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Abstract: In the face of complex scenarios, the information insufficiency of classification tasks domi-
nated by a single modality has led to a bottleneck in classification performance. The joint application
of multimodal remote sensing data for surface observation tasks has garnered widespread attention.
However, issues such as sample differences between modalities and the lack of correlation in physi-
cal features have limited the performance of classification tasks. Establishing effective interaction
between multimodal data has become another significant challenge. To fully integrate heterogeneous
information from multiple modalities and enhance classification performance, this paper proposes
a dual-branch cross-Transformer feature fusion network aimed at joint land cover classification of
hyperspectral imagery (HSI) and Light Detection and Ranging (LiDAR) data. The core idea is to
leverage the potential of convolutional operators to represent spatial features, combined with the
advantages of the Transformer architecture in learning remote dependencies. The framework em-
ploys an improved self-attention mechanism to aggregate features within each modality, highlighting
the spectral information of HSI and the spatial (elevation) information of LiDAR. The feature fusion
module based on cross-attention integrates deep features from two modalities, achieving complemen-
tary information through cross-modal attention. The classification task is performed using jointly
obtained spectral and spatial features. Experiments were conducted on three multi-source remote
sensing classification datasets, demonstrating the effectiveness of the proposed model compared to
existing methods.

Keywords: hyperspectral image; LiDAR data; transformer; cross modality; feature fusion

1. Introduction

Remote sensing technology plays an increasingly important role in Earth observation.
By analyzing the spectral characteristics of objects in different bands, it is possible to identify,
detect changes, and quantitatively analyze land features [1,2]. It has significant applications
in fields such as agricultural monitoring, urban planning, military reconnaissance, and
others. However, due to the specificity of hyperspectral image classification (classifying
each pixel in an image), the impact of cloud cover or shadows during the data collection
process is inevitable [3]. This can result in blurred spectral information and inaccurate
classification. Additionally, the low spatial resolution exhibited by hyperspectral imagery
to some extent limits the overall classification accuracy.

The rapid development of remote sensing sensor technology has made it possible to
combine data from multiple sensors to describe land information comprehensively. Data
from different sensors provide various types of information about the same geographic area.
For instance, hyperspectral imagery effectively captures spectral and spatial information of
observed targets [4] and LIDAR utilizes laser pulses to measure the elevation information
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of the Earth’s surface. The Digital Surface Model (DSM) contains elevation information
for each point on the Earth’s surface [5–7]. Synthetic Aperture Radar (SAR) uses a radar
system to transmit microwave signals, records the returning signals, and then utilizes
this data to create high-resolution images. SAR can provide geometric information about
surface objects, including their shape, size, and orientation [8]. Therefore, by combining
data from different modalities, it is possible to address issues present in a single mode. For
instance, combining LiDAR, which is less affected by atmospheric interference and con-
tains rich elevation information, with hyperspectral imagery can provide complementary
information [9]. This approach addresses the issue of spectral similarity among different
materials by supplementing the spatial information of hyperspectral imagery. Therefore,
multiple modalities of data can be used to analyze information related to land cover [10,11].
However, it is essential to address the challenges of disparate information dimensions and
unrelated physical features between the two modalities.

In previous research, fusion classification methods for Hyperspectral Imaging (HSI)
and Light Detection and Ranging (LiDAR) have often inclined towards reducing data
dimensionality and manually designing feature fusion based on the intrinsic properties
of the data [12–15]. For instance, in [14], Liao et al. proposed a method that integrates
Morphological Profiles (MPs) of Hyperspectral (HS) and LiDAR data on a manifold using
graph-based subspace learning, resulting in improved classification outcomes. In [15], the
fusion of Hyperspectral (HS) and LiDAR data was enhanced by using Extinction Profiles
(EPs) combined with Total Variation Component Analysis. Additionally, the use of multi-
ple fusion strategies has been proven to further enhance classification performance. For
instance, in [16], both feature-level fusion and decision-level fusion were employed, where
Gabor features extracted from HSI and LiDAR data, along with their amplitude and phase
features, were concatenated and input into the classifier. By normalizing the results of
three classifiers from two superpixel segmentation algorithms and adopting a weighted
majority voting decision fusion strategy, the efficiency of utilizing multiple features was
effectively improved. However, the mentioned approaches heavily relied on manually
designed features, incorporating more subjective ideas, making it challenging to adaptively
generalize the intrinsic features of multimodal data. Secondly, these traditional methods
have not fully exploited spatial information, limiting their classification performance. More-
over, due to the relatively large number of features extracted from different remote sensing
data, it may lead to the “curse of dimensionality” problem, where the high dimensionality
of features makes processing and analysis complex and challenging. Therefore, while
traditional methods have achieved some success in land cover classification accuracy, their
applicability and adaptability still need further expansion and improvement.

The algorithm based on deep learning demonstrates significant potential in the joint
classification of multi-source remote sensing data [17–19]. Chen et al. [20] independently
extracted features from multimodal data using a dual-branch CNN, and fused the heteroge-
neous features of each branch through a fully connected DNN. Building upon a dual-branch
deep CNN structure, Xu [21] supplemented spatial information from other modalities in
a cascading manner. However, the model does not place sufficient emphasis on spectral
features, leading to incomplete feature fusion. Hang et al. [22] proposed a coupled CNN
network that optimizes the fusion of multimodal features by combining feature-level fusion
and decision-level fusion strategies, resulting in improved classification performance. CNN
excels in handling spatial features; however, for HSI data containing a large number of
spectral sequence attributes, CNN struggles to identify subtle spectral differences between
pixels, especially the mid-to-long-term dependencies between spectra [23]. While Recurrent
Neural Networks (RNNs) can establish sequence models, their inability to simultaneously
train multiple sample networks limits classification performance.

In order to effectively highlight the key features of each modality and suppress irrele-
vant information during the analysis, researchers have incorporated attention mechanisms
within the CNN framework. This approach is particularly suitable for handling spatial
and spectral data, allowing simultaneous analysis of critical components in both types of
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data. Through attention mechanisms, CNN can focus more on important features in the
data while disregarding information that is unimportant or irrelevant to the current task.
The Squeeze-and-Excitation Networks (SE) module adjusts channel feature responses to
enhance the network’s representational capability [24]. The SE module models interdepen-
dencies between channels and adaptively recalibrates channel feature responses, thereby
improving the network’s performance significantly. This has led to a notable enhancement
in the performance of existing deep learning architectures. Building upon this, Xu et al.
proposed a novel multi-scale feature extraction module, SE-Res2Net. It utilizes channel
grouping techniques to extract multi-scale features from hyperspectral images, achieving
acquisition of different granularity receptive fields. This is combined with a channel opti-
mization module to assess the importance of each channel in the feature map [25]. Roy et al.
designed an attention-based adaptive spectral-spatial kernel improved residual network,
using spectral attention to capture distinctive spectral-spatial features [26]. Gradually, CNN
networks based on extracting both spectral and spatial features have been employed for
joint classification of hyperspectral images and LiDAR data. Wang introduced non-local
operations as a universal basic building block for capturing long-range dependencies,
weighting features from all positions and summing them up [27]. Haut et al. proposed
a spectral-spatial attention network based on a residual network. By selecting features
at both shallow and deep levels, the network obtains more representative and significant
features for classifying hyperspectral image data. Spectral and spatial attention focus on
highlighting prominent bands and spatial information, respectively [28].

The Transformer model has garnered attention from researchers due to its excellent
ability to capture global relationships [29]. Initially proposed for natural language process-
ing, it has later found applications in image processing [30]. Qing et al. [31], leveraging a
multi-head attention mechanism, successfully captured spectral relationships in sequences,
enhancing the classification performance of HSI. Hong et al. [32] introduced a spectral
transformer model that captures spectral features from neighboring configurational bands.
However, the mentioned works did not utilize spatial information. Roy et al. [33] intro-
duced a multimodal fusion transformer. This approach initializes the learning embedding
with LiDAR data. However, this operation did not fully integrate effective information
from both data sources, limiting classification accuracy.

A Transformer encoder based on self-attention mechanisms can learn sequential infor-
mation from its own data. Meanwhile, cross-attention mechanisms tailored for multimodal
data can concurrently consider relationships between two distinct sequences, thereby better
capturing their correlations. In contrast to the MFT proposed by Roy [33], researchers like
Zhao [34] introduced a cross-modal attention network. This network combines the learn-
able labels from the hyperspectral image branch with LiDAR data and computes internal
attention to achieve complementary information integration. Similarly, Zhang et al. [35]
achieved information fusion between two modalities by exchanging cls (class) tokens
and introducing a learnable feature fusion method for modality integration. While the
mentioned methods effectively leverage cross-attention mechanisms for complementary
information integration, the random initialization of cls tokens significantly impacts subse-
quent attention calculations. In summary, fusion networks based on CNNs combined with
Transformer for cross-modal feature interaction may lead to the oversight of crucial shared
high-level features in the processing of multimodal data, thereby impacting the compre-
hensiveness and accuracy of data analysis. Additionally, due to the distinct discriminative
capabilities of specific features in each modal data, a significant imbalance among features
may arise.

To better integrate features from hyperspectral imagery and LiDAR data and improve
classification accuracy, we propose a dual-branch Transformer feature fusion network. This
network focuses on the global information of hyperspectral imagery while considering
local neighborhood information. Simultaneously, utilizing a cross-attention mechanism
highlights features in hyperspectral images using the attention from LiDAR, achieving
complementarity between hyperspectral image and LiDAR data features. Features from
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both modalities are fused for the classification task. The contributions of this paper are
summarized as follows:

(1) The proposed dual-branch Transformer feature fusion network can capture features
from shallow layers and integrate them into deep features, thereby achieving comple-
mentary information between different modalities.

(2) In response to the relatively weak spatial information of hyperspectral images, a
Group Embedding Module is proposed to enhance the local information aggregation
between different neighborhoods. This module addresses the issue of neglecting the
correlation between adjacent keys in the multi-head attention module.

(3) Considering the physical feature differences between modalities, we utilize mutual
mapping of features between modalities to achieve global interaction and improve
the performance of joint classification.

2. Materials and Methods
2.1. Dataset Description

This study conducts classification tasks on three publicly available multimodal remote
sensing datasets, namely, the Houston2013 dataset [36], MUUFL Gulfport Hyperspectral
and LiDAR (MUUFL) [37,38], and the Trento dataset. The following provides detailed
introductions to each dataset along with information on the respective classes.

The Houston2013 dataset is supplied by the 2013 IEEE GRSS Data Fusion Challenge.
Gathered in 2012 by the National Center for Airborne Laser Mapping, this dataset comprises
topographical details of both the University of Houston campus and the neighboring city.
The HSI data consists of 144 spectral bands, while the LiDAR data provides a single band
recording elevation information. The image size is 349 × 1905 pixels, with a spectral
resolution ranging from 0.38 to 1.05 µm and a spatial resolution of 2.5 m. The dataset
comprises 15 land cover categories. Figure 1 displays the pseudo-colored composite image
of the HSI data, the grayscale image of the LiDAR data, and the corresponding ground
truth map.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 19 
 

 

To better integrate features from hyperspectral imagery and LiDAR data and im-
prove classification accuracy, we propose a dual-branch Transformer feature fusion net-
work. This network focuses on the global information of hyperspectral imagery while 
considering local neighborhood information. Simultaneously, utilizing a cross-attention 
mechanism highlights features in hyperspectral images using the attention from LiDAR, 
achieving complementarity between hyperspectral image and LiDAR data features. Fea-
tures from both modalities are fused for the classification task. The contributions of this 
paper are summarized as follows: 
(1) The proposed dual-branch Transformer feature fusion network can capture features 

from shallow layers and integrate them into deep features, thereby achieving com-
plementary information between different modalities. 

(2) In response to the relatively weak spatial information of hyperspectral images, a 
Group Embedding Module is proposed to enhance the local information aggregation 
between different neighborhoods. This module addresses the issue of neglecting the 
correlation between adjacent keys in the multi-head attention module. 

(3) Considering the physical feature differences between modalities, we utilize mutual 
mapping of features between modalities to achieve global interaction and improve 
the performance of joint classification. 

2. Materials and Methods 
2.1. Dataset Description 

This study conducts classification tasks on three publicly available multimodal re-
mote sensing datasets, namely, the Houston2013 dataset [36], MUUFL Gulfport Hyper-
spectral and LiDAR (MUUFL) [37,38], and the Trento dataset. The following provides de-
tailed introductions to each dataset along with information on the respective classes. 

The Houston2013 dataset is supplied by the 2013 IEEE GRSS Data Fusion Challenge. 
Gathered in 2012 by the National Center for Airborne Laser Mapping, this dataset com-
prises topographical details of both the University of Houston campus and the neighbor-
ing city. The HSI data consists of 144 spectral bands, while the LiDAR data provides a 
single band recording elevation information. The image size is 349 × 1905 pixels, with a 
spectral resolution ranging from 0.38 to 1.05 µm and a spatial resolution of 2.5 m. The 
dataset comprises 15 land cover categories. Figure 1 displays the pseudo-colored compo-
site image of the HSI data, the grayscale image of the LiDAR data, and the corresponding 
ground truth map. 

  
Figure 1. Houston 2013 dataset. (a) Hyperspectral image (b) LiDAR image. (c) Ground truth land 
cover map. 

Figure 1. Houston 2013 dataset. (a) Hyperspectral image (b) LiDAR image. (c) Ground truth land
cover map.

The MUUFL dataset was acquired in November 2010 within the campus area of the
Gulf Park campus of the University of Southern Mississippi using the Reflective Optics
System Imaging Spectrometer. In the MUUFL dataset, the HSI data comprises 72 spectral
bands ranging from 0.38 to 1.05 µm, and the LiDAR data consists of two wavelengths at
1.06 µm. Due to excessive noise, the first 8 and last 8 bands were removed. The dataset
consists of 325 × 220 pixels and includes a total of 11 different land cover categories.
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Pseudo-colored composite images of the HSI data, grayscale images of the LiDAR data,
and the ground truth map are shown in Figure 2.
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cover map.

The Trento dataset was collected in southern Trento, Italy, and includes both HSI
(Hyperspectral Imaging) and LiDAR DSM (Digital Surface Model) data. The spatial dimen-
sions are 166 × 600, with a spatial resolution of 1 m. The HSI data comprises 63 available
spectral bands. The dataset encompasses six object categories, totaling 30,214 sample pixels.
Figure 3 displays the pseudo-colored HSI image and LiDAR DSM image of the dataset.
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The land cover categories for the three datasets, along with the configuration of
training and testing samples, are presented in Table 1.
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Table 1. Land cover categories of the three datasets and the number of training and test samples.

No.
Houston2013 MUUUFL Trento

Class Name Train Test Class Name Train Test Class Name Train Test

1 Healthy Grass 50 1201 Trees 50 23,196 Apple Tree 50 3984
2 Stressed Grass 50 1204 Mostly Grass 50 4220 Buildings 50 2853
3 Synthetic Grass 50 647 Mixed Ground Surface 50 6832 Ground 50 429
4 Trees 50 1194 Dirt and Sand 50 1776 Wood 50 9073
5 Soil 50 1192 Road 50 6637 Vineyard 50 10,451
6 Water 50 275 Water 50 416 Roads 50 3124
7 Residential 50 1218 Buildings Shadow 50 2183
8 Commercial 50 1194 Buildings 50 6190
9 Road 50 1202 Sidewalk 50 1335

10 Highway 50 1177 Yellow Curb 50 133
11 Railway 50 1185 Cloth Panels 50 219
12 Parking Lot1 50 1183
13 Parking Lot2 50 419
14 Tennis Court 50 378
15 Running Track 50 610

Total 750 14,279 Total 550 53,137 Total 300 29,914

2.2. Methods

The proposed Dual-branch Transformer feature fusion network is illustrated in Figure 4.
The network adopts different processing methods for the information differences between
different modalities. It emphasizes spectral features for hyperspectral images and spa-
tial information for LiDAR data. Finally, the information from both modalities is fused
for classification.
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Figure 4. The proposed dual-branch Transformer feature fusion network.

Based on the outstanding modeling capability of CNN for contextual features, it
demonstrates good performance in classification tasks. We first utilize CNN for shallow
feature extraction from data of two modalities and control the depth of the output feature
maps. Subsequently, we perform feature embedding. This is an indispensable step in
entering the Transformer encoding layer.

For different modalities, we undergo distinct serialization processes and then, address-
ing the characteristics of each modality, respectively enhance the self-attention in different
branches of the Transformer layer to extract deep features.
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Let HSI be denoted as XH ∈ Rm×n×l , and LiDAR data of the same geographical area
as XL ∈ Rm×n, where m and n represent the spatial dimensions, and l corresponds to the
number of spectral bands in HSI. From the normalized data, we construct spectral-spatial
cubes XH

P ∈ Rs×s×l and XL
P ∈ Rs×s for each pixel, where s× s represents the patch size.

To handle pixels at the image boundaries, padding is applied, and the central pixel of
each patch serves as a sample label, forming pairs of samples for the two modal-ties.

2.2.1. Feature Extraction from Hyperspectral Image

For hyperspectral images, we employ convolutional layers to locally model the high-
dimensional spectral information of HSI, reducing the dimensionality of the spectral
information while maintaining the consistency of the sequence length. Here, we set the
sequence length to 64, resulting in an output layer size of (s, s, 64).

When using one-dimensional positional encoding, the Transformer encoder may lose
some spatial information, making it challenging to directly capture the positional relation-
ships of data in a two-dimensional space. In the process of self-attention computation,
the rich contextual information between neighboring keys is not fully utilized. There-
fore, to address high-spectral images, we introduce a Group Embedding Module (GEM).
The computational diagram is shown in Figure 5. This module leverages neighborhood
information among input keys to guide self-attention learning. Firstly, GEM captures
static spatial contextual relevance among adjacent keys, focusing on the layout or feature
distribution of nearby keys in the input. Subsequently, weight coefficients are generated
through convolution with queries to explore dynamic spatial contextual relevance. The
specific computational process is outlined below:
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We first transform it into Query (QH) and Value (VH ) through a learnable
embedding matrix.

QH , VH = Conv(XHWq), Conv(XHWv) (1)

where Wq, Wv is a learnable embedding matrix. Unlike the 1 × 1 convolution used in
self-attention mechanisms to generate Key (K), GEM employs a k× k channel convolution
to extract spatial neighborhood information, obtaining K∗ ∈ Rs×s×64, which reflects con-
textual information between neighborhoods. Subsequently, K∗ is concatenated with Q, and
the attention matrix is computed through two 1× 1 convolutions.

KH = [K∗, Q]WθWδ (2)

The resulting attention matrix KH obtained in this way contains rich contextual in-
formation, unlike traditional attention mechanisms where the attention is isolated to
Query-Key pairs. Subsequently, self-attention computation is carried out.

Attention(QH , KH , VH) = So f tmax(
QHKT

H√
dk

)VH (3)

By introducing GEM, we incorporate local correlations, while the depth wise convo-
lution captures local spatial information. Combined with the global correlations of the
Transformer, this strengthens the model’s capacity to effectively capture HSI data.

2.2.2. Feature Extraction from LiDAR Images

Regarding LiDAR data, we use two 2D convolutional layers to extract its elevation
information. The input LiDAR data tensor of size undergoes convolutional operations with
32 and 64 filters, each with a size of 3× 3. The convolutional layers with padding produce
an output of size (s× s× 64). Similar to the hyperspectral image, after the convolutional
layers, the LiDAR image also generates 64 two-dimensional feature maps. Additionally,
for regularization and to expedite the training process, batch normalization and ReLU
activation layers are applied after the convolutional layers.

Next, it is input into a Transformer encoder based on Spatial Attention (SA). As shown
in Figure 6, this attention module is designed to learn representative spatial features by
capturing short and long-range pixel interactions from the input feature maps. For an input
feature map with dimensions (s× s× 64), it is transformed into Query (Q), Key (K), and
Value (V) through a learnable embedding matrix.

QL, KL, VL = Conv(XHWq), Conv(XHWK), Conv(XHWv) (4)
Sensors 2024, 24, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. Calculation process of spatial attention. Down-sampling the channels helps to capture the 
spatial distribution patterns of geographical features more effectively. 

, , ( ), ( ), ( )L L L H q H K H vQ K V Conv X W Conv X W Conv X W=  (4)

Through a 1 1×   convolutional layer, the channels of LK   and LQ   are down-sam-
pled by a factor of 8, reducing their channel count to 1/8 of the original. This is done to 
better capture spatial relationships. By decreasing the channel count, the model focuses 
more on learning important spatial features. Subsequently, the down-sampled LK  and 

LQ  undergo matrix multiplication to form an attention mask of size ss × ss. The attention 
mask is then subjected to the softmax activation function. The obtained attention mask is 
multiplied and added to LV  in a residual manner, resulting in a spatially attentive output 
feature map. The final output feature map has dimensions ( 64)s s× × . 

Finally, following the same procedure as the HSI processing, attention computation 
is conducted to complete the aggregation of spatial information. 

2.2.3. Feature Fusion of Two Modalities 
The extraction of features and the interaction of information in multimodal data are 

crucial for joint classification tasks. We employ a cross-attention module, allowing the 
model to weight the features of one modality based on the feature representation of an-
other modality, achieved by exchanging keys between two branches of Transformer lay-
ers. By computing attention weights to determine the degree of focus between the two 
modalities, these weights are then applied to the value vectors of the data, achieving fea-
ture fusion and interaction. Leveraging the correlations between different modal data en-
hances the overall feature representation capability. 

[ ]( , , ) (1 ) ( , , )H L H L H LF W MHA Q K V W MHA Q K Vλ λ= + −  (5)

where HQ  , HK  , and HV   represent the feature embeddings of HSI. LQ  , LK  , and LV  
represent the feature embeddings of LiDAR. Wλ  denotes the weight coefficients, which 
are obtained through operations such as linear transformations applied to the shallow 
features of the two modalities, as shown in Figure 7. These weights are used to calculate 
the fusion weights for HSI and LiDAR data and can be learned and adjusted through pa-
rameter updates during the training process. F  represents the fused features that enter 
the classification layer. 

Conv
1×1

Conv
1×1

Conv
1×1

Softmax

C×H×W

C×H×W

C×H×W

C/8×H×W

C/8×H×W

C×H×W
Reshape

Reshape

Reshape

C/8×H×W

C/8×H×W

Transpose

HW×HW

Transpose

Reshape

C×H×W

C×HW

Spatial-Attention

Figure 6. Calculation process of spatial attention. Down-sampling the channels helps to capture the
spatial distribution patterns of geographical features more effectively.
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Through a 1× 1 convolutional layer, the channels of KL and QL are down-sampled
by a factor of 8, reducing their channel count to 1/8 of the original. This is done to better
capture spatial relationships. By decreasing the channel count, the model focuses more on
learning important spatial features. Subsequently, the down-sampled KL and QL undergo
matrix multiplication to form an attention mask of size ss × ss. The attention mask is then
subjected to the softmax activation function. The obtained attention mask is multiplied and
added to VL in a residual manner, resulting in a spatially attentive output feature map. The
final output feature map has dimensions (s× s× 64).

Finally, following the same procedure as the HSI processing, attention computation is
conducted to complete the aggregation of spatial information.

2.2.3. Feature Fusion of Two Modalities

The extraction of features and the interaction of information in multimodal data are
crucial for joint classification tasks. We employ a cross-attention module, allowing the
model to weight the features of one modality based on the feature representation of another
modality, achieved by exchanging keys between two branches of Transformer layers. By
computing attention weights to determine the degree of focus between the two modalities,
these weights are then applied to the value vectors of the data, achieving feature fusion
and interaction. Leveraging the correlations between different modal data enhances the
overall feature representation capability.

F = ∑[Wλ MHA(QH , KL, VH) + (1−Wλ)MHA(QL, KH , VL)] (5)

where QH , KH , and VH represent the feature embeddings of HSI. QL, KL, and VL represent
the feature embeddings of LiDAR. Wλ denotes the weight coefficients, which are obtained
through operations such as linear transformations applied to the shallow features of the two
modalities, as shown in Figure 7. These weights are used to calculate the fusion weights for
HSI and LiDAR data and can be learned and adjusted through parameter updates during
the training process. F represents the fused features that enter the classification layer.
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for the dual branches.

The introduction of weight coefficients is due to the unequal importance of hyper-
spectral and LiDAR data. Hyperspectral imagery occupies the primary features, while
LiDAR serves as a supplementary source for spatial information and provides elevation
details. After the interaction of information from both modalities, the data proceeds to the
classification layer to accomplish the classification task. The following presents the entire
algorithmic process of the model (Algorithm 1).
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Algorithm 1

Input: The raw HSI data XH, LiDAR data XL, and ground truth XR
Output: Classification result of each pixel is compared with the overall classification map.
1: Conduct shallow feature extraction on HSI to reduce dimensionality. LiDAR is then mapped to the same
dimension as HSI through two-dimensional convolution.
2: Trim datasets for two modalities, dividing them into training sample pairs, validation sample pairs, and test
sample pairs.
3: Perform GEM module on hyperspectral data to highlight its spectral information.
4: Perform Spatial Attention to LiDAR data to emphasize spatial information.
5: The cross-attention effectively integrates or aggregates information from two modalities
6: Fusing features using adaptive weight allocation coefficients.
7: Classify the fused features using fully connected layers.
8: Utilizing the trained model to classify the test set and subsequently generate a classification map.

3. Experimental Results and Analyses
3.1. Experimental Setup and Evaluation Metrics

For the experimental setup, both our method and the comparative methods were
executed on the PyTorch 1.10.0 framework under the Ubuntu 20.04 system. The hardware
configuration includes an RTX 2080 Ti (11 GB) GPU, a CPU with 12 vCPUs (Intel(R) Xeon(R)
Platinum 8255C CPU @ 2.50 GHz), and 40 GB of RAM.

For the network hyperparameters, we set the number of attention heads to 8, and
initialized the learning rate to 1.0 × 10−4, utilizing weight decay for optimization during
training. The batch size during the training phase was set to 64, and the model was trained
for a total of 150 epochs. We employed the Adam optimizer for network optimization.

To assess the classification performance of the proposed framework and other existing
frameworks, three widely used quantitative analysis metrics were employed: Overall
Accuracy (OA), Average Accuracy (AA), and Kappa coefficient (Kappa).

3.2. Experimental

To validate the effectiveness of the proposed method, experiments were conducted by
comparing it with five other multimodal data fusion classification methods using the same
training and testing datasets: EndNet [39], MFT [33], MGA [40], Coupled CNN [22], and
HCT [34]. Tables 2–4 show the Overall Accuracy (OA), Average Accuracy (AA), Kappa,
and class accuracies obtained using different methods on the Houston2013, MUUFL, and
Trento datasets.

Table 2. Classification results of different methods for land cover classes in the Houston2013 dataset
(best results are bolded).

NO. Class EndNet MFT MGA CCNN HCT Proposed

1 Healthy Grass 96.84 86.09 97.58 92.64 93.92 97.33
2 Stressed Grass 95.18 91.36 85.79 95.87 94.36 98.92
3 Synthetic Grass 99.85 99.84 100.00 99.39 98.57 99.84
4 Trees 94.55 94.13 99.83 96.58 98.26 94.30
5 Soil 100.00 95.97 100 99.30 99.30 100
6 Water 98.91 88.36 97.81 90.36 90.25 97.09
7 Residential 95.48 94.90 90.80 94.86 95.78 96.14
8 Commercial 97.06 91.12 87.77 92.68 94.27 97.48
9 Road 91.84 94.09 79.28 90.45 91.76 92.67
10 Highway 76.46 85.98 91.07 95.17 94.37 95.41
11 Railway 95.52 89.28 96.96 98.36 97.23 98.56
12 Parking Lot1 81.48 95.94 88.33 92.01 92.04 91.71
13 Parking Lot2 100.00 97.61 95.70 91.86 98.67 91.40
14 Tennis Court 100.00 100.00 100.00 99.68 99.74 100.00
15 Running Track 100.00 99.50 100.00 98.26 99.89 100.00
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Table 2. Cont.

NO. Class EndNet MFT MGA CCNN HCT Proposed

OA (%) - 93.68 92.89 92.91 95.10 95.61 96.55
AA (%) - 94.88 93.61 94.06 95.16 95.89 96.72
K × 100 - 93.16 92.31 92.33 95.11 95.24 96.27

Table 3. Classification results of different methods for land cover classes in the MUUFL dataset (best
results are bolded).

NO. Class EndNet MFT MGA CCNN HCT Proposed

1 Trees 91.05 87.65 93.47 87.15 89.63 93.59
2 Mostly Grass 89.90 72.96 74.79 86.58 87.20 79.14

3
Mixed

Ground
Surface

63.18 68.41 77.38 78.96 79.96 83.79

4 Dirt and
Sand 97.35 92.00 97.07 93.41 94.71 97.74

5 Road 88.53 86.40 88.83 89.76 82.15 93.29
6 Water 100.00 100.00 100.00 99.05 99.65 98.55

7 Buildings
Shadow 89.69 91.43 88.68 90.28 89.12 88.13

8 Buildings 89.70 89.11 90.90 90.21 90.35 90.64
9 Sidewalk 76.32 76.77 70.03 78.96 80.27 82.69
10 Yellow Curb 96.24 83.45 93.98 94.18 94.55 95.48
11 Cloth Panels 99.08 99.54 99.54 98.46 97.98 99.08

OA (%) - 86.81 84.19 88.45 87.02 87.38 90.51
AA (%) - 89.19 86.16 88.61 89.72 89.59 91.10
K × 100 - 82.77 79.64 84.91 84.65 85.67 87.57

Table 4. Classification results of different methods for land cover classes in the Trento dataset (best
results are bolded).

NO. Class EndNet MFT MGA CCNN HCT Proposed

1 Apple Tree 88.56 91.26 97.69 99.27 98.26 99.10
2 Buildings 87.90 96.59 98.54 96.65 97.61 98.95
3 Ground 97.18 95.28 100 98.26 98.34 98.23
4 Wood 98.35 97.84 98.86 100 100 100
5 Vineyard 92.53 98.65 99.24 99.86 99.15 99.96
6 Roads 86.89 90.96 92.74 96.52 97.69 97.40

OA (%) - 92.80 96.37 98.18 98.42 99.14 99.46
AA (%) - 90.23 94.43 96.44 96.56 98.51 98.94
K × 100 - 90.53 92.53 93.56 94.28 96.47 97.67

EndNet adopts an encoder–decoder network architecture, employing a mandatory
fusion functionality to sequentially reconstruct multimodal inputs, thereby enhancing cross-
modality neuron activation. MFT changes the Transformer’s CLS by incorporating features
from one modality, leveraging additional information sources for better generalization, and
learning unique representations in a simplified and stratified feature space. MGA utilizes a
triple-branch architecture to learn the spectral features, spatial features of hyperspectral
images, and elevation information from LiDAR data, respectively. It strengthens the
feature interaction of each branch through multi-level feature fusion. Coupled CNN
consists of two convolutional neural networks, which are coupled together through a
shared parameter strategy. It employs both feature-level and decision-level fusion methods
to fully integrate these heterogeneous features. HCT also adopts a dual-branch architecture
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similar to MFT, fusing multisource heterogeneous information through a cross-token
attention fusion encoder.

During the experiment, we randomly selected 50 samples from each land cover type
as training samples, with the remaining samples used for testing. Subsequently, training
and testing were carried out across various methods, ultimately yielding the classification
results for each method. This process was repeated five times, and the final results were
obtained by calculating the average.

3.2.1. Setting the Size of Image Patches

The patch size will affect the range of the neighborhood that the network attends to
around the central pixel. The setting of this parameter is crucial. To find the optimal patch
size for our experiments, we conducted trials using five different sizes. As shown in Figure 8,
the classification performance on three datasets indicates that, for the proposed network,
the best-performing patch size is 11 × 11. Consequently, all subsequent experiments were
conducted based on this patch size.
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3.2.2. Experimental Analysis of the Houston2013 Dataset

Table 2 presents the experimental results of the Houston2013 dataset using our method
and various comparative methods, including the classification accuracy for each land cover
type, the Average Accuracy (AA), as well as the Overall Accuracy (OA), and Kappa coeffi-
cient under different classification methods. The results indicate that the final classification
accuracy OA increased to 96.55% using the proposed method, and the Kappa coefficient
improved to 96.27. Compared to CCNN and HCT, which also employ a dual-branch ar-
chitecture, the overall accuracy increased by 1.45% and 0.94%, respectively. In fifteen land
cover classes, eight classes achieved optimal performance. Figure 9 shows the classification
maps of each method, where it is noticeable that Healthy Grass on the right side of the
classification map is easily misclassified as Stressed Grass. Due to the dispersed nature
of the samples in the Houston2013 dataset and the presence of a lot of background, it is
difficult to discern the misclassification in other areas of the classification map. However, in
terms of the three performance indicators, the model proposed here outperforms the others.

3.2.3. Experimental Analysis of the MUUFL Dataset

Table 3 presents the experimental results on the MUUFL dataset using our method and
various comparative approaches. As shown in the table, the proposed method achieved
a final classification accuracy (OA) of 90.51% and a Kappa coefficient of 87.57 on the
MUUFL dataset. Among the eleven land cover categories, six categories reached optimal
performance. The average accuracy across all categories also reached 91.10%, which is a sig-
nificant improvement compared to other methods. Figure 10 shows the classification maps
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for each method, revealing that in the top-right section of the map, despite the presence of
numerous region categories, the proposed method still exhibits commendable classification
performance, with fewer misclassifications for Mixed Ground Surface. However, the Build-
ings Shadow category is prone to being misclassified as Mixed Ground Surface. This could
be due to the network’s slightly weaker capability to differentiate features between these
two land cover types.
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3.2.4. Experimental Analysis of the Trento Dataset

Table 4 presents the experimental results on the Trento dataset using our method and
various comparative approaches. The Trento dataset is overall very orderly, with a regular
distribution of land cover types, hence the overall classification performance is generally
good. As shown in the table, the proposed method achieved a final classification accuracy
(OA) of 99.46% and a Kappa coefficient of 97.67 on the Trento dataset. Among the six land
cover categories, three categories reached optimal performance. The average accuracy
across all categories also reached 98.94%. From the classification maps (Figure 11), we can
roughly observe that the comparative methods often misclassify at the edges of different
land cover types, such as Ground being misclassified as Apple Tree in the central part of the
map, which is especially evident in the EndNet method. However, the method proposed in
this paper shows slightly reduced misclassification at the edges.
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Based on the overall analysis of the three datasets, it is observed that the proposed
model demonstrates superior performance in terms of Overall Accuracy (OA), Average
Accuracy (AA), and Kappa coefficient. Additionally, it is noted that models with a dual-
branch processing approach, such as CCNN and HCT, tend to perform better. The lower
classification performance of the comparative models can be attributed to the limited
number of training samples chosen, lack of utilization of spatial information, or relatively
simple fusion strategies.

On the other hand, our proposed model takes into account neighborhood information
at each stage and integrates features from both modalities comprehensively. Therefore,
even with scattered sample distributions, this model can better differentiate various land
cover categories.

Figures 9–11 represent the classification results of each model on the test set. Due
to the scattered nature of Houston’s test samples, specific differences are not discernible.
However, it can be observed from the MUUFL classification map that the proposed models
exhibit better performance at the edges of terrain features.
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4. Discussion

To investigate the advantages of multi-modal joint classification and the contributions
of different modules to performance, a discussion will be conducted for the following
scenarios.

4.1. Impact of Multimodal Data and GEM Modules

To further assess the performance of GEM and the complementary effects between
modalities, we conducted comparative experiments using a baseline network that combines
CNN with a Transformer encoder. We initially evaluated the classification performance of
single-modal data with both a baseline model based on ViT and the currently proposed
method. Subsequently, we performed classification experiments using a dual-branch
network that fused LiDAR data. Finally, the GEM module was integrated into the dual-
branch network for experimentation. The classification performance obtained on three
datasets is shown in Table 5.

Table 5. Classification performance of the three datasets under different cases.

Cases
Houston2013 MUUFL Trento

OA AA Kappa OA AA Kappa OA AA Kappa

Only HSI 95.06 94.56 94.10 87.65 87.73 85.12 96.82 97.04 96.28
Only LiDAR 60.34 62.59 60.52 45.35 47.29 45.63 81.67 80.36 80.94

HSI+ LiDAR (No GEM) 95.13 95.56 95.42 88.61 88.29 85.92 96.61 97.16 96.53
HSI+ LiDAR (GEM) 96.55 96.72 96.27 90.51 91.10 87.57 99.46 98.94 97.67

According to the data presented in Table 5, it is evident that using only LiDAR data for
classification tasks results in poor performance. It is not difficult to understand, since LiDAR
data only records elevation information of objects, making it challenging to differentiate
between different types of objects based solely on elevation information and edge features.
This is particularly evident for the Houston2013 and MUUFL datasets, where the overall
accuracies are 60.34% and 45.35%, respectively. In contrast, for the Trento dataset with a
simpler distribution of objects and concentrated samples, the classification task can be well
accomplished using LiDAR data, achieving an overall accuracy of 81.67%.

When comparing solely using hyperspectral images for classification tasks with the
proposed network that integrates multimodal features, significant differences are observed.
The network exhibits higher overall accuracies by 0.07%, and 0.96% for the Houston2013
and MUUFL datasets, respectively. Therefore, although hyperspectral images, with their
rich spectral information, can distinguish object categories, collaborative classification
using multimodal remote sensing images has proven to yield a slight improvement in
performance, especially in complex scenarios.

Furthermore, by integrating GEM to emphasize spatial relationships within neighbor-
hoods, the proposed network framework’s classification performance is further enhanced.
The accuracy on the Houston2013, MUUFL, and Trento datasets reaches 96.55%, 90.51%,
and 99.46%, respectively. Simultaneously, both AA (Average Accuracy) and Kappa values
also experience significant improvements, confirming the effectiveness of the GEM module.

4.2. Impact of Fusion Weight Coefficients

To comprehensively assess the performance of the feature weighting module, compar-
ative experiments were conducted by varying the fusion coefficients. Five sets of manually
set hyperspectral weighting coefficients (W) were established as 0.6, 0.7, 0.8, 0.9, and 1 (us-
ing only hyperspectral image data). Additionally, a classification task was performed using
a learnable fusion coefficient weighting scheme. The detailed classification performance
results for each set are provided in Table 6.
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Table 6. Classification performance under different weighting coefficients.

W
Houston2013 MUUFL Trento

OA AA Kappa OA AA Kappa OA AA Kappa

0.6 89.72 90.43 90.25 79.46 80.41 80.27 96.24 96.57 94.34
0.7 91.96 91.68 91.26 83.24 83.67 83.26 98.63 98.82 96.24
0.8 94.43 93.87 93.96 86.95 87.43 86.87 98.96 99.02 96.85
0.9 96.41 95.24 95.87 87.42 88.21 87.15 99.27 98.56 97.46
1 95.06 94.56 94.10 87.65 87.73 85.12 96.82 97.04 96.28

Wλ 96.55 96.72 96.27 90.51 91.10 87.57 99.46 98.94 97.67

Observing the results, it can be noted that with the increase in the weight of the hyper-
spectral branch, the performance initially shows an upward trend across the three datasets.
However, when only hyperspectral images are used, i.e., in the case of single-modal clas-
sification, the performance slightly decreases. This phenomenon is more pronounced for
the Houston2013 and MUUFL datasets, while the classification performance for the Trento
dataset shows less fluctuation. This is because hyperspectral images, due to their rich spec-
tral information, dominate in the classification task, achieving satisfactory accuracy levels.
When hyperspectral imaging is combined with LiDAR data for classification, the spatial
and elevation information provided by LiDAR complements hyperspectral images, leading
to a slight improvement in classification performance. The use of weight coefficients based
on shallow features for feature fusion results in optimal performance. Therefore, employing
learnable weight coefficients enhances the rationality of feature fusion.

5. Conclusions

In this paper, for the joint classification task of hyperspectral imaging (HSI) and Light
Detection and Ranging (LiDAR) data, we propose a dual-branch transformer feature fusion
extraction network to extract and fuse features from both modalities. This network com-
bines the feature learning methods of Transformers with Convolutional Neural Networks
(CNN), fully leveraging their respective strengths.

For data from different modalities, we propose a shallow feature mapping mechanism
that reduces the spectral dimension of HSI and allows for better expression of spatial
features in LiDAR data.

For HSI, we introduce an improved self-attention method called GEM, which uses the
aggregative abilities of convolutional networks to address the loss of positional information
caused by Transformer serialization. For LiDAR, we employ a spatial attention mechanism
to enhance the expression of its spatial information.

Finally, in contrast to traditional linear fusion methods, we employ cross-attention
fusion strategies and dynamic fusion strategies to enhance the complementarity of informa-
tion from the two modalities. Experimental validation on three multimodal remote sensing
datasets confirms the feasibility and effectiveness of the proposed model.
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