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Abstract: Truck hoisting detection constitutes a key focus in port security, for which no optimal
resolution has been identified. To address the issues of high costs, susceptibility to weather conditions,
and low accuracy in conventional methods for truck hoisting detection, a non-intrusive detection
approach is proposed in this paper. The proposed approach utilizes a mathematical model and
an extreme gradient boosting (XGBoost) model. Electrical signals, including voltage and current,
collected by Hall sensors are processed by the mathematical model, which augments their physical
information. Subsequently, the dataset filtered by the mathematical model is used to train the XGBoost
model, enabling the XGBoost model to effectively identify abnormal hoists. Improvements were
observed in the performance of the XGBoost model as utilized in this paper. Finally, experiments
were conducted at several stations. The overall false positive rate did not exceed 0.7% and no
false negatives occurred in the experiments. The experimental results demonstrated the excellent
performance of the proposed approach, which can reduce the costs and improve the accuracy of
detection in container hoisting.

Keywords: truck hoisting detection; non-intrusive measurement; XGBoost model; abnormality detection

1. Introduction

With the rapid growth of international and domestic trade volume, the loading and
unloading operations of containers have become increasingly busy [1,2], emphasizing
the importance of safety in port operations [3]. One typical issue in these operations
is mistakenly hoisting trucks when unloading containers with cranes. The detection of
truck hoisting can effectively minimize economic losses in port operations and guarantee
operation safety [4], thus improving the efficiency of normal operations. Since trucks for the
transportation of containers are mostly equipped with multiple pairs of locks, containers
can be fixed to trucks securely by locking four corresponding locks during transportation,
preventing the risk of containers tipping over or slipping. The failure to unlock all locks
when unloading containers can result in the hoisting of trucks, which can cause economic
losses. Moreover, human safety deserves more concern; therefore, many researchers have
devoted time to the detection of truck hoisting.

One method for truck hoisting detection utilizes cameras to ascertain separation
statuses between containers and trucks. The manual monitoring method requires the
gradual elevation of containers, halting at a specific height, which limits the efficiency
of unloading. An alternative method (named PSLS) utilizes photoelectric sensors [5,6]
and laser scanners [7–9]. PSLS identifies abnormal hoists by assessing the presence of
obstacles under containers and monitoring dynamic positional changes. Compared to
manual monitoring, PSLS presents superior efficiency. However, photoelectric sensors
require frequent manual calibrations and testing, while laser scanners involve substantial
initial costs and need regular maintenance and testing. Additionally, the effectiveness of
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PSLS relies on the accuracy of elevation and the detection precision of the sensors [10,11].
Some studies [12,13] have introduced methodologies for the acquisition of on-site images
and videos through the use of cameras, followed by the application of algorithms for target
detection [14,15] and feature point matching [16,17] to determine the positional changes of
trucks. Nevertheless, adverse weather conditions significantly impact the image and video
capture capability of cameras, making it challenging to ensure accuracy [18].

In summary, the above-mentioned methods for hoisting detection in trucks mainly
depend on laser detectors, position sensors, and cameras [19]. Instruments such as lasers
and infrared detectors require frequent manual calibration, resulting in high maintenance
costs and being difficult to popularize. Present methods for truck hoisting detection
necessitate a period of hovering after containers are hoisted, constraining the efficiency of
unloading processes and increasing power consumption. Moreover, some detection systems
are relatively expensive, providing minimal benefits to ports and hindering widespread
adoption. Devices used in conventional methods, such as lasers and cameras, are also
susceptible to on-site disturbances, such as vibrations, fog, and intense light, imposing
stringent demands on sensor stability and precision.

To address the above-mentioned issues, an indirect detection approach is proposed in
this paper. The proposed approach involves the collection of electrical signals, including
voltage and current, and the employment of mathematical and XGBoost models [20,21] to
discern instances when trucks are hoisted by cranes. XGBoost models have been widely
adopted in the industry due to their exceptional reliability, precision, and portability [22,23].
Additionally, the modest requirements of XGBoost in terms of hardware resources serve to
mitigate the costs of deployment, which would facilitate the widespread adoption of the
proposed approach [24,25]. When trucks are hoisted, anomalies in the forces applied to the
suspension systems arise, thereby inducing fluctuations in load weight. Furthermore, these
fluctuations cause abnormal changes in both voltage and current within the drive motors
of cranes. To identify these subtle anomalies, a mathematical model was established for
drive motors [26,27] and suspension systems [28,29]. Employing captured electrical signals,
the model calculates various physical parameters pertaining to the operational statuses
of cranes. Subsequently, these derived physical parameters serve as training sets for the
XGBoost model.

In the course of training the XGBoost model, the mathematical model augments
datasets with more comprehensive representations of the physical information and selec-
tively filters training sets in accordance with distinct hoists. We conducted experiments to
verify that the filtered datasets markedly augment the performance of the XGBoost model.
In the detection of truck hoisting, an initial analysis of input data is performed using the
mathematical model, after which the filtered data are subjected to further assessment using
the XGBoost model. The combined model demonstrates a substantial enhancement in
performance relative to the individual XGBoost model.

Compared to other existing methods for truck hoisting detection, the advantages of
the approach in this paper are reflected in the following aspects:

1. The proposed approach collects the electrical signals of motors using Hall sensors, and
all devices utilized in the proposed approach can be deployed within the electrical
control zones of cranes, ensuring the normal operation of the approach even in extreme
weather conditions;

2. Hall sensors are more cost effective compared to both cameras and laser scanners,
and can work stably for extended periods without calibration or frequent manual
maintenance, contributing to relatively low operational times and costs;

3. The proposed approach can detect continuously during the spreader hoisting process
without requiring containers to stop in mid-air, thereby improving unloading efficiency;

4. By constructing training sets using the mathematical model and combining that model
with the XGBoost model, the proposed approach has high detection accuracy and low
time complexity and responds quickly to abnormal situations.



Sensors 2024, 24, 839 3 of 17

2. Mathematical Model of Hoist Process

Driven by induction motors, spreaders elevate targeted containers for unloading.
Through interactions between containers and trucks, suspension systems affect the eleva-
tion process upon contact. To characterize the ascent dynamics of trucks, a mathematical
model for drive motors and suspension systems was built. The model inputs consist of
voltage and current signals applied to drive motors, acquired using Hall sensors, which
are subsequently transmitted for processing by microcomputers. The motor model enables
the calculation of physical quantities that Hall sensors cannot measure directly, thereby
enhancing the acquired physical information.

As illustrated in Figure 1, the locks between the truck and the container are incom-
pletely disengaged. Consequently, during the unloading of the container, the underlying
chassis is hoisted, causing an untoward incident.

Figure 1. A truck being hoisted.

2.1. Drive Motor Model and Parameters

An equivalent circuit model of an induction motor [30] is employed in this paper, as
shown in Figure 2, where Us denotes stator line-to-neutral terminal voltage, Is is stator
current, Iφ represents exciting current, Ir is the rotor current, and Im and Ic are the
magnetizing and core-loss components of Iφ, respectively.

The model presented in Figure 2 represents a single-phase equivalent circuit model
of an induction motor, using parameters set to fixed values. In actual systems, the motor
parameters are not constant due to factors such as temperature and humidity. However,
these variations only have slight impacts on our study and can be disregarded. Additionally,
stators and rotors are not electrically connected in actual systems, but are instead influenced
by electromagnetic fields. To facilitate analysis, the model depicted in Figure 2 equates the
relationship between the stator and rotor to an electrical circuit.

The model parameters were estimated from nameplate data and performance charac-
teristics, including stator resistance Rs, rotor resistance Rr, core-loss resistance Rc, stator
inductance Ls, rotor inductance Lr, and excitation inductance Lm. In Figure 2, Xs and
Xr correspond to the leakage reactance associated with Ls and Lr, respectively, while Xm
denotes the excitation reactance of Lm. Through the utilization of the motor model, addi-
tional physical information can be obtained, expanding the dimensions of input features in
detection processes.
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Figure 2. Equivalent circuit model of an induction motor.

For drive motors employed in large-scale cranes, Rs is relatively small and is con-
ventionally treated as a constant. Within the confines of this paper, it is assumed that Xr
equates to Xs. The computed outcomes of the model parameters are listed in Table 1, with
all parameters normalized.

Table 1. Normalized parameters of the motor model.

Parameter Normalized Value

Rs 2.84 × 10−4

Rr 3.06 × 10−3

Rc 1
Ls 1.39 × 10−5

Lr 1.39 × 10−5

Lm 1.28 × 10−3

2.2. Calculation of Physical Characteristics

In the preliminary stage, the root mean square (RMS) values of voltage V , current I,
active power P, and frequency f are calculated based on the transient values gathered by
Hall sensors. Subsequently, by incorporating the above-mentioned information into the
motor model, the output power Pout, electromagnetic torque TL, fractional slip s, motor
speed n, and height h can be calculated.

In order to calculate frequency f , three-phase currents are transformed into Iα and Iβ

using Clark conversion. The vector sum of Iα and Iβ forms an angle θ with the α-axis. The
rotational angular velocity of the sum vector is equal to the synchronous angular velocity
ωs and can be calculated using Equation (1).

ωs =
dθ

dt
=

d
dt

arctan
( iβ

iα

)
=

iα
diβ

dt
− iβ

diα

dt
i2α + i2β

(1)

The differential component within Equation (1) introduces a notable degree of noise.
Subsequent to calculation, a depolarized mean filtration process is imperative to eliminate
obvious pulse interference, thereby making the calculation result closer to the actual value.

In the model depicted in Figure 2, the input voltage is denoted as es, which is calculated
by subtracting the voltage drop across Rs from Us. Applying Thevenin’s theorem on

the stator side, the port-equivalent voltage is Vth =
Xm

Xs + Xm
es, alongside the equivalent
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reactance of Xth =
XsXm

Xs + Xm
. Given the motor model parameters, wherein Xs markedly

dwarfs Xm, approximations render Vth nearly equivalent to es and Xth approximately equal
to Xs.

The electromagnetic torque TL can be calculated by

TL =
Pgap

ωs
=

qVthRr/s
ωs[(Rr/s)2 + (Xth + Xr)2]

(2)

where q is the number of stator phases, s is the fractional slip, Pgap = Pin − I2Rs − e2
s /Rc

represents the air-gap power, and Pin denotes the value of input active power.
Equation (2) can be transformed into a quadratic expression in terms of s, as illus-

trated below.
Pgap(Xth + Xr)

2s2 − qVthRrs + PgapR2
r = 0 (3)

In accordance with the parameters of the motor model, it can be deduced that the
coefficient associated with the quadratic term in (3) is significantly smaller than those of the
linear and constant terms. Consequently, the quadratic terms within (3) can be omitted. The
computations for output power and motor speed can be calculated using Pout = Pgap(1 − s)

and n =
60ωs

2πp
(1 − s), respectively.

The linear ascending velocity can be determined precisely via the application of
coefficient cnv, which delineates the relationship between the motor speed and opera-
tional velocity. Consequently, this facilitates the computation of the relative elevation h
of containers.

2.3. Weight Calculation Algorithm

The proposed approach calculates the load weight of cranes using steady-state electri-
cal parameters, which was introduced in [31] (crane load weight detection method, CLWD).
The functional relationship established by CLWD can be described as

m = fm(Pout, n) (4)

According to the mapping fm, the load weight m can be calculated using the output
power Pout and motor speed n.

2.4. Truck Suspension Model

Suspension systems comprise various components, such as guiding mechanisms,
elastic elements, trapezoidal structures, damping elements, stabilizing devices, and limiting
rubber blocks. In the context of truck hoisting detection, the focus is on the longitudinal
displacement. Consequently, a suspension system model was developed, considering
elastic elements, damping elements, and wheels. Suspension is simplified into a spring-
damping system, as depicted in Figure 3, where dA denotes the stiffness coefficient of the
truck damper, cA represents the stiffness of the truck’s steel plate spring, cR is the stiffness
of the tires, ZR0, ZR1, and ZR are the heights of the tire center from the ground, ZA0, ZA1,
and ZA are the heights of the chassis plane from the ground, and mR, mA, and M represent
the weights of the tires, truck, and container, respectively.

The parameters of the suspension model utilized in this paper are presented in Table 2,
with normalization applied to the parameters.

Considering a container that is pulled upward by a spreader with a force of F, the
simplified suspension model can be described as follows:{

(M + mA)z̈ = F − cA(z − zR)− dA(ż − żR)

mR z̈R = cA(z − zR) + dA(ż − żR)− cRzR
(5)
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where z is the height of the container, zR is the displacement of the tire center, and ż and z̈
denote the first and second derivatives of z, respectively.

Table 2. Normalized parameters of the suspension model.

Parameter Normalized Value

mA 6.83 × 10−2

mR 1.02 × 10−3

dA 1.21 × 10−2

cA 1.21 × 10−1

cR 1

Figure 3. Simplified models of truck suspension in four states: (a) a motionless truck without a
container; (b) a motionless truck with a container; (c) a spreader hoisting a container; (d) a truck
being hoisted.

Moreover, the relationship between z and zR can be represented as in Equation (6) if
the truck is off the ground.

mR z̈R = cA(z − zR) + dA(ż − żR)− (M + mA + mR)g (6)

where g is the gravitational acceleration, which has a value of 9.8 m/s2 in this study.
Physical characteristics change in different statuses of hoists. By analyzing these

distinctions, the range of physical quantities under different statuses can be constrained. In
this paper, hoists are divided into two statuses: normal and abnormal. The experimental
data for container hoists in different statuses were collected separately. The variations in
tension F with height h under different statuses can be calculated using (5) and (6). Let
z = h and M = m, where M includes the weight of the spreader. The calculation results are
shown in Figure 4.

The calculation results indicate that the heavier the container, the higher the correspond-
ing height when the pulling force is stable. During abnormal hoists, the suspension spring
undergoes reverse deformation, leading to different characteristics compared to normal hoists.
The corresponding height in abnormal hoists is higher than that of normal hoists.

Based on the characteristics of unloading, the suspension model imposes physical
restrictions on normal hoists, such as weight and height. On the other hand, abnormal
situations can be identified by the suspension model based on the characteristics of cal-
culated load weight and other physical quantities. However, due to the complexity of
on-site conditions, similarities in many features between normal and abnormal hoists can
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result in false positives. To improve the accuracy of detection, a more precise XGBoost
model [32] is employed due to its high reliability, low computational time complexity, and
high accuracy [33].

Figure 4. Calculation results for different cases.

3. Detection Algorithm for Abnormal Hoists

In this paper, cranes are driven by induction motors. The voltage and current sig-
nals of these motors are gathered using Hall sensors and transmitted via serial ports to
microcomputers. Their physical characteristics are calculated by the motor model and the
weight calculation algorithm. Furthermore, the characteristics are then filtered by physical
limitations using the suspension model, load weight, and other physical quantities. To
identify abnormal hoists, the XGBoost model is trained using the filtered characteristics.
The structure of the proposed algorithm is depicted in Figure 5. The proposed approach
recognizes abnormal hoists by using both the mathematical model and the XGBoost model.
For hoists identified as normal by the mathematical model, the XGBoost model ceases further
computations. Alerts are sent to the control systems of cranes and unloading operations
are shut down in a timely manner when exceptions are identified. During detection, the
mathematical model processes datasets and improves the physical information, thereby
enhancing the training datasets for the XGBoost model.

3.1. Events and Samples

The continuous monitoring of the electrical signals in the motors is conducted via
Hall sensors. Since signals only contain slight noise during the idle state of cranes, hoists
can be discernible by analyzing variations in voltage and current. In order to improve the
reliability of detection results, this study carries out periodic detections at 0.05-s intervals
during the entire hoisting process. Detections persist until the given termination conditions
have been satisfied. For the identification of initiation and conclusion timings, a single
hoist can be divided into three stages, as shown in Figure 6.
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The three hoisting stages can be defined as follows:

• Lighter than spreaders: A wire rope is straightened gradually, during which the load
weight m is less than the spreader weight, which occurs within the range of the x-axis,
from 0 to 0.09, as depicted in Figure 6;

• Increasing weight: The container ascends slowly until lifted off the ground or the
truck completely, throughout which the load weight m gradually increases within the
range of the x-axis, from 0.09 to 0.3, as shown in Figure 6;

• Stable weight: Entire load is off the ground and m is relatively stable within the range
beyond 0.3 on the x-axis, as shown in Figure 6.

Figure 5. Structure of the algorithm proposed in this paper.

Figure 6. Schematic diagram of the three hoisting stages.
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It can be inferred that the hoisting statuses of trucks are indicated during the increasing
weight stage, in which detection data are gathered. Each detection collects 3 s of data and
terminates upon the satisfaction of the given load weight conditions. In this paper, the
term “sample” denotes the data utilized in each individual detection, whereas an “event”
is defined as the aggregate of samples from a single hoisting instance. In addition, positive
and negative denote normal and abnormal events, respectively.

Detection samples are represented by matrices Dt ∈ R60×16 in this paper. These
matrices are the fundamental units for detection analysis and consist of physical time series
data (V , I, P, Pout, TL, f , n, s, h, and m). To standardize the length of detection data, a
sliding window method is employed to gather the sample data.

3.2. Mathematical Model Detection

The mathematical model extends the physical information of raw data and improves
the training datasets for the XGBoost model. Moreover, the mathematical model provides
a coefficient matrix A ∈ Rc×d and a detection threshold vector θ =

[
θ1 θ2 · · · θc

]T for
detection, where c is the number of constraints and d is the length of the input vector.

For a vector Km,t extracted from a sample Dt, the detection result given by the mathe-
matical model is

ym(t) =
1
c

c

∑
j=1

fu(x(t)(j)) (7)

where x(t) = AKm,t − θ, Km,t =

Et
Ft
Gt

, fu(x(t)(j)) =

{
0, i f x(t)(j) < 0
1, i f x(t)(j) ≥ 0

,

x(t)(j) denotes the ith element of vector x(t), and x(t)(j) < 0 indicates

the satisfaction of the jth condition, Et =
L−1
∑

k=0
G(t), Ft = G(t) − G(t − L + 1),

G(t) =
[
Pout(t) TL(t) f (t) n(t) s(t) h(t) m(t)

]T, and L = 60.
To minimize false positives (FPs) and false negatives (FNs), outcome averaging is

employed across multiple samples to obtain the detection result of an event. Additionally,
a relatively strict threshold θm is set to prevent FNs as much as possible. The overall abnor-

mality degree for an event can be represented by Ym = 1
N

N−1
∑

k=0
ym(t − k) in the mathematical

model, where N is the number of samples in an event.
Due to the difficulty in collecting abnormal samples, a significant imbalance can be

observed between normal and abnormal samples. Moreover, the quality of normal samples
varies widely. The primary function of the mathematical model lies in the exclusion of
low-quality normal samples from training sets and preliminary detections during runtime.

3.3. Mathematically Enhanced XGBoost Algorithm for Truck Hoisting Detection

The mathematical model can identify most normal events, while for complex examples,
it can yield false results. In order to reduce FPs and FNs, the XGBoost model is trained
based on improved datasets. In this paper, Optuna [34,35] is used to run hyperparameter
optimization and search for the optimal hyperparameters of the XGBoost model via cross-
validation. The XGBoost model consists of a series of CART decision trees, as shown in
Figure 7.

Utilizing training datasets D = {Dt|ym ≥ θm}, new trees are generated based on errors
between previous results yi and the target. Furthermore, the XGBoost model aggregates
the results of each tree to obtain an overall prediction.

For a given input vector KX,t, the detection result produced by XGBoost can be
described by

yX(t) = ∑
j

Tj(KX,t, Θj) (8)
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where Tj(KX,t, Θj) represents the jth decision tree and Θj denotes the parameters of the
decision tree.

Figure 7. Structure of XGBoost model.

Similar to the results of mathematical model, the XGBoost model uses the average

abnormality degree YX = 1
N

N−1
∑

k=0
yX(t − k) and abnormality threshold θX for the entire

hoisting event.
Since the training datasets for the XGBoost model are constructed using the mathe-

matical model, the detection order of the two models cannot be swapped during actual
testing. The detection result for a hoisting event can be expressed as

Y = fu((Ym − θm)(YX − θX)) (9)

4. Experiments

The detection algorithm was deployed in a number of container terminals to verify its
accuracy through experiments. A schematic diagram of the field experiments is shown in
Figure 8.

4.1. Assessment Metrics

The false positive rate (FPR) and false negative rate (FNR) of all events were used
as direct indicators for evaluating model effectiveness. FPR represents the probability of
incorrectly predicting a sample or an event as positive among all negative instances. FPR

and FNR can be calculated using FPR =
FP

FP + TN
and FNR =

FN
TP + FN

, where true

negatives (TNs) denote correctly predicted negative instances and true positives (TPs) are
correctly predicted positive instances.

Considering that an event comprises multiple samples, the FPRs and FNRs for samples
were also calculated. Due to the substantial imbalance between normal and abnormal
datasets in this study, both the FPRs and FNRs were significantly influenced by the chosen
threshold. Consequently, this study employed the area under the receiver operating
characteristic curve (AUROC) [36,37] as it is an evaluative measure that is unaffected by
threshold values.

In a receiver operating characteristic (ROC) curve [38,39], the horizontal and vertical
axes represent FPR and true positive rate (TPR) at different thresholds, respectively, where

FPR and TPR pertain to samples. TPR can be calculated using TPR =
TP

TP + FN
.

4.2. Collection of Datasets

Raw data were collected via the monitoring of standard operations and truck hoisting
experiments under different conditions. Since numerous factors can affect the characteristics
of operations, this study obtained more comprehensive datasets by altering containers,
hoisting speeds, and twist locks.
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Figure 8. Schematic diagram of the field experiments.

Among the three considered factors, the differences in twist locks could be divided
into six cases, as shown in Figure 9.

This study conducted a series of experiments by modifying containers, hoisting speeds,
and twist locks. The detailed experimental procedures was as follows:

1. Equipment preparation: The experimental equipment encompassed a truck and a
container. It was imperative to ensure that the twist locks were functional and have
replacement locks readily available. Subsequent to the preparation of the experimental
equipment, a crane operator positioned a container on a truck smoothly and awaited
the ground operator to fasten the twist locks.

2. Hoisting simulation: The crane operator hoisted the container from the truck, ensuring
that the hoisting time exceeded 3 s while maintaining safety precautions. The detection
system activated an alarm and restricted the ascent of the spreader when anomalies
were identified. Subsequently, the crane operator lowered the container slowly in
response to the alarm. When the truck was about to exceed the maximum safe height
without triggering an alarm, the lifting operation was promptly terminated.

3. Experiment repetition: Steps 1 and 2 were repeated, varying the twist locks and
hoisting speeds.

Following the completion of experiments on one current container, it was replaced
with another container and the aforementioned steps were repeated.
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Figure 9. Top-down views of the six cases of twist locks: (a) all four twist locks are locked; (b) three
twist locks are locked; (c) two diagonal twist locks are locked; (d) two twist locks on the short side of
the container are locked; (e) two twist locks on the long side of the container are locked; (f) one twist
lock is locked.

4.3. Ablation Experiments

This study conducted six experiments using data from the Wuhan region. Improve-
ments in the mathematical model were assessed by comparing the AUROCs of different
models. Experiments 1, 2, and 3 were conducted without applying the mathematical model
in the detection process, while experiments 4, 5, and 6 employed the mathematical model.
The detailed results for each experiment are presented in Table 3.

Table 3. Results of the ablation experiments.

Experiment
Training Datasets Models

AUROC
EQ 1 PQ 2 MM 3 XGBoost

1 ✓ ✓ 0.9179
2 ✓ ✓ ✓ 0.9661
3 ✓ ✓ 0.9788
4 ✓ ✓ ✓ 0.9206
5 ✓ ✓ ✓ ✓ 0.9900
6 ✓ ✓ ✓ 0.9948

1 ES, electrical quantities (V , I, and P); 2 PQ, physical quantities calculated by the mathematical model
(Pout, TL, f , n, s, h, and m); 3 MM, mathematical model.

Experiments 1, 2, and 3 demonstrated significant improvements in model performance
through the utilization of the PQ training datasets. This conclusion was further reinforced
by the comparative analysis of experiments 5 and 6 against experiment 4, where the former
models demonstrated superior efficacy. Both sets of experiments underscored that the
employment of the mathematical model could highlight data characteristics effectively.
This enhancement facilitated the differentiation between normal and abnormal samples,
resulting in models with improved performance.
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Datasets are characterized by a significant imbalance between normal and abnormal
events in this paper. The positive cooperation of both port personnel and truck drivers
was essential for the collection of experimental data. The elevated hazard factor further
intensified the challenges associated with collecting a substantial volume of abnormal
data. Moreover, the instances of unloading containers from container trucks were relatively
scarce within normal events, resulting in an uneven distribution of normal training data.
The initial normal datasets comprised operations involving the unloading of containers
from trucks, hoisting containers from the yard, and the hoisting of spreaders. The low
quality of these datasets constrained the performance of the models.

In comparison to the models employed in experiments 1, 2, and 3, each model in
experiments 4, 5, and 6 demonstrated distinct improvements in performance. The models
employed in experiments 4, 5, and 6 utilized datasets filtered by the mathematical model,
with preliminary predictions applied to samples during the detection process. Conversely,
the models for experiments 1, 2, and 3 utilized datasets without prior filtering. The
mathematical model could effectively address the issues of data imbalance and low quality
by filtering the normal datasets. The quality of the filtered datasets was enhanced, better
reflecting the distinction between normal and abnormal events, consequently leading to
improved model performance. This enhancement is illustrated in the ROC curves presented
in Figure 10. The ROC curves in Figure 10 illustrate the relationships between the true
positive rates and false positive rates in the six experiments. The false positive rate is related
to the setting of an abnormality threshold, where a higher abnormality threshold leads to a
lower false positive rate. However, a larger abnormality threshold also results in a lower
true positive rate, indicating a higher false negative rate. The ROC curve for experiment
6 reaches above the other curves over much of the x-axis range, which indicates that the
model in experiment 6 had better results across a wide range of abnormality thresholds.

Figure 10. ROC curves of the models.

4.4. Assessments

The proposed approach in this study was implemented on cranes across several cities
(Ningbo, Qingdao, Wuhan, and Qinzhou) to continuously monitor the routine operations of
cranes. Across these cities, the variables under measurement included containers, hoisting
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speeds, and the positions and quantities of twist locks. The same truck was employed in
each city for abnormal data collection and various other data were collected by altering the
measured variables. During the collection of normal data, no interventions were made to the
cranes, allowing them to maintain regular operation. Detailed information about the cranes
and motors was collected at each station to calculate the corresponding parameters for the
mathematical model. A set of data was collected for the purpose of training the XGBoost
model. In addition, adjustments were made to parameters like hoisting speed and the weight
of the spreader, ensuring the adaptability of the proposed approach for various stations.

Throughout the monitoring period, no incidents of truck hoisting occurred. Therefore,
we conducted experiments on trucks hoisting following the steps detailed in Section 4.1
to evaluate the FNRs of the models across different regions. The results of these regional
experiments are presented in Tables 4 and 5.

Table 4. Results of regional assessments for events.

Crane Identification Code Normal Events Abnormal Events FPR FNR

Ningbo 01 4907 55 0.02% 0.00%
Ningbo 02 3776 52 0.05% 0.00%
Ningbo 08 5391 149 0.04% 0.00%
Qingdao 17,922 223 0.44% 0.00%
Wuhan 8177 298 0.48% 0.00%

Qinzhou 01 16,312 165 0.69% 0.00%
Qinzhou 18 6053 356 0.53% 0.00%

Table 5. Results of regional assessments for samples.

Crane Identification Code Normal Samples Abnormal Samples FPR FNR

Ningbo 01 65,427 473 0.02% 2.54%
Ningbo 02 18,909 302 0.00% 0.02%
Ningbo 08 41,310 1871 0.03% 0.05%
Qingdao 258,175 2594 0.41% 0.15%
Wuhan 52,127 3984 1.14% 0.53%

Qinzhou 01 122,105 2295 0.83% 0.35%
Qinzhou 18 48,944 5161 1.20% 0.54%

Regarding the detection of events, the approach demonstrated an FPR below 0.7%
across all regions and a zero FNR, as shown in Table 4. While sample detection encountered
occasional false negatives, as shown in Table 5, the aggregate processing of multiple samples
effectively mitigated the oversight of abnormal events. In order to decrease false negative
instances, further analysis will be conducted on the false negative samples and greater
weight will be assigned to them in subsequent training phases. Consequently, the approach
ensures consistently low FPRs in the routine operations of cranes while being responsive to
the hoisting of trucks, thus offering a protective measure for port security.

5. Conclusions

This paper introduced a detection algorithm for the hoisting of trucks based on
electrical signals. The approach utilizes sensors to collect input current and voltage data
from drive motors, without relying on visual, rotational speed, position, tension, or pressure
sensors. A mathematical model is employed to compute operational state information
during the hoisting process. By expanding the data dimensions, additional pertinent
physical information is extracted, thereby reducing the time costs of information acquisition.
The approach combines this mathematical model with an XGBoost model, demonstrating
low computational complexity and improved accuracy.

Microcomputers and data collectors were installed on several cranes in this study. The
algorithm was deployed on microcomputers and the effectiveness and accuracy of the pro-
posed method were experimentally validated. The experimental results demonstrated that
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the detection algorithm in this study had no false negative events. Furthermore, the detection
algorithm exhibited an overall false positive rate of below 1% over a continuous operational
period. The algorithm sends an alarm signal to the crane control system to stop the hoisting
operation when an anomaly is detected. The identification and alarm processes operate
expeditiously, thereby ensuring the height of the truck stays within a safe threshold.

In summary, the proposed approach employs maintenance-free sensors and possesses
multiple advantages, including convenient deployment, negligible interference from device
operation, computational simplicity, and high accuracy. Moreover, the approach could be
employed to ensure the safety and loading efficiency of hoisting processes, which holds
significant economic and social value. Future research will focus on how to improve the
portability of the proposed approach, so that the approach can be deployed and used
directly in new stations with a few or even no experiments. Considering the distinctions
between the drive motors of different cranes, we intend to map these motors to the same
standard based on the rated parameters of the motors. As accuracy requirements continue
to increase, we will also use different noise reduction methods and more accurate sensors.
In addition, accuracy needs to be further improved and we hope to explore the applicability
of the proposed method in different scenarios, such as unloading containers from trains,
ships, etc.
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