
sensing, geography, economics, and operations research [35]. Researchers and practitioners
have developed various techniques to address the location selection problem, which pri-
marily includes multi-criteria decision-making (MCDM), machine learning (ML), heuristics,
metaheuristics, and mathematical optimization.

Multi-Criteria Decision-Making: MCDM is a well-known approach that is used for
tackling location selection problems. As the name suggests, MCDM determines the optimal
location for various types of facilities—such as a new manufacturing plant, a retail store, a
hospital, a distribution center, a transportation hub, or a renewable energy facility—based
on multiple criteria or objectives. In the context of location selection problems, the criteria
can include factors such as proximity to suppliers or customers, transportation costs,
availability of labor, and many other factors that can affect the desirability of a location. The
use of MCDM in location selection problems has been extensively studied in the literature.
Three such representative papers are discussed next. The locations of manufacturing
facilities were determined using MCDM in [36], taking into account criteria such as access to
raw materials, labor force, and transportation infrastructure. This study considered several
criteria, such as economic, environmental, and societal factors, in their facility location
selection problem for sustainable development in manufacturing firms. An analytical
hierarchy process (AHP) was also used here to evaluate the weights of these criteria, and a
technique for order preference by similarity to ideal solution (TOPSIS) was used to rank the
alternative potential locations. MCDM was also used to determine the best locations for
hospitals and clinics, taking into account factors such as patient population, access to public
transportation, and proximity to other healthcare providers. A location selection problem
was solved in [37] using a MCDM approach to find the emergency medical service centers.
In this study, AHP was used to determine the weights of criteria, including response time,
demand, coverage area, and ambulance workload. Then, the different alternative locations
of service centers were ranked using a technique known as ranking of alternatives through
the functional mapping of criterion sub-intervals into a single interval (RAFSI). A MCDM
approach based on a fuzzy approach was presented in [38] for determining the location
of healthcare facilities. While the fuzzy logic approach can model complex systems using
linguistic variables and fuzzy sets, it does not, however, guarantee an optimal solution.
MCDM techniques, such as AHP, TOPSIS, and RAFSI, rely on human judgment to evaluate
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and weigh the criteria. There may be differences in opinion or interpretation among the
decision-makers, which can lead to inconsistent or biased results, particularly if the criteria
are not well-defined or if the weighting scheme is not properly calibrated. Hence, MCDM
may not consistently yield the optimal locations. In contrast, mathematical optimization can
consistently determine the optimal solution for the location selection problem by utilizing
a mathematical model that adequately captures all relevant preferences and constraints.

Machine Learning: In recent years, ML techniques have been increasingly applied to
solve location selection problems. Next, three papers are presented that applied ML tech-
niques to solve logistic hub and sensor location selection problems. A ML-based algorithm
framework was proposed to solve hub location problems in the logistics and transportation
industries. This framework consisted of a deep-learning probabilistic hub-ranker that ranks
the priority of nodes to be chosen as hubs [39]. To evaluate the effectiveness of this ap-
proach, the study created 11,000 small networks, each with 25 nodes, using a proposed data
augmentation technique. These synthetic networks were divided into three sets: 10,000 for
training models, 500 for validation during training to prevent over fitting, and 500 for
model evaluation. Ref. [40] presented a ML-based method for optimal sensor placement in
the flow over an airfoil equipped with a Coanda actuator. The method utilized a random
forest algorithm to construct ML models that predicted a response function based on input
data from 96 sensors measuring pressure and skin friction coefficients. The optimal sensor
positions were determined by identifying the most important input variables in the ML
model. A limitation of the method was its reliance on many sensors during the training
phase, which made it challenging to implement experimentally. An ML algorithm was
proposed and implemented in [41] to select optimal sensor locations in controlled environ-
ment agriculture, where the macro-climate affects the micro-climate, making it challenging
to predict the ideal conditions. The algorithm used temperature and humidity data from
56 different locations that were collected over a year, processed to remove outliers, and
transformed to other air properties. The results showed that three to five sensors were
needed, and there were similar sensor locations for different air properties. While ML
has shown great promise in solving complex optimization problems, such as the location
selection problem, it has some drawbacks compared to mathematical optimization methods.
One potential drawback is that ML models are typically designed for specific problem
settings and may not be easily adaptable to other problem settings or variations, which can
be a disadvantage when dealing with a new, evolving field like AAM. Though retraining
ML models is possible for adapting them to new problem settings, this process can be
time-consuming and computationally expensive, which may limit the practical usefulness
of these approaches in dynamic and rapidly evolving fields. Another challenge is that
ML models require large amounts of data to be trained effectively, and the scarcity of
AAM-related training data can hinder their applicability. In contrast, mathematical opti-
mization methods are highly flexible and can be customized to suit a wide range of problem
settings by adjusting the objective function, decision variables, and constraints to model the
new problem. Moreover, unlike ML models, mathematical optimization methods provide
guarantees for generating optimal solutions. Given the limited availability of AAM-related
data and the need for optimal solutions, mathematical optimization methods appear to be a
more suitable option for addressing location selection problems in emerging transportation
sectors such as AAM.

Heuristics and Metaheuristics Algorithms: Heuristic and metaheuristic algorithms are
optimization algorithms that have also been used to address location selection problems
due to their ability to efficiently handle complex and large-scale problems. A proposed
theory was described in [42] for optimizing the placement and number of sensors in a
sensor network using a greedy heuristic. The sensor field was represented as a grid of
points, and the optimization framework addressed coverage optimization under constraints
of imprecise detection and terrain properties. The article explained how obstacles in the
terrain were modeled in the framework, and the sensor placement algorithm used a greedy
heuristic to determine the best placement of one sensor at a time. The algorithm was
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iterative and terminated either when a preset upper limit on the number of sensors was
reached or when sufficient coverage of the grid points was achieved. To solve the problem of
locating fire stations and allocating resources to different stations based on dynamic traffic
conditions, two metaheuristic algorithms—particle swarm optimization and artificial bee
colony—were used in [43]. In another study, ref. [44] used a genetic algorithm to optimize
the placement of security cameras, providing maximum coverage of user-defined priority
areas and minimizing the probability of occlusion due to moving objects by covering each
priority area with multiple cameras. Ref. [45] proposed a solution for determining the
optimal placement of ADS–B receivers on the ground. In [45], a genetic algorithm was
utilized to determine the optimal placement of ADS–B receivers on the ground in the
vicinity of Frankfurt Airport in Germany. The authors first identified the required number
of sensors to ensure adequate coverage of the small geographical area. The algorithm
was designed to search for the best local minimums or near-optimal solutions. Then, the
authors quantified the deviation of the sensor configuration generated by the algorithm
from the optimal solution. Ref. [46] also implemented a metaheuristic algorithm for solving
optimal sensor placement problems using an annealing machine. One major drawback of
such heuristic and metaheuristic algorithms compared to mathematical optimization is that
they do not guarantee to find the global optimal solution. They involve stochastic search
processes, which means that they may converge to a sub-optimal solution depending on
the starting point and the algorithm parameters.

Mathematical Optimization: Mathematical optimization is a widely used approach to
solving location selection problems and aims to identify the best solution by minimizing
or maximizing an objective function subject to a set of constraints. The advantage of
using mathematical optimization is that it allows us to find the optimal solution that
satisfies all the constraints with high precision and efficiency. Ref. [47] presented a decision-
making process to select the location for public truck parking lots in urban areas using
mixed-integer programming. The process included candidate location selection by spatial
analysis and optimal location determination using the competitive p-median algorithm.
A constrained multi-objective optimization problem with mixed-integer programming
was developed in [48] to simultaneously determine the placement of wireless sensors
and sinks that minimize energy consumption and maximize information effectiveness for
structural health monitoring (SHM). Ref. [49] provided an overview of the state-of-the-art
in the area of optimization of sensor placement for SHM applications. The optimal sensor
placement problem addressed in [50] aimed to select appropriate types and locations of
sensors that could cover high-value terrain areas while minimizing a cost function. The
probability of detection was assumed to depend on terrain conditions and obstructions.
Two strategies were used for optimal sensor placement: the initial strategy utilized a
heuristic and fast approach that involved placing sensors one-by-one in the location where
they were most needed, while the second strategy was a binary linear programming
solution that determined the global optimum of the total cost of sensors, without allowing
for the sequential placement of sensors. After evaluating the strengths and limitations of
the various methods discussed above, mathematical optimization was determined to be
the most suitable method for addressing the surveillance network design problem of AAM.
This preference is primarily due to its capability to guarantee global optimal solutions, even
in the dynamic nature of the AAM market. The AAM data can be easily adjusted in the
model’s parameter setting to update the AAM surveillance network as the field evolves.

2.3. Our Contributions

The location selection problem is addressed in various fields, but to our knowledge,
we were the first to solve the AAM surveillance sensor placement problem. Given that the
optimization approach is identified as the most appropriate method to address the gap, we
propose the SAND model, which can generate solutions for building an optimized AAM
surveillance network. Our study stands out by collectively incorporating 12 features, as
outlined in Table 1, compared to other relevant studies where authors have used optimiza-
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tion to address the location selection problem, ensuring sensor coverage over specific areas.
The first feature involves considering multi-type sensors to utilize the characteristics of
various sensors in developing a heterogeneous sensor network, providing coverage at a
lower cost. Among the relevant studies, only [50] considered this feature, but that study
focused on three sensor types, whereas our study incorporates twice as many, including
six sensor types. The second feature of our study involves considering the probability of
the misdetection of sensors, a crucial parameter that most of the studies did not take into
account. This feature influences the optimal number of sensors required to provide sensor
coverage over a given surveillance area. Unlike most studies, our study considers different
terrain types, such as hills, towns, and water, within the surveillance area, along with the
detection probability of a sensor type based on these terrain types.

To ensure the versatility of our SAND model across various surveillance areas, we
incorporated the fourth feature in our study, which involves implementing the model in six
different cities with varying sizes and combinations of terrains. Another study, ref. [51],
considered this feature for two cities, which is three times fewer than ours. In contrast,
other studies tested their models in only one city, specific areas of a city, or hypothetical
areas without considering real-world locations. This raises concerns about the flexibility of
their models to adapt to the diverse characteristics of different cities. The fifth feature of
our study is the consideration of a higher number of blocks dividing the surveillance area
compared to most studies. Considering this higher number of blocks allows us to increase
the resolution of the surveillance area—although it increases the complexity and runtime
of the model. To avoid this complexity, models developed in most studies can handle only
a lower number of blocks, potentially failing to generate solutions within a finite time for
larger-scale problems. Our model, however, can generate solutions for both higher- and
lower-scale problems. We verified this feature by testing our model in different sizes of
cities, creating a higher number of blocks for a larger city and a lower number of blocks for
a smaller city. The sixth feature of our study is the adaptability of an irregular shape of a
surveillance area. The studies presented in Table 1 considered rectangular meshes to define
the surveillance area but did not ensure the exclusion of blocks that were not within the
surveillance area. However, the surveillance area can have irregular shapes. Our SAND
model can closely resemble the actual shape of the surveillance area, thereby improving the
solutions generated compared to other studies. Unlike some studies, our study considers
excluding infeasible blocks, for example, water blocks, where the sensor cannot be placed,
from candidate sensor locations. This is the seventh feature of our study.

Similar to [42,50], we also incorporated a minimum required detection probability
constraint in our study, which is the eighth feature of our study. In the field of AAM,
compared to any other field, a minimum required detection probability value, for example,
95–99%, is considered to ensure a higher level of detection and tracking accuracy. This
consideration increases the complexity of the model significantly, but our SAND model
satisfies this constraint as well. The ninth feature of our study incorporates a full coverage
constraint to ensure sensor coverage over the entire surveillance area at a given minimum
required detection probability value. Refs. [42,52] also considered achieving coverage
by assuming that all block points are covered, but this approach still has the chance of
gaps between two sensors. While the model in [42,52] provided full coverage, it lacked
efficiency in terms of computational time, resulting in unnecessary overlapping initially.
In contrast, our SAND model incorporates a dedicated constraint to provide an efficient
approach, reducing the algorithm runtime. The tenth feature is that the SAND model
guarantees global optimal solutions at a given minimum required detection probability
value and a set of detection probabilities of sensors based on the terrain types of a city. Most
of the studies apply greedy heuristics [42], simulated annealing algorithms [53], genetic
algorithms [52], sparrow search algorithms [54], or both the simulated annealing algorithm
and genetic algorithm [51] to solve the sensor placement problem. While these algorithms
have their advantages, one of their limitations is the inability to guarantee global optimal
solutions, as discussed earlier. Although [50] guarantees global optimal solutions, that
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study did not consider the fourth, sixth, and ninth features and included fewer blocks than
our study. In contrast, our SAND model ensures global optimal solutions while collectively
considering all the features discussed above. The eleventh feature involves connecting
the AAM surveillance network to LASIC for receiving, storing, and processing AAM
surveillance data, enabling AAM service providers to operate their operations accordingly.
We take into account AAM traffic projections, surveillance data generated from the AAM
traffic detected and tracked by the sensors, surveillance data types, interface standards,
data sizes, ping rate, and cloud components in considering this connection. The last
feature involves conducting a cost–benefit analysis to justify the investment in the AAM
surveillance network and LASIC infrastructure. The unique combination of these features,
not previously explored collectively, distinguishes our study from other relevant research.

Table 1. Comparison of our study with other relevant studies.

Features [42] [50] [53] [52] [54] [55] [51] Our Study

1 Multi-type sensors X ✓ X X X X X ✓

2 Probability of misdetection
✓ ✓ X X X X X ✓of sensors

3 Detection probability of sensors X ✓ X X X X ✓ ✓based on terrain types

4 Multi-city X X X X X X ✓ ✓

5 Maximum number of blocks 20 × 20 81 × 81 30 × 30 90 × 90 50 × 100 90 × 90 120 × 200 130 × 126

6 Adaptability to irregular X X X X X X X ✓shape of surveillance area

7 Exclusion of infeasible blocks X ✓ X X ✓ X ✓ ✓from candidate sensor locations

8 Minimum required detection
✓ ✓ X X X X X ✓probability constraint

9 Full coverage X X X X X X X ✓constraint

10 Guarantee of global X ✓ X X X X X ✓optimum solutions

11 Connection to LASIC X X X X X X X ✓

12
Cost–benefit analysis of

X X X X X X X ✓AAM surveillance network
and LASIC infrastructure

3. Methodology

This section aims to develop the SAND model for designing an AAM surveillance
network and also considers a framework for LASIC to receive surveillance data from the
optimized AAM surveillance network. We then conduct a cost–benefit analysis to justify
the investment in the AAM surveillance network–LASIC infrastructure. An outline of
our methodology is presented in Figure 3, which is divided into three parts: the first
part involves designing the AAM surveillance network, the second part involves setting
LASIC features and functionalities, and the third part involves conducting a cost–benefit
analysis of the AAM surveillance network and LASIC. The blue boxes represent the inputs
of the SAND model, including AAM sensor types, terrain types, and sensor detection
probabilities, as well as its outputs, such as the optimal number and location of sensors,
which are further discussed in Section 3.1. The green boxes correspond to the inputs
LASIC feature and functionalities, including AAM traffic projections data, cloud-computing
services, and insights from the survey and system requirements study that are elaborated
upon in Sections 3.2 and 3.3.2. The orange boxes represent the steps associated with the
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cost–benefit analysis of the AAM surveillance network and LASIC. The results of the
first and second parts are utilized to identify and estimate the cost and benefit factors,
which are discussed in detail in Section 3.3 and Section 3.3.3, respectively. The output
of the cost–benefit analysis is the NPV over the analysis period, which is explained in
Section 3.3.4.

Figure 3. A flow chart illustrating the steps associated with AAM surveillance network designing
and cost–benefit analysis of AAM surveillance network and LASIC.

3.1. Surveillance Sensor Network Design for Advanced Air Mobility

We constructed a BILP model to solve the optimal sensor placement problem for
designing the surveillance network for AAM. The objective of this study is to design a
network of surveillance sensors to track AAM aircraft flying at a lower altitude over a city
with a minimum sensor cost while satisfying two constraints: (1) sensor(s) at a location must
provide a minimum required detection probability, and (2) the area across a city must be
fully covered by the network. Given these restrictions, the goal is to determine the optimal
locations for sensor placement and the number of sensors needed to be placed within a
city to detect and track the aircraft, where the objective function focuses on minimizing the
total sensor cost.

This section highlights the crucial terms that must be taken into consideration while
formulating the SAND model, such as the various types of AAM surveillance sensors, the
detection probability of a sensor, and the impact of terrain types on the sensor detection
probabilities. Subsequently, we present the formulation of the SAND model by modeling
the relevant surveillance area where the model is implemented. A summary of the notations
used in designing the SAND model is presented in Table 2.
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Table 2. Parameters, indices, and decision variables in the SAND model.

Parameters Definition

M A rectangular mesh.

F Transformation function of geographic coordinate system (GCS) coordinates to
projected coordinate system (PCS) coordinates.

λp Longitude of the p-th point in GCS.

ϕp Latitude of the p-th point in GCS.

na Number of points along the x-axis of M.

nb Number of points along the y-axis of M.

La Length of the area along the horizontal axis.

Lb Length of the area along the vertical axis.

L Block side length.

ρ Range of a sensor.

PM Set of all points in M.

ZM Set of all blocks in M.

T Set of terrain types associated with each block in ZM.

S Set of potential sensor types.

ωs
T

Detection probabilities for all combinations of terrain types in T and sensor types
in S.

ωs
z Probability of detecting an AAM aircraft with a sensor of type s on block z.

Tz Terrain type of the z-th block in T.

I(z) Indicator function that equals 1 if block z belongs to the area, and 0 otherwise.

Q Number of blocks removed from ZM.

C Set of center points of blocks in Z.

Rs Sensor range for a sensor of type s in S.

de,i Euclidean distance between a sensor location e in C and a point i in PM.

As
e Set of coordinates of the points covered by a sensor of type s at location e.

Bs
e Set of blocks covered by a sensor of type s at location e.

ζs
e

Mean of all the probability of sensor detection values for blocks in Bs
e for a sensor

of type s.

τs
e Probability of misdetection of a sensor of type s at location e.

r Minimum required detection probability.

κs
e

Number of independent sensors of type s required to achieve a minimum
required detection probability at location e.

τs
el

Probability of misdetection of sensor l among κs
e sensors of type s at

location e.

ψs Cost of a sensor of type s.

δs Number of sensors needed for sensor type s to provide 360◦ coverage at
a location.

Indices

p p-th point in GCS.

j j-th row of blocks in M.
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Table 2. Cont.

Indices

k k-th column of blocks in M.

z z-th block in ZM and Z.

e e-th candidate sensor location in C.

i i-th point in PM.

s s-th sensor type in S.

l l-th sensor among κs
e sensors.

Decision Variables

λs
e Binary variable representing whether a sensor of type s is placed at location e.

γz Binary variable representing whether block z is covered by at least one sensor.

3.1.1. Surveillance Sensor Types

After studying the existing sensor market, six types of sensors are deemed to be
suitable for AAM traffic surveillance. A brief overview of these surveillance sensor types is
provided in this section.

1. Radar: Both cooperative and non-cooperative aircraft can be detected and tracked
using ground-based radars. The radar transmits the electromagnetic waves signal
towards aircraft, which bounce off the aircraft and create a detailed image of its size,
shape, and location. The radar cross-section (RCS) signature of each aircraft type
is distinctive, which leads to varying reflection patterns of radio waves. The radar
utilizes these patterns to identify the aircraft type and determine its position, velocity,
and travel direction.

2. Automatic Dependent Surveillance–Broadcast: Automatic Dependent Surveillance–Broad-
cast (ADS–B) is a surveillance system that allows an aircraft to periodically broadcast
and track its location via satellite navigation. Currently, the FAA acknowledges
ADS–B as a key enabler for trajectory-based air traffic management in the future.

3. Remote ID: The ability of sUAS and eVTOL to broadcast identification and location
data during flights is known as remote identification (remote ID).

4. Radio Frequency: Like the radar, the RF sensor is also able to accurately detect and
categorize aircraft. However, RF sensors can detect and track small drones that may
not be detectable by radar, particularly at low altitudes where the radar signal may
not reflect off the drone as effectively as it would off a larger aircraft. Also, RF sensors
can be more effective than radar in urban or cluttered environments, where there may
be many buildings, trees, and other obstacles that can reflect or absorb radar signals.
RF sensors are less affected by these obstacles because their signals can penetrate
walls and other structures, making them useful for monitoring drones in indoor or
urban environments. The key advantages of the RF sensor system include its low cost,
ease of installation, and simplicity of integration with several other sensors, including
cameras and radars.

5. Acoustic: An audio pattern that is transmitted by an aircraft’s propeller can be detected
by acoustic sensors and used for aircraft positioning and classification. It uses passive
acoustic sensor technology with no RF emissions, whereas the solid-state sensor is an
array module that includes digital microphones and digital processors.

6. Electro-Optical/Infrared Camera: An electro-optical/infrared (EO/IR) system is a
type of electronic equipment that combines electro-optical and infrared sensors to
offer accurate optical information of air traffic in the airspace within its coverage range
at any time. EO/IR systems can be used to carry out object tracking, assess threats
from a certain distance, or monitor other aircraft or ground obstructions that must
be avoided.
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3.1.2. Detection Probability of Sensors and Terrain Types

Detection probability is a crucial performance parameter for sensors, representing
the probability of a sensor detecting an object within its field of view. Terrain types of an
area, such as hills, open spaces, and water bodies, can significantly affect the detection
probability of a sensor by obstructing its field of view and reducing its detection range.
Different terrain types can have a range of effects on the sensor detection probabilities,
with some terrain types having a greater impact than others. For example, hilly terrain
types can have a substantial impact on the detection probability of sensors due to their
obstruction, while open spaces can provide ideal conditions for achieving higher sensor
detection probability values. To obtain the sensor detection probability values for sensors,
there are two primary methods. The first method involves using manufacturer-provided
data based on laboratory testing and simulations. Sensor manufacturers can provide data
on detection probability for different terrain types in sensor data sheets. This data can be
used to estimate the sensor’s performance in various environments. The second method
involves testing sensors on-site in the specific terrain type.

3.1.3. SAND Model Formulation

In developing the SAND model, the processes of modeling a surveillance area and
location selection are critical in designing an effective AAM surveillance network. The
process of modeling the surveillance area involves identifying the surveillance area and
determining feasible sensor locations while also considering that not all locations within
the surveillance area may be feasible, such as those located over water bodies. This process
optimizes the placement of sensors by accurately capturing the terrain types of an area and
assessing their impact on sensor placement and detection probabilities. Following this, the
location selection process determines the optimal number and locations of sensors within
the surveillance area, satisfying the objective and constraints, as detailed in Section 3.1.
This study integrates these processes to develop the SAND model, and the steps associated
with the SAND model’s development are discussed next.

Mesh Generation and Coordinate Transformation

To start the modeling of the surveillance area, first, a rectangular mesh, denoted by M,
is used to divide a given area that needs AAM surveillance into a set of points and small
square blocks. To create such a mesh, the city is first overlaid by a rectangle defined by
four GCS points on a world map, labeled A, B, C, and D. However, the use of latitude and
longitude to define locations in GCS coordinates means that the distances on the Earth’s
surface can result in blocks of unequal size and non-parallel mesh lines in M. To address
this issue, it is necessary to use a PCS that maps the Earth’s surface to a 2D Cartesian plane
when creating a mesh for an area. This ensures that M is created with equal-sized blocks and
straight, parallel mesh lines, which is important in the optimal sensor placement problem
for accurate measurements and simplified visualization and analysis. In Equation (1), F
represents the transformation function of the GCS coordinates to PCS coordinates, and λp
and ϕp represent the longitude and latitude, respectively, of the p-th point in GCS. The
output of the transformation is the corresponding (xp, yp) PCS coordinates.

(xp, yp) = F(λp, ϕp), p ∈ {A, B, C, D} (1)

na =

⌈
La

L

⌉
, nb =

⌈
Lb
L

⌉
, subject to ρ ≥ L√

2
, (2)

where na and nb specify the number of points along the x-axis and y-axis.

Mesh Parameters and Block Set

The parameters na and nb are determined by the length of the area along the horizontal
axis, La, and the length of the area along the vertical axis, Lb, respectively, as well as by the
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block side length, L. The diagonal of a square block is represented by
√

2L, with the center
point of a block being considered as the potential location for placing a sensor. Hence, the
distance from the sensor location to a corner point of the block is L/

√
2. If this distance is

greater than the sensor coverage range denoted by ρ, the block will not be covered by the
sensor. Thus, ρ ≥ L√

2
ensures that each block is adequately covered by the sensor(s) and to

avoid blind spots or gaps in the coverage of the AAM surveillance network. The resulting
mesh M consists of na × nb points, denoted by PM, where (xi, yi) corresponds to the i-th
point on the 2D map. Therefore, we can express the set of all points in M as

PM = {(x1, y1), (x2, y2), . . . , (xna×nb , yna×nb)}. (3)

The set of blocks ZM within M is defined by

ZM =
[[

PM
j×na+k, PM

j×na+k+1, PM
(j+1)×na+k, PM

(j+1)×na+k+1

]]nb−1,na−1

j=1,k=1
, (4)

where the number of blocks in M is (na − 1)× (nb − 1). For each adjacent point pair in M, a
block with four corner points is created using j and k, the indices of na and nb, respectively,
such that 1 ≤ j < (nb − 1) and 1 ≤ k < (na − 1). Let ZM be a set of all blocks in M, and z
be an index used to iterate through ZM, where z ranges from 1 to (na − 1)× (nb − 1).

Terrains and Sensor Detection Probabilities

The probability of detecting an AAM aircraft flying over a given block by a given
sensor type is determined by the terrain type of that block. Let T be a set of terrain types
associated with each block in ZM within the mesh for a given area, and S be a set of
potential sensor types. The detection probabilities for all combinations of terrain types
and sensor types is represented by the matrix ωs

T . Tz represents the terrain type of the z-th
block in T, and s is the index for the sensor-type set S. The probability of detecting an AAM
aircraft, denoted by ωs

z, with a sensor of type s on block z ∈ ZM is represented as follows:

ωs
z = ωs

Tz
, ∀z ∈ ZM, ∀s ∈ S, (5)

where block z has the terrain of type Tz.

Exclusion of Outer Blocks

As the surveillance area of interest will likely have an irregular shape, some of the
outer blocks of the rectangular mesh will not belong to the area. These outer blocks are
removed from the block list ZM. The remaining set of blocks present within the area is
represented as Z = z ∈ ZM | I(z) = 1, where I(z) is an indicator function that equals 1 if
the block z belongs to the area, and 0 otherwise. The number of blocks that are removed
from ZM is

Q =
∣∣∣{z ∈ ZM | I(z) = 0

}∣∣∣, (6)

where I(z) is an indicator function that equals 1 if block z belongs to the surveillance area,
and 0 otherwise. Then, Z is the updated block list, where z ranges from 1 to

[(na − 1)× (nb − 1)− Q].

By doing so, the model can approximate the actual shape of the surveillance area and select
optimal sensor locations within the area.

Selection of Candidate Sensor Locations

The set of center points of blocks in Z is considered as the candidate sensor location.
The coordinates of the candidate sensor location is represented by:

C = {(αe, βe) | e ∈ Z}, (7)
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where C is a set of center points of blocks in Z, and e is a potential sensor location. Since
water blocks cannot be selected as sensor locations, the center points of water blocks are
excluded from C to ensure they are not considered as potential sensor locations.

Sensor Block Allocation

We compute the Euclidean distance

de,i =
√
(αe − xi)2 + (βe − yi)2, ∀e ∈ C, ∀i ∈ PM, (8)

where de,i is the distance between a sensor location e ∈ C and a point i ∈ PM, where the
associated coordinates of e are (αe, βe). If a sensor of type s is placed at e, it can cover the
points that are within its sensor range Rs. To determine the points within Rs of a sensor of
type s placed at e, we define As

e as the set of coordinates of the points covered by the sensor,
represented by:

As
e = {i ∈ PM | de,i ≤ Rs}, ∀e ∈ C, ∀s ∈ S. (9)

To identify the blocks covered by each sensor at every potential location, we define
Bs

e as the set of blocks covered when a sensor of type s ∈ S is positioned at location e.
Algorithm 1 iteratively checks whether each point o in the block z is in As

e. If any point in z
is not in As

e, the algorithm sets the value of As
e to False for that block z. If all the points in z

are in As
e, the algorithm indicates that a sensor of type s at location e covers the block z.

Algorithm 1 Computing the set of blocks covered by each sensor at each candidate location
for each sensor of type s in S do

for each location e in C do initialize an empty set Bs
e ;

for each block z in Z do all points in z are in As
e = True;

for each point o in block z in Z do
if o is not in the set As

e then all points in z are in As
e = False; break;

if all points in z are in As
e then add z to the set Bs

e .

Probability of Detection and Misdetection of Sensors

To compute the average detection probability of a sensor placed at e, represented as ζs
e ,

we consider the mean of all the probability values for sensor detection across blocks z in Bs
e

for a sensor of type s as follows:

ζs
e =

1
|Bs

e |
∑

z∈Bs
e

ωs
z, ∀e ∈ C, ∀s ∈ S. (10)

The probabilistic framework of sensor detection probability presents an important
consideration to improve the detection of aircraft in the airspace by understanding the
probability of detection. When an aircraft is present in the airspace, the likelihood that
a sensor will detect it is known as the probability of detection. On the other hand, the
probability of misdetection refers to the likelihood of not detecting an aircraft when it is
actually present. An effective solution to address this issue is to ensure sufficient sensor
coverage at a specific location by installing an adequate number of sensors. This ensures
that at least one sensor can track aircraft that meet the minimum detection probability
requirement, which is the minimum probability of detecting an aircraft that must be met
by sensors to ensure reliable detection [50]. For example, if two sensors are placed at a
location, each with a detection probability of 0.8, the probability that at least one of the
sensors will detect the aircraft is 0.96. Hence, it is essential to consider the probability of
misdetection, calculated by:

τs
e = 1 − ζs

e, ∀e ∈ C, ∀s ∈ S, (11)

where τs
e is the probability of misdetection for a sensor of type s placed at location e.
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Let κs
e be the number of independent sensors of type s required to achieve a minimum

required detection probability at location e, and let τs
el be the probability of misdetection

of sensor l among the κs
e sensors. Then, Υs

e, as given in Equation (12), can be expressed
as the probability that all sensors of type s placed at location e fail to detect AAM aircraft
simultaneously.

Υs
e =

κs
e

∏
l=1

τs
el , ∀e ∈ C, ∀s ∈ S. (12)

If the probability of misdetection for each of the κs
e sensors is the same, then Υs

e can be
expressed as follows:

Υs
e = τs

e
(κs

e), ∀e ∈ C, ∀s ∈ S. (13)

Minimum Required Detection Probability Constraint

To achieve the minimum required detection probability, denoted by r, we introduce a
minimum required detection probability constraint given by:

r = 1 − Υs
e, ∀e ∈ C, ∀s ∈ S. (14)

Based on this constraint and Equation (13), we derive Equation (15) to determine the
value of κs

e .

κs
e =

log(1 − r)
log(τs

e )
, ∀e ∈ C, ∀s ∈ S. (15)

Objective Function and Decision Variables

The objective of the SAND model is to determine the optimal locations for sensor
placement and the number of required sensors such that it minimizes the function

min(θ) = ∑
∀s∈S

∑
e∈C

λs
eκ

s
eδsψs, (16)

where θ is the total sensor cost. This function depends on three parameters: (1) ψs, the cost
per unit of a sensor of type s; (2) κs

e ; and (3) δs, the number of sensors needed for sensor
type s to provide 360◦ coverage at a location. The value of δs depends on the field of view
of sensor type s. For example, if the sensors have a field of view of 90◦, then four sensors of
the same type are needed to be positioned at equal intervals around the location to provide
full coverage. If the sensors have a wider or narrower field of view, fewer or more sensors
may be needed to ensure complete coverage, respectively.

Additionally, θ also depends on a binary decision variable λs
e, represented as follows:

λs
e =

{
1, if sensor is placed at e ∈ C, where s ∈ S
0, otherwise.

(17)

The value of λs
e is 1 if a sensor of type s is placed at location e and 0 if no sensor is placed.

For example, consider a surveillance area represented as a mesh with six rows, eight
columns, and a total of 48 blocks, as demonstrated in Figure 4. The center points of these
blocks serve as candidate sensor locations where sensors can potentially be placed. In this
example, two of these blocks have λs

e values of 1, indicating the placement of sensors at
those locations. Conversely, the remaining blocks have λs

e values of 0, indicating that no
sensors are positioned at their center points. Therefore, the optimal number of sensors is
two, and their optimal locations are the center points of the two blocks, where each of these
center points is associated with specific GCS or PCS coordinates.
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Figure 4. An example of a 6 × 8 mesh demonstrates how λs
e determines the sensor locations and γz

the blocks covered by these sensors.

We introduce γz as another binary decision variable, defined as follows:

γz =

{
1, if block z ∈ Z is fully covered by at least one sensor
0, otherwise.

(18)

The value of γz is 1 if the entire area of block z is covered by at least one sensor from
any sensor type in S and 0 if the entire area of block z is not covered. In the example
demonstrated in Figure 4, the red circles depict the coverage range of two sensors from
different types. The colored blocks represent the areas covered by these sensors, each
assigned a γz value of 1. A block can be covered by one or multiple sensors; here, the blue
and yellow blocks are fully covered by the first and second sensors, respectively, while the
green block is covered by both sensors. The uncolored ones represent blocks that are not
fully covered, each having a γz value of 0.

Full Coverage Constraint

As the surveillance area must be fully covered by the network, we consider a full
coverage constraint, as presented in (19).

∑
e∈C,z∈Bs

e

λs
e ≥ γz, ∀z ∈ Z, ∀s ∈ S (19)

This constraint ensures that each block z is fully covered by at least one sensor placed at e.

Homogeneous and Heterogeneous Sensor Networks

The SAND model can be implemented to build two distinct types of surveillance sensor
networks, namely homogeneous and heterogeneous sensor networks. A homogeneous
sensor network consists of only one type of sensor, while a heterogeneous sensor network
is composed of various types of sensors. For example, if a homogeneous sensor network
is built with radar, S = {Radar}, where S exclusively includes sensors that are radars and
excludes sensors from other types. On the other hand, in a heterogeneous sensor network,
for example, S = {ADS–B, Radar, Acoustic, Optical Camera}, the set S can include sensors
of different types.

Assumptions

Several assumptions are incorporated into the SAND model. Firstly, we assume that
there are no potential sensor obstructions posed by natural or human-made structures in the
surveillance region. Secondly, we assume that all AAM flights take place within an altitude
of 400 m, which is within the range of all the different sensor types considered. Thirdly,
sensor detection performance does not depend on the precise aircraft paths. Fourthly, we
assume that there is no effect of weather on sensor performance. We do not consider the
effect of sensor failures on the AAM surveillance network. Lastly, we assume a uniform
distribution of AAM flight operations across the analyzed region.
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3.1.4. Solution Algorithm

Following the methodology described in Section 3.1, the SAND model is implemented
in Python 3 using the Gurobi Python API, and the model is solved to determine the
optimal values of the λs

e and γz variables using the Gurobi 10.0.1 × 64 Linux on a computer
with a 3.00 GHz × 36 Intel® Core™ i9-10980XE processor and 128 GiB of memory. The
Gurobi optimizer performs a branch-and-bound search to find a global solution. This
is a systematic technique for solving optimization problems by recursively partitioning
the space into smaller branches and then solving each branch independently. To convert
the GCS coordinates into PCS coordinates for modeling the surveillance area, we use
the ’pyproj’ Python package, which can conduct geodetic calculations and cartographic
transformations [56].

3.2. Low Altitude Surveillance Information Clearinghouse Features and Functionalities

The surveillance data generated by the optimized surveillance sensor network must
be safely stored and processed, taking into account the stakeholder preferences and ex-
pectations of LASIC features and functionalities. To determine these preferences and
expectations, a survey of AAM stakeholders was carried out. Based on the survey, ex-
pected LASIC features include access to real-time coverage maps, live surveillance feeds,
offline archival surveillance data, and support for querying and analyzing surveillance data.
The relevant functional and performance requirements of LASIC—namely, surveillance
interface standards, sensor data sizes, and ping rate—are determined based on a system
requirements study of LASIC.

The surveillance data can be processed either on cloud- or locally owned servers.
Given the features of LASIC, a cloud-based server is considered to be more suitable for
hosting the surveillance data of LASIC due to the following reasons. Firstly, local servers
require a large amount of time and effort to set up and maintain it. They also require a
lot of space and expensive hardware. On the other hand, cloud-computing servers can
be a cost-effective solution for LASIC, as they eliminate the need to invest in expensive
hardware and infrastructure. Instead, the LASIC operator (e.g., a given state’s department
of transportation) would pay only for the resources they use in the cloud, which can help
build a more cost-effective LASIC in the long run by reducing operational expenses and
avoiding the capital expenditures associated with maintaining and upgrading local servers.
Secondly, cloud-computing servers provide a higher level of security compared to local
servers, as cloud-computing servers invest heavily in security measures such as firewalls,
encryption, and intrusion detection systems. The data gathered from surveillance must
be protected in LASIC from unauthorized access, cyber threats, and breaches to ensure
the privacy of the system. Any unauthorized access to the data can result in potential
harm to the system and damage to the reputation of the LASIC program. The advanced
security measures of cloud-computing servers can ensure the confidentiality and integrity
of the AAM surveillance network and LASIC, which is essential to maintaining the trust
of their constituents and regulatory compliance. Lastly, cloud-computing servers offer
the advantage of being able to easily scale up or down based on changing demands. This
is especially crucial in the context of LASIC and AAM surveillance, as the demand for
advanced air mobility is rapidly increasing. As more AAM vehicles take to the skies, the
amount of data generated by these vehicles will also increase, and the computing resources
required to process and store this data will need to be adjusted accordingly. Conversely,
local servers have a fixed number of resources and require additional hardware investments
to accommodate additional demands. This can be a significant disadvantage for LASIC
operators, who may need to invest in new hardware to accommodate increased demand,
resulting in higher upfront costs.

Given the benefits discussed above, we deem a cloud-based server to be the most
suitable host for LASIC. The cost of operating the server or utilizing cloud-computing
services depends on AAM traffic projections, surveillance data generated in a specific area,
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surveillance data types, interface standards, data sizes, ping rate, cloud components, and
pricing policies, which are discussed next.

3.2.1. Surveillance Data Types and Sizes

The cost of cloud-computing services is associated with the types and sizes of surveil-
lance data, as cloud vendors generally employ a billing model based on the number of data
held or processed in the cloud infrastructure. As such, larger volumes of data processed or
stored in the cloud result in higher cloud-computing costs. The type and size of surveillance
data generated by the sensors in the AAM surveillance network depend on the type of
service level provided by LASIC and the surveillance data interface standard. The three
possible service levels that can be provided to subscribers of LASIC are informational only,
radio location quality, and radio navigation quality. Of all the service levels, the radio
navigation quality requires stringent data requirements that specify strict and precise data
specifications, as it supports tactical deconfliction services. This is necessary to provide
highly accurate navigation and positioning information, which is crucial for avoiding
collisions and ensuring effective coordination between AAM aircraft during flight. To
specify the interface standard for LASIC, the All-purpose STructured EUROCONTROL
Surveillance Information eXchange (ASTERIX), as mentioned in [57–59], is used in this
study, which is a collection of interface definitions and documentation outlining the data
format standards used for transmitting a range of surveillance data.

The size of the total yearly surveillance data generated in a given area is determined
based on several factors, including the projected yearly flight hours of AAM traffic in the
area for potential use cases, such as passenger and cargo transportation, bridge inspections,
small package delivery, and medical item delivery. We obtained the data of yearly estimated
AAM passenger and cargo traffic from [60] and conducted forecasting to estimate the
demand for other AAM use cases in [2]. Our assumption for the distribution of AAM flight
hours over the given area is uniform. The size of the total yearly surveillance data also
takes into account the size of the surveillance data messages, which are the packets of data
generated by the sensors used for surveillance. These packets may contain information
such as images, video, location data, and other types of sensor data. Additionally, the size
of the total yearly surveillance data is calculated based on a ping rate of 1 Hz, which refers
to the frequency at which the surveillance data is transmitted. A data ping rate of at least
1 Hz is necessary to provide real-time surveillance generated by the sensors. The AAM
traffic is considered to comprise three main types of aircraft: cooperative manned aircraft,
cooperative uncrewed aircraft, and non-cooperative aircraft. The surveillance message sizes
associated with these types of aircraft are computed using their corresponding interface
standards as defined in ASTERIX [57–59], which are listed in Table 3.

Table 3. Types and sizes of surveillance data.

Aircraft Type Interface Standard Number of
Data Items

Message Size
(Bits)

Cooperative manned aircraft ASTERIX CAT-021 42 1136
Cooperative uncrewed aircraft ASTERIX CAT-129 14 432
Non-cooperative aircraft ASTERIX CAT-062 27 2648

3.2.2. Cloud Components

The cloud-computing cost is determined by the pricing policies of the cloud server
chosen to host LASIC and the cloud components needed to enable the desired real-time
and offline LASIC features and functionalities. The Microsoft Azure Web cloud-computing
services are considered in this study to estimate the cloud-computing cost. Microsoft
Azure provides a range of cloud-based services that can be utilized to create a platform
for real-time analysis of live surveillance data. It can be used to continuously ingest and
process LASIC data in near-real time and store the data for data archival, dissemination,
querying, and analytics.
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A cloud-computing architecture capable of real-time analytics on big data would need
to be created to enable the data flow through LASIC. The cloud-computing architecture
would consist of six components: (1) Azure Event Hub, (2) Azure Synapse Analytics,
(3) Azure Data Lake Storage, (4) Azure Cosmos Database (DB), (5) Azure Analysis Services,
and (6) Power BI [61]. The cloud components of LASIC are depicted in Figure 5. The Azure
Event Hub is a big data streaming platform and event ingestion service where millions
of data units can be received and processed in a single second [62]. It can be used to
easily ingest live streaming data from the AAM surveillance sensors. Then, Azure Synapse
Analytics can be used to transform and store data that have been provided to the Azure
Event Hub, respectively. Azure Synapse Analytics is an analytics service that combines
data integration, enterprise data warehousing, and big data analytics [63]. For large-scale
access and movement of surveillance data, Azure Synapse Analytics would require the
use of Apache Spark pool and Synapse pipelines. These components can be used for data
cleaning, transforming, and analyzing; and can enable the use of Python, Scala, or .NET,
and scalable ML techniques to derive deeper insights from LASIC data. Azure Data Lake
Storage allows massively scalable and secure data lake functionality built on Azure Blob
Storage [64], which is needed to store the LASIC data. To provide access to the intended
LASIC data to subscribers through real-time apps, data would need to be transferred from
Apache Spark pools to Azure Cosmos DB [65]. Analytic dashboards and embedded reports
on LASIC data can be created using Azure Analysis Services and Power BI for use by the
LASIC operator and subscribers [66,67].

Figure 5. A flowchart showing the connections of the cloud components of LASIC.

3.3. Cost–Benefit Analysis of Low Altitude Surveillance Information Clearinghouse

To assess and justify the worth of investing in an AAM surveillance network and
LASIC, a cost–benefit analysis is needed, as mentioned in Section 1. Hence, we conducted
the cost–benefit analysis, which involves identifying and estimating the potential costs
and benefits associated with this infrastructure. The findings of the first two parts are
used to perform the analysis, as shown in Figure 3. The cost and benefit factors identified
and considered to be significant in this analysis are (1) the surveillance sensor cost (cost
factor 1), (2) the cloud-computing cost (cost factor 2), and (3) revenue generated from
a LASIC subscription (benefit factor), which are discussed more in this section. Using
the estimates of the cost and benefit factors, the NPV is calculated, which is necessary to
measure the future return on investment expected from an investment in a project in terms
of today’s dollars. The NPV metric takes into account the time value of money and future
cash flows, which is further discussed in Section 3.3.4. As there is an uncertainty associated
with some of the key parameters involved in the analysis—namely the subscription fees,
number of initial subscribers, terrain-based sensor detection probabilities, and the minimum
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required detection probability—a sensitivity analysis was performed to evaluate the effect
of these parameters on the NPV generated.

3.3.1. Cost Factor 1: Surveillance Sensor Cost

The first cost factor is the surveillance sensor cost, which is the total cost incurred to
build the surveillance network in a given area. This cost factor depends on the number of
sensors needed to obtain the intended coverage over a given region and the price of the
sensors. The required number of sensors is evaluated by implementing the SAND model
described in Section 3.1.3 for six sensor types mentioned in Section 3.1.1. In this analysis, we
consider the capital for purchasing and installing sensors to build the surveillance network
that will be invested once in 2023.

3.3.2. Cost Factor 2: Cloud Computing Cost

As discussed in Section 3.2, opting to host LASIC on a cloud server incurs an annual
cloud-computing cost that constitutes the second cost factor throughout the analysis period.
To estimate this cost, we refer to Microsoft Azure’s pricing policies, as outlined in [68],
which take into account the number of surveillance data published and received by LASIC.
The amount of surveillance data generated in a particular area can vary depending on
factors such as an AAM traffic projection, surveillance data type, interface standard, data
size, and ping rate.

3.3.3. Benefit Factor

The survey responses reveal a willingness to pay by potential subscribers of LASIC for
the services offered by it. The range of subscription fees that potential subscribers are willing
to pay for the services expected to be offered by LASIC is found to be USD 100–400 dollars.
This informs the computation of the benefit factor considered in this study and the rev-
enue generated from LASIC. The potential subscribers of LASIC include parcel and cargo
delivery operators, medical item delivery companies, air taxi operators, infrastructure
inspection companies, airspace service providers, state penitentiaries, law enforcement
agencies, correctional facilities, and municipalities. The number of potential subscribers in
the various years of the analysis period is estimated based on global and US AAM market
growth rates reported in AAM market studies, such as [69–71].

3.3.4. Net Present Value

To evaluate the financial viability of LASIC, its NPV over the analysis period needs to
be computed and analyzed.

NPVt =
CP

t − CN
t

(1 + χ)t , ∀t ∈ {0, 1, ..., 10} (20)

This represents the estimated total value of all future cash flows generated by an investment
over the lifetime of the project or a given analysis period, where CP

t and CN
t represent the

positive cash flow and negative cash flow in year t, respectively [72–74]. In this analysis,
the yearly NPV calculation of the AAM surveillance network and LASIC is carried out
based on the difference between the revenue generated (positive cash flow) and the costs
associated with the AAM surveillance network and LASIC (negative cash flow). A discount
factor is considered to account for the time value of money, which reflects the idea that a
dollar received in the future is worth less than a dollar received today. We considered a cash
flow over a 10-year horizon, discounting at 10% (the discount rate χ) for this infrastructure
project [75–77]. A positive NPV at the end of the analysis period implies that the expected
revenue from the investment exceeds the projected costs, and thus, the investment is
considered profitable. Conversely, a negative NPV suggests that the investment would
result in a net loss.
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4. Results

The applicability of the proposed model and solution approaches are demonstrated
through their application in several numerical experiments in this section. To undertake
the experiments, we consider the six major cities of Ohio (SMCO): Columbus, Cleveland,
Cincinnati, Akron, Toledo, and Dayton. The formation of SMCO is predicated on the
finding of significant demand potential for AAM use cases in those cities considering
socioeconomic factors, such as population, population density, gross domestic product,
median per capita income, cost of living, total area, cities in motion index, human capital,
etc. [60].

4.1. Experimental Setup

In this section, we provide details of the values related to the sensors and surveillance
area that we consider in our experimental setup for running the experiments.

4.1.1. Sensors

In this study, one real-world sensor model is considered for each of the sensor types
discussed in Section 3.1.1. The Echo Guard radar is considered for the radar sensor type. It
is a top-tier 4D radar with an easy user interface that is easily adaptable to site and mission
requirements for high-performance ground-based detect-and-avoid [21]. We consider
CamelCase pingStation3 V2.4.43 as an ADS–B frequency ground receiver for our analysis.
It is a networkable weatherproof 978/1090 MHz ADS–B receiver that includes GPS and an
antenna, with power and data provided by a single power-over-Ethernet network cable
connected to a LAN [18]. We consider DroneScout as the (direct/broadcast) remote ID
receiver, which can receive remote ID signals sent from aircraft [20]. The Dedrone RF-360
is considered in this study for the RF sensor type. It is a passive, network-attached radio
sensor used for the detection, classification, and localization (geolocation) of aircraft and
their remote controls [19]. The OptiNav Drone Hound system is considered the acoustic
sensor type in our study. It is an acoustic sensor that has been designed to detect, identify,
and track sUAS. Unlike other sensors, it does not rely on electromagnetic emissions from the
sUAS [22]. We consider the Q6225-LE PTZ Network Camera from Axis Communications
in our analysis for the optical camera sensor type [78].

The R, ψ, and δ of the six selected sensors from their corresponding sensor types in
the input set S of the SAND model are listed in Table 4. The sensor types listed vary in
terms of their range and cost. Radar has the highest range of 321.87 km, provided by the
ADS–B sensor. Remote ID and RF sensors have ranges of 5.02 km and 4.99 km, respectively,
while acoustic and optical camera sensors have much shorter ranges of 0.5 km and 0.4 km,
respectively. Radar and RF sensors are generally the most expensive, with one of the
sensors costing around USD 35,000—the other sensors in the table range in price from USD
1100 to USD 9000.

Table 4. Selected sensors from each sensor type.

Sensor Types Vendor System Range (km) ψ (≈USD) δ

Radar Echodyne, Kirkland, WA, USA Echo Guard 2.41 35,000 3

ADS–B AVIONIX Software S.L., Bigfork, MT, USA CamelCase
pingStation3 321.87 2250 1

Remote ID BlueMark Innovations BV, Enschede, The Netherlands Drone Scout 5.02 1100 1
RF Dedrone, San Francisco, CA RF-360 4.99 35,000 1

Acoustic OptiNav, Bellevue, WA, USA Drone Hound 0.5 9000 1

Optical Camera Axis Communications, Lund, Sweden Q6225-LE PTZ
Network Camera 0.4 3500 6
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4.1.2. Surveillance Area

In the experimental setup for modeling a surveillance area, we considered the follow-
ing factors to execute the SAND model. As mentioned in Section 3.1.3, L/

√
2 should be

greater than ρ. Therefore, we consider L as 0.3 km, which is less than 0.4
√

2 km, where
0.4 km is the lowest value of the range among all sensor types S (refer to Table 4). This
ensures that all blocks are covered by the sensors and no surveillance area is left un-
covered. Hence, to run the SAND model for Columbus, Cleveland, Cincinnati, Toledo,
Akron, and Dayton, we generated 130 × 126, 77 × 96, 58 × 77, 57 × 72, 65 × 62, and
54 × 60 blocks, respectively.

A higher minimum required detection probability value would need to be considered
for security-sensitive areas to ensure a higher level of detection and identification accuracy.
We considered the value of r as 0.98 in our study, which means that the system aims to
detect and identify targets with a probability of at least 0.98. For considering the effect
of terrains on the probability of detection of a sensor, the terrains of the area are divided
into five major types of T: (1) open, (2) water, (3) neighborhood or residential area, (4) hill,
and (5) busy commercial area or downtown. The Google Maps platform is utilized to
observe and determine the terrain type of each block z ∈ Z. Tz is obtained by reference
to the terrain classification of the z-th block, as recorded in the list T. The probability
values in the ωs

T matrix, as given in Table 5, are approximated based on the approach
reported in [79–81]. By analyzing the values presented in the table, it is evident that the
detection probabilities of the sensors tend to decrease as the terrain type changes, which
aligns with the discussion in Section 3.1.2. The probability of detection is the highest for
open terrains, followed by water and neighborhood, whereas it is comparatively lower for
hill and commercial areas. Additionally, the values indicate that the detection probabilities
for radar and the ADS–B sensor are relatively higher than other sensor types, regardless
of the terrain type. Conversely, the acoustic sensor has the lowest detection probability
among all sensor types and terrain types. These observations emphasize the significance of
selecting an appropriate sensor type and its detection probability when designing a sensor
network for a given area with varying terrain types.

Table 5. Detection probability of sensors based on different terrain types: ωs
T matrix.

Sensor Type (S)
Terrain Type (T)

Open Water Neighborhood Hill Commercial Area

Radar 0.95 0.90 0.85 0.75 0.75
ADS–B 0.99 0.99 0.90 0.85 0.80
Remote ID 0.95 0.95 0.85 0.80 0.75
Radio Frequency 0.95 0.95 0.85 0.80 0.75
Acoustic 0.75 0.65 0.40 0.25 0.20
Optical Camera 0.90 0.90 0.80 0.75 0.70

To demonstrate the dependence of a sensor’s detection probability on the terrain type,
Figure 6 presents a heatmap showing the probability of detecting radar across the various
terrain types in Dayton. The colored bar on the right side of the figure shows the scale
of detection’s probability, where the off-white color refers to a probability of zero and the
darkest orange color refers to a probability of one. Note that the detection probability of
sensors in blocks outside the area, where I(z) = 0, is set to zero. Hence, the off-white
color refers to blocks that do not belong to Dayton, and the orange colors, on the other
hand, represent blocks within the area. By setting the detection probability of sensors in
blocks outside the area to zero, the analysis is focused on the sensors within the area of
interest. This allows for a more precise evaluation of the sensor network’s effectiveness in
the designated area.
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Considering the sensor detection probabilities in different terrain types, Figure 7
presents an overview of the selection process that the SAND model uses to select blocks
within a sensor range. The red marker refers to the location where a sensor is placed, and
the blue circle shows the area within its range. Blocks that do not have all four corner
points inside the blue circle are classified as the “Uncovered” blocks (i.e., uncovered by
the sensor range), whereas the blocks with all four corner points inside the blue circle are
classified as the “Covered” blocks. Each of the covered blocks can belong to any of the five
terrain types in T, as mentioned in Figure 7 in italic font.

Figure 6. A heatmap of the probability of detection of a radar based on terrain types of 3240 blocks
in Dayton.

Figure 7. Block selection overview-classification of blocks by sensor coverage and terrain type.
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Following the methodology described in Section 3.3, determining the number of
sensors needed and their locations using the SAND model, the revenue, costs, and the NPV
of the AAM surveillance network and LASIC are computed for the numerical experiments.
Before discussing the homogeneous and heterogeneous sensor placement analyses, we
address the analysis of the revenue and cloud-computing cost since they are the same for
both experiments. The NPVs of the different sensor types are compared with each other in
terms of two criteria: (1) the number of years required to reach the break-even point and
(2) the estimated NPV in the final year of the analysis period. Given the uncertainty of the
AAM market, a sensitivity analysis was conducted to examine how the NPV responds to
changes in the key market parameters—namely, the yearly number of subscribers and the
subscription fees. The results are presented in the following subsections.

4.2. Revenue and Cloud-Computing Cost Analysis

The total yearly revenues generated by the AAM surveillance network and LASIC are
determined by two factors: the yearly number of subscribers and the monthly subscription
fee of LASIC. It does not depend on the sensor type used in the surveillance network,
provided that complete coverage is present across SMCO. Hence, for all sensor types,
the revenue generated is the same. We estimated the number of subscribers for LASIC
in 2024 to be 100 based on the existing number of sUAS operators, air taxi operators,
infrastructure inspection companies, medical item delivery companies, state penitentiaries,
law enforcement agencies, correctional facilities, and municipalities in SMCO. Then, we
studied the compound annual growth rate (CAGR) of the market size of AAM to estimate
the number of yearly subscribers of LASIC over the analysis period based on the reports
available on global and US AAM market growth [69–71,82]. Because of the evolving nature
of the AAM market and its inherent uncertainty, we incorporated a CAGR range of 10% to
20% in our study based on the values reported in the AAM market growth studies instead
of relying on a fixed value of CAGR. Here, the lower limit of 10% signifies the conservative
estimate, while the upper limit of 20% represents the optimistic estimate.

Another factor that affects the revenue is the monthly subscription fee, which ranges
between USD 100 and USD 400, as mentioned in Section 3.3.3. For the revenue analysis, we
assume the fee to be USD 400 and later vared it during the sensitivity analysis to analyze
cases where the fee is less than USD 400. The yearly revenues generated by the AAM
surveillance network and LASIC in SMCO, with an initial number of subscribers of 100
and a fixed subscription fee of USD 400, are depicted in Figure 8a. As the number of
subscribers increases over the years, the revenue grows proportionally. The grey shaded
region signifies the potential revenue outcome that falls between the projected revenues at
a 10% CAGR and those at a 20% CAGR. It also highlights how the growth rate significantly
impacts the range of revenue projections over time. In the case of a 10% CAGR, the revenue
is expected to begin at USD 0.48 million and increase gradually over the years, reaching
approximately USD 1.032 million in 2033. On the other hand, with a more optimistic 20%
CAGR, the revenue starts at the same initial value of USD 0.48 million but experiences a
more rapid growth, reaching a potential high of USD 2.064 million by 2033.

The cost of cloud computing, according to the Microsoft Azure pricing policies, de-
pends on the projected amount of surveillance data generated in each city, which in turn
depends on the projected AAM traffic in each city, as presented in Figure 8b. The range of
CAGR values of the AAM market size considered accounts for the uncertainty in AAM
flight hours. This uncertainty range subsequently influences the cloud-computing cost,
as illustrated in the figures through the inclusion of error bars. These error bars serve to
indicate that the associated cost is estimated to fall within the limits defined by the bar.
The ten-year cloud-computing cost breakdown for each cloud component and each city
within SMCO is illustrated in Figure 9. The Azure Event Hub and Azure Data Lake Storage
have the two lowest costs among all the components. The Azure Event Hub operates on
a tiered pricing model, where the cost of the service varies based on the level of usage of
surveillance data by a subscriber. The cost is relatively low in the first few years, as the
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surveillance data and the number of subscribers are initially low, and the cost increases
in steps as the surveillance data and number of subscribers increases. When the Azure
Event Hub usage reaches a defined threshold, the cost climbs to a higher level, and this
pattern repeats for each subsequent tier, creating a step function of the cost with respect
to usage. The costs for Azure Event Hub and Azure Data Lake Storage increase with the
amount of incoming data ingested into the hub and stored in the Data Lake, respectively.
Additionally, the frequency of data access also influences the rise in cost, with higher
amounts of access due to an increasing number of subscribers, which lead to an increase in
cost in successive years. The Azure Analysis Services and Azure Power BI costs increase
with time, commensurate with the projected increase in the amount of data stored, number
of queries run, and number of users accessing the services. Lastly, the pricing of Azure
Synapse Analytics and Azure Cosmos DB includes both a yearly fixed cost and a yearly
variable cost. The yearly fixed cost is associated with the provisioning of virtual machines,
storage, and other necessary resources to operate the services. The yearly variable cost
depends on the amount of data processed in LASIC. As the yearly fixed cost is much higher
than the yearly variable cost, the Azure Synapse Analytics and Azure Cosmos DB costs are
nearly constant, increasing slightly over the years. Across all cities, the cloud-computing cost
associated with ingesting, storing, and analyzing the surveillance data generated in Cleveland
is the highest, as it has the highest air traffic demand forecast across SMCO and hence produces
the largest amount of surveillance data, whereas for Toledo, the cost is the lowest, as it generates
the lowest air traffic demand forecast, and hence the lowest amount of data.

(a) (b)
Figure 8. Yearly revenues and yearly projected AAM traffic. (a) Yearly revenues generated by AAM
surveillance network and LASIC. (b) Yearly projected AAM traffic in Ohio.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e)
Figure 9. Costs of different cloud components in cloud computing. (a) Azure Event Hub cost.
(b) Azure Synapse Analytics cost. (c) Azure Data Lake Storage cost. (d) Azure Cosmos DB cost.
(e) Azure Analysis Services and Azure Power BI cost.

4.3. Homogeneous Sensor Placement Analysis

In the homogeneous sensor placement analysis, the surveillance network across SMCO
is considered to be built using one sensor type instead of a mix of sensor types. This
allows for a more in-depth analysis of each individual sensor type’s suitability for AAM
surveillance and capability to produce the NPV over the analysis period.

For each sensor type, the optimal location and number of sensors required to build the
homogeneous surveillance network at a minimum sensor cost in SMCO are determined
using the SAND model. The optimal locations for RF sensors in the surveillance network
across SMCO are shown in Figure 10, where the blue markers represent the locations of the
RF sensors. The sensors are strategically placed to ensure that all blocks within the sensor
range are covered while minimizing the overlapping region to reduce the cost of the sensor
network. The distribution of sensor locations varies for each city based on factors such as
the city shape and area, terrain type, and probability of detection of each sensor type based
on the terrain types. These factors also affect the optimal location and number of sensors
required to provide adequate coverage of the city and determine the total sensor cost. For
example, Columbus can be approximated as having a circular shape, while Cleveland is
wider than it is long, and Columbus has a larger area compared to cities like Akron and
Dayton. Another instance is Toledo, which has a greater number of water bodies compared
to Columbus, while Cincinnati has more hilly terrain. These variations in shape and terrain
result in different sensor distributions in the network.

The number of sensors required varies significantly depending on the city and the
type of sensor used, as shown in Table 6. For any given sensor type, the number of sensors
required to cover a given area increases with the area of the city. Among SMCO, Columbus
requires the largest number of sensors, as it has the largest area, and Dayton the smallest,
as it has the smallest area. In addition, the range of the sensors used also affects the
number of sensors required. Radar sensors, for example, typically have a longer range
than optical cameras (refer to Table 4), which means that fewer radar sensors are needed to



Sensors 2024, 24, 803 29 of 42

cover the same city compared to using more optical cameras. Different cities have varying
proportions of terrain types (refer to Figure 10). The detection probabilities of sensors
on different terrain types are affected by the sensor type used (refer to Table 5), which in
turn affects the number of sensors required. For instance, acoustic sensors have a lower
detection probability than other sensor types when placed on a block with hilly terrain.
As a result, cities with hilly terrain, such as Cincinnati, require more sensors to cover the
terrain than cities like Cleveland with relatively less hilly terrain. Therefore, the number of
sensors needed in Cincinnati is higher than the number of sensors needed in Cleveland for
acoustic sensors, even though Cleveland is larger in size compared to Cincinnati. Moreover,
the field of view varies with the sensor type, and for a limited field of view, more sensors
are required to ensure a complete 360◦ view. For instance, although the ranges of acoustic
sensors and optical cameras are similar, acoustic sensors have a lower detection probability
compared to optical cameras. Thus, the number of sensors required for acoustic sensors to
cover an area should be higher than that required for optical cameras. However, due to the
higher value of δ for optical cameras compared to acoustic sensors (refer to Table 4), the
number of sensors required becomes higher for optical cameras than for acoustic sensors.

Figure 10. Optimal locations of RF sensors (the blue markers) in six cities: (a) Columbus, (b) Cincin-
nati, (c) Akron, (d) Cleveland, (e) Toledo, and (f) Dayton.

Based on the unit price of each sensor type and the number of sensors required for a
sensor type for each city, the SAND model determines the city-wise sensor cost of all sensor
types. The sensor costs of all cities are presented in Figure 11. The different sensor types
listed in ascending order of sensor cost are ADS–B, remote ID, RF, radar, optical camera,
and acoustic. Among SMCOs, Columbus requires the highest sensor cost for all sensor
types, while Dayton has the lowest. The sensor costs for ADS–B and remote ID sensor types
are much lower compared to the other sensor types, as they require fewer sensors and have
lower unit prices. At the other end of the sensor cost spectrum are optical cameras and
acoustic sensor types. Though the unit prices of acoustic sensors and optical cameras are
cheap, a large number of sensors are required for each to cover the SMCO, as mentioned
above, resulting in a very high total sensor cost. While the number of sensors required for
the acoustic sensor type is less than for optical cameras, the total sensor cost for acoustic
sensors is higher than for optical cameras due to the lower unit price of optical cameras.
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Utilizing the total sensor cost for the SMCO presented in this section, as well as
the revenue and cloud-computing cost for the SMCO detailed in Section 4.2, the NPV is
calculated. The yearly NPVs associated with all sensor types are presented in Figure 12,
where the length of an error bar for a sensor type in a given year, extending on either side
of its central NPV value, indicates the range within which the NPV for that sensor type
in that year is expected to fall. For all sensor types, the steady increase in the NPV with
time is fueled by the increase in yearly revenues generated from the subscription fees. This
NPV growth is less noticeable for the radar, optical camera, and acoustic sensor types,
as they have high initial sensor costs. ADS–B, remote ID, and RF sensor types generate
positive NPVs within the analysis period. ADS–B generates the largest NPV, followed
closely by remote ID, while RF brings the third-largest NPV. These sensor types lead the
NPV race because they have lower unit prices and higher ranges, thus requiring fewer
sensors to cover a city and, hence have lower sensor costs. Both the ADS–B and remote
ID sensor types will quickly reach the BEP in 2024. Their projected NPVs reach around
USD 5.04 million and USD 4.90 million in the final year of the analysis period, as illustrated
in Figure 12a. The RF sensor type takes longer to reach the BEP, gaining a positive NPV
of approximately USD 3.29 million in 2033. On the other hand, as shown in Figure 12b,
the projected yearly NPVs for the radar, acoustic, and optical camera sensor types feature
negative NPVs over the 10-year analysis period due to their high initial sensor costs.

Table 6. Number of sensors required in SMCO.

City Radar ADS–B RF Remote ID Acoustic Optical Camera

Columbus 610 1 49 49 29,500 55,000
Cleveland 261 1 24 24 10,684 21,642
Cincinnati 228 1 20 20 20,000 34,335

Toledo 192 1 17 17 15,305 33,594
Akron 153 1 14 14 13,920 27,228
Dayton 110 1 11 11 10,095 22,890

(a) (b)

(c)
Figure 11. City-wise sensor costs for different sensor types. (a) Sensor costs of ADS–B and remote ID.
(b) Sensor costs of radar and RF. (c) Sensor costs of acoustic and optical camera.
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Policy recommendation: As discussed previously in Section 3.1.1, each sensor type
can detect and track cooperative and/or non-cooperative aircraft flying in low-altitude
airspace. Radar, RF, acoustic, and optical cameras are capable of tracking both types of
aircraft, while ADS–B and remote ID can only track cooperative aircraft. Based on the
NPV, if tracking only cooperative aircraft is sufficient, then ADS–B and remote ID sensor
types are recommended, as they are the most financially viable sensor types for the AAM
surveillance network and LASIC. If tracking both cooperative and non-cooperative aircraft,
especially those flying over penitentiaries and other restricted areas, is a requirement, then
RF is the most profitable sensor type.

(a) (b)
Figure 12. Yearly NPVs of six sensor types. (a) Yearly NPVs of ADS–B, RF, and remote ID. (b) Yearly
NPVs of radar, acoustic, and optical camera.

4.4. Heterogeneous Sensor Placement Analysis

The heterogeneous sensor placement analysis aims to investigate the network compo-
sition and costs associated with using a combination of sensors of different types rather
than selecting sensors of just one type. The SAND model identifies the optimal sensor
locations of the assorted sensor types to build the AAM surveillance sensor network across
SMCO. To conduct an experiment on the heterogeneous sensor placement analysis, we
considered providing coverage to sensitive locations within SMCO, such as penitentiaries,
police stations, and airports, where detecting both cooperative and non-cooperative aircraft
is equally important. Since radar, RF, acoustic, and optical camera sensor types can detect
both types of aircraft, we initially considered the set of sensors as S = {Radar, RF, Acoustic,
Optical Camera}. However, we find that only the RF sensor type is selected from this set, as
it dominates other sensor types and generates the same results as the RF sensor type in the
homogeneous case (refer to Section 4.3). This is due to the RF sensor type having a larger
range, higher detection probability on all terrain types, higher field of view (lower δ), and
a lower unit price compared to other sensor types in the set. We then considered the set
of sensors as S = {Radar, Acoustic, Optical Camera} to conduct the experiment again and
generate further insights on the heterogeneous sensor placement analysis, which is given
in this section.

The total number of sensors and sensor cost needed to place the sensors, as presented in
Table 7 and Table 8, respectively, are compared between the two types of sensor placement:
the homogeneous sensor network and the heterogeneous sensor network. For each city,
the homogeneous cases show the values of the total number of sensors and the sensor cost
of placing three individual sensor types (radar, acoustic, and optical camera), whereas the
heterogeneous case shows the values for a mix of these sensor types. Comparing the values
shows that heterogeneous sensor placement requires fewer sensors than acoustic sensors
and optical cameras in a homogeneous sensor network but more sensors than radars in a
homogeneous sensor network. For example, in Akron, the heterogeneous sensor network
requires 155 sensors, as shown in Table 7, which is lower than the numbers required
for acoustic and optical cameras, at 13,920 and 27,228, respectively, but higher than the
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number of sensors required for radars in the homogeneous sensor network, which is 153.
However, the total cost of the sensors for setting up a heterogeneous sensor network is much
lower than the separate costs for radar, optical cameras, and acoustic sensor types in the
homogeneous case, which are USD 1.89 million, USD 13.53 million, and USD 31.56 million,
respectively. The SAND model selects the optimal number and location of sensors to
minimize the total cost of the sensors, even if it means using more sensors by replacing
some radars with acoustic sensors. Although this results in an increased number of sensors,
the use of lower-priced sensors reduces the total sensor cost, which is the objective of the
SAND model.

The runtime (in seconds) of our algorithm applied to the homogeneous and heteroge-
neous sensor networks in various cities reveals a consistent pattern, as detailed in Table 9.
In larger cities, where a higher number of blocks are required, the computation times are
longer, whereas in smaller cities, which necessitate fewer blocks, the computation times are
shorter. These runtimes are lower compared to those reported in other studies, as listed in
Table 1.

Table 7. Comparison of total number of sensors needed between homogeneous and heterogeneous
sensor networks.

Total Number of Sensors Needed

Homogeneous Sensor Network Heterogeneous Sensor Network

City Radar Acoustic Optical Camera Radar, Acoustic, and Optical Camera

Columbus 610 29,500 55,000 648
Cleveland 261 10,684 21,642 333
Cincinnati 228 20,000 34,335 240

Toledo 192 15,305 33,594 192
Akron 153 13,920 27,228 155
Dayton 110 10,095 22,890 112

Table 8. Comparison of total sensor cost between homogeneous and heterogeneous sensor networks.

Total Sensor Cost (Million USD)

Homogeneous Sensor Network Heterogeneous Sensor Network

City Radar Acoustic Optical Camera Radar, Acoustic, and Optical Camera

Columbus 21.35 265.50 192.50 20.75
Cleveland 9.14 96.16 75.75 8.51
Cincinnati 7.98 180.00 120.17 7.83

Toledo 6.72 137.75 117.58 6.72
Akron 5.36 125.28 95.30 5.06
Dayton 3.85 90.86 80.12 3.52

Table 9. Runtime of algorithm for homogeneous and heterogeneous sensor networks.

Runtime (Second)

Homogeneous Sensor Network Heterogeneous Sensor Network

City Number Radar ADS–B Remote RF Acoustic Optical Radar, Acoustic, and
of Blocks ID Camera Optical Camera

Columbus 130 × 126 68.97 198.99 48.23 51.95 45.25 38.80 230.34
Cleveland 77 × 96 14.78 29.25 8.70 10.56 5.43 6.30 56.67
Cincinnati 58 × 77 3.67 6.67 1.31 1.80 1.05 1.02 8.75

Toledo 57 × 72 2.01 5.23 1.25 1.66 0.87 0.90 7.78
Akron 65 × 62 1.45 3.11 0.87 0.89 0.03 0.03 2.03
Dayton 54 × 60 0.96 2.35 0.14 0.15 0.01 0.01 1.56
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The SAND model reconfigures the number and location of sensors in the heteroge-
neous sensor network, as demonstrated in Figure 13, to optimize the total sensor cost more
effectively. The figure shows the optimal sensor locations in both the homogeneous and
heterogeneous sensor networks for the city of Akron, where red markers represent radar
locations, green markers represent acoustic sensor locations, and the numbers below the
markers indicate the number of sensors needed at each location. In the heterogeneous
sensor network, an optimal combination of sensors with appropriate ranges is chosen
to cover the given area, resulting in lower costs compared to the homogeneous sensor
network. In other words, the ranges of the different sensor types are utilized effectively in
the heterogeneous sensor network to reduce the sensor cost. For example, near the outer
edges of the city and in small pockets within the city, sensors with a smaller range and
lower unit price are placed, such as acoustic sensors, instead of sensors with a higher range
and higher unit price, like radar, to minimize the sensor cost.

(a) (b)
Figure 13. Optimal locations of sensors in Akron in homogeneous and heterogeneous sensor net-
works (texts below the markers show the number of sensors needed at the respective locations).
(a) Optimal locations of sensors in homogeneous network. (b) Optimal locations of mixed sensors in
heterogeneous network.

We then calculated the NPV of the heterogeneous sensor network in SMCO by
taking into account the revenue, cloud-computing cost, and total sensor cost. As shown
in Figure 14, the NPV generated by the heterogeneous sensor network is higher than
the NPVs generated by the respective homogeneous sensor networks for individual
radar, acoustic sensors, and optical cameras. This is due to the lower sensor cost of
the heterogeneous sensor network, which is discussed earlier in this section. The first
three bars in the figure represent the homogeneous cases, while the last one represents
the heterogeneous case with a mix of radar, acoustic sensors, and optical cameras.
Although the NPVs for the radar, acoustic, and optical cameras mentioned in Section 4.3
are negative, there is a noticeable trend of increasing NPV values as we move from
homogeneous cases to heterogeneous cases in all time periods. Therefore, we conclude
that a heterogeneous sensor placement analysis can help generate more NPVs than a
homogeneous sensor placement analysis.
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Figure 14. Comparison of yearly NPVs between the homogeneous and heterogeneous sen-
sor networks.

Policy recommendation: The heterogeneous sensor network offers a lower sensor
cost compared to a homogeneous sensor network, allowing for the identification of the
optimal mix of sensors from a given set of sensor types. Therefore, among the two types of
sensor placement, a heterogeneous sensor network is recommended when the right set of
sensor types is selected, considering which types of aircraft need to be detected and tracked.
By using heterogeneous sensor placement, it is possible to design a surveillance network
with a minimum cost that installs sensor types that can track non-cooperative aircraft
(e.g., RF) in security-sensitive areas (e.g., penitentiaries, law enforcement facilities, and
correctional facilities), and sensor types that can track either cooperative or non-cooperative
aircraft (e.g., ADS–B and remote ID) in nonsecurity-sensitive or general public areas. Other
sensor placement constraints can also be enforced while designing a heterogeneous sensor
network based on the requirements, preferences, and regulations of the government, AAM
operators, and LASIC subscribers.

4.5. Sensitivity Analysis

Despite the growing interest in AAM, several unresolved obstacles and concerns exist,
including the need for new widespread infrastructure to support AAM operations, such as
vertiports, takeoff and landing sites, charging stations, air traffic control systems, airspace
routes, and surveillance networks. Additionally, the current regulatory framework for air
transportation is not designed for AAM, requiring new regulations and standards. Factors
such as changes in consumer preferences, regulatory requirements, and technological
advancements could all affect the adoption and growth of AAM services. Hence, in
this section, a sensitivity analysis is conducted to examine the impact of the changes
in parameters directly affecting the NPVs generated in our analysis, such as the LASIC
subscription fee and the number of initial subscribers. We also conducted a sensitivity
analysis for other key parameters that we are uncertain about due to the lack of verified data
available, such as terrain-based sensor detection probabilities and the minimum required
detection probability, to observe their impacts on respective outputs.

To address the uncertainty associated with the demand for AAM, it is crucial to con-
sider a range of subscription fees and yearly numbers of subscribers instead of fixed values,
as these variables directly affect the revenue and NPV generated by LASIC. Therefore, a
sensitivity analysis was conducted to examine the impact of the changes in these variables
on the NPV over the analysis period. For this analysis, the sensor types with the three
highest-producing NPVs in the homogeneous sensor network—ADS–B, RF, and remote
ID—are considered. To vary the yearly number of subscribers for LASIC, the number of
subscribers in the initial year (2024) is varied, which affects the number of subscribers in the
subsequent years. Based on the survey responses, three values for the monthly subscription
fee per subscriber (S)—USD 100, USD 250, and USD 400—and three values for the number
of potential subscribers in 2024 (N)—50, 75, and 100—are considered. The trends observed
in Figure 15 show that higher values of S and N lead to increases in the NPV and cause
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the BEP to occur earlier. These effects are attributed to the increase in revenue generation
prompted by increases in S and N. As demonstrated by the example of the RF sensor type,
when S is USD 100, the NPV in 2033 is USD −3.67 million and cannot reach the BEP within
the analysis period. On the other hand, when S increases to USD 400, for the same sensor
type, the NPV reaches a BEP of USD 0.37 million by 2033. Similarly, if N is 50, the NPV
shows a net loss of USD 2.31 million in 2033, and it is not possible to reach BEP during the
analysis period. However, for the same sensor type, when N increases to 100, the NPV is
expected to reach BEP of USD 3.74 million by 2033. The analysis highlights that the state
government can achieve a net profit for several sensor types within the analysis period as
long as S and N are not too low. The values of S and N, at which a positive NPV is ensured,
are contingent on the chosen sensor type. If the objective is to detect and track solely
cooperative aircraft, then ADS–B and remote ID are profitable options for the sensor types
for the AAM surveillance network and LASIC, as discussed in Section 4.3. For this case,
even if S and N assume values of USD 100 and 50, respectively, the state government can
still attain a net profit within the analysis period. On the other hand, if both cooperative and
non-cooperative aircraft are required to be tracked, then RF represents the most profitable
sensor type for the AAM surveillance network and LASIC, as discussed in Section 4.3. In
this scenario, the state government should ensure S is no less than USD 400 when N is 100
to achieve a net profit within the analysis period.

To understand the impact of the changes in the terrain-based sensor detection probabil-
ities on the number of required sensors and the total sensor cost, it is important to consider
that sensor detection probabilities can vary depending on the type and manufacturer of
the sensor. For instance, if we focus on the radar sensor type and consider the city of
Akron, we can analyze the effect of varying the sensor detection probabilities for different
terrain types by conducting a sensitivity analysis. The sensor detection probabilities for
different terrain types in Akron and the corresponding number of sensors and sensor cost
are presented in Table 10, along with the effects of a 5% increase and a 5% decrease in sensor
detection probabilities. The preset value of the sensor detection probabilities ranges from
0.75 to 0.95 for different terrain types (refer to Table 5). A 5% increase in sensor detection
probabilities results in a decrease in both the number of sensors required and the total
sensor cost. This is because a higher sensor detection probability allows the radar to cover
the same area with fewer sensors while increasing the probability of tracking AAM aircraft,
thereby reducing the sensor cost for a given sensor type. Conversely, a 5% decrease in
sensor detection probabilities results in an increase in both the number of sensors required
and the total sensor cost, as a lower sensor detection probability requires more sensors to
cover the same area.

The sensitivity analysis of the minimum required detection probability is important
because it helps to understand how the number of sensors and their cost vary with changes
in r. A higher r value means that the sensor needs to be more sensitive to detect AAM
aircraft with a higher level of confidence, which can increase the number of sensors required
and the cost of the sensors. For example, in Table 11, provided for Akron City, we can see
how the number of sensors and their cost vary for different sensor types as r increases. The
number of sensors and the cost of a sensor type are more affected when the sensor type has
a lower range, lower detection probability on all terrain types, lower field of view (higher
δ), and a higher unit price. For example, the acoustic sensor type is the most affected by
changes in r. As the value of r increases from 0.96 to 0.99, the cost of the acoustic sensor
type increases significantly from USD 108.612 million to USD 154.350 million, and the
number of sensors required also increases from 12,068 to 17,150. On the other hand, the
ADS–B sensor type is the least affected by changes in r. We can see that for ADS–B sensors,
increasing the required detection probability from 0.96 to 0.99 leads to an increase in the
cost of the sensors from USD 0.002 million to USD 0.005 million and the number of sensors
required from 1 to 2.
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Table 10. Detection probability of a radar for different terrain types in Akron and the corresponding
number of sensors and sensor cost, along with the effects of a 5% increase and a 5% decrease in
detection probability.

Case

Terrain Type (T)

Number of Sensors
Total Sensor Cost

(USD Million)Open Water Neighborhood Hill Commercial
Area

Preset Value 0.9500 0.9000 0.8500 0.7500 0.7500 153 5.355
5% Increase 0.9975 0.945 0.8925 0.7875 0.7875 114 3.990
5% Decrease 0.9025 0.855 0.8075 0.7125 0.7125 165 5.775

(a) (b)

Figure 15. Yearly NPV for six sensor types varying S and N. (a) Yearly NPV for six sensor types
varying S. (b) Yearly NPV for six sensor types varying N.
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Table 11. Number of sensors and cost for different sensor types at different r values.

Sensor Type r Number of Sensors Total Sensor Cost (Million USD)

ADS–B

0.96 1 0.002
0.97 1 0.002
0.98 1 0.002
0.99 2 0.005

Remote ID

0.96 10 0.011
0.97 11 0.012
0.98 14 0.015
0.99 15 0.017

Radar

0.96 117 4.095
0.97 120 4.200
0.98 153 5.355
0.99 165 5.775

RF

0.96 10 0.350
0.97 11 0.385
0.98 14 0.490
0.99 15 0.525

Acoustic

0.96 12,068 108.612
0.97 12,421 111.789
0.98 13,920 125.280
0.99 17,150 154.350

Optical Camera

0.96 19,986 69.951
0.97 26,742 93.597
0.98 27,228 95.298
0.99 28,680 100.380

5. Conclusions and Future Work

To enable the real-time detection and tracking of AAM aircraft flying at lower alti-
tudes, an effective AAM surveillance network is required to ensure adequate coverage
and monitoring. Our study addresses the novel challenge of optimizing the placement
of surveillance sensors for AAM. We propose the SAND model, which aims to design an
AAM surveillance network that provides full coverage in a specified operational area while
minimizing the total sensor cost. The model considers various factors such as sensor types,
terrain types, terrain-based sensor detection probabilities, and minimum detection probabil-
ity requirements. We consider two types of surveillance sensor networks: the homogeneous
sensor network and the heterogeneous sensor network. Additionally, we present LASIC as
a centralized cloud database that needs to be connected to the AAM surveillance network
to efficiently store and process the large amounts of data generated by the network. The
required features and functionalities of LASIC are determined based on AAM market data
and survey inputs. To justify the investment in the AAM surveillance network and LASIC,
a rigorous data-driven cost–benefit analysis was conducted by identifying, quantifying,
and evaluating the costs and benefits associated with the infrastructure. We conducted the
analysis for the State of Ohio over a 10-year period by estimating the NPVs for different
sensor types.

The cost–benefit analysis identifies two significant cost factors—the surveillance sensor
cost and the cloud-computing cost—along with a benefit factor, which is the revenue
generated by LASIC. This revenue is influenced by the subscription fee and the number
of potential subscribers. The cloud-computing cost for LASIC depends on the cloud
server pricing policies and the required components for real-time and offline features.
Due to larger areas and higher air traffic demand forecasts in Cleveland, Columbus, and
Cincinnati compared to Akron, Toledo, and Dayton, the cloud-computing costs are higher
in the former set of cities. According to the homogeneous sensor placement analysis,
the most profitable sensor types for detecting cooperative aircraft are ADS–B and remote
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ID sensor types, whereas for tracking both cooperative and non-cooperative aircraft, the
most profitable option is the RF sensor type. This is because these sensors have a larger
range, higher field of view, higher detection probability, lower unit price, and lower cost,
leading to higher NPVs compared to other sensor types. The findings also indicate that by
selecting an optimal combination of sensors of different sensor types to effectively cover a
given area, a lower cost and higher NPV can be achieved through heterogeneous sensor
placement. Furthermore, the results show that the total sensor cost in each city of SMCO
varies based on factors such as city area, shape, terrain type, and terrain-based sensor
detection probabilities. Given these factors, Columbus was found to require the largest
sensor cost, while Dayton had the lowest sensor cost.

Because of the uncertainties in AAM demand and the significant influence of certain
parameters on the results, such as the LASIC subscription fee, number of initial subscribers,
terrain-based sensor detection probabilities, and minimum required detection probability,
we performed a sensitivity analysis. This analysis aimed to observe how changes in these
parameters impact the results. The analysis indicates that an increase in terrain-based
sensor detection probabilities leads to a decrease in the required number of sensors and
total sensor cost, while a decrease in detection probability has the opposite effect. The
analysis also reveals that an increase in the minimum required detection probability leads
to an increase in both the number of sensors required and the total sensor cost, with the
acoustic sensor type being the most affected and the ADS–B sensor type being the least
affected. Furthermore, the analysis shows that higher values of subscription fees and
numbers of subscribers lead to increases in the NPV generated by LASIC and cause the
BEP with respect to the NPV to occur earlier, as they increase revenue generation.

This study has produced several insights related to the AAM surveillance network
and LASIC and opportunities for future research that we plan to explore further. In
future work, it is crucial to consider relaxing the assumptions made during this study,
as doing so would render the solutions generated by the SAND model more practical.
For instance, reevaluating the consideration of potential sensor obstructions will help
ensure that detection requirements are met, even in the presence of natural or human-made
structures in the AAM surveillance area. Additionally, it is essential to account for trajectory
planning, as the trajectories of AAM flights determine the density of flights in the airspace.
Sensors have a certain capacity of aircraft that they can detect at any given time within
their range. The sensor placement solution should factor this in to avoid exceeding their
capacities. Within this trajectory planning, the SAND model can strategically position
sensors based on the expected distances between the trajectories and sensor locations,
taking into account that sensor detection performance depends on the distance between the
sensor and the aircraft. Furthermore, other factors that affect sensor detection performance,
such as weather conditions and sensor failures, can be considered in future work. Moreover,
this model can be applied to designing surveillance networks for conventional air traffic
as well. Next, the location of the sensors along and across the AAM corridors connecting
the major cities of a state can be identified using the model. Furthermore, the model
can be modified to connect states with the potential for AAM demand, facilitating the
development of the surveillance network for AAM across the US.
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