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Abstract: Technological development has boosted the use of multi-sensor devices to monitor athletes’
performance, but the location and connectivity between devices have been shown to affect data
reliability. This preliminary study aimed to determine whether the placement of a multi-sensor
device (WIMU PROTM) could affect the heart rate signal reception (GARMINTM chest strap) and,
therefore, data accuracy. Thirty-two physical education students (20 men and 12 women) performed
20 min of exercise in a cycle ergometer based on the warm-up of the Function Threshold Power
20 test in laboratory conditions, carrying two WIMU PROTM devices (Back: inter-scapula; Bicycle:
bicycle’s handlebar—20 cm from the chest) and two GARMINTM chest straps. A one-dimensional
statistical parametric mapping test found full agreement between the two situations (inter-scapula
vs. bicycle’s handlebar). Excellent intra-class correlation values were obtained during the warm-up
(ICC = 0.99, [1.00–1.00], p < 0.001), the time trial test (ICC = 0.99, [1.00–1.00], p < 0.001) and the cool-
down (ICC = 0.99, [1.00–1.00], p < 0.001). The Bland–Altman plots confirmed the total agreement with
a bias value of 0.00 ± 0.1 bpm. The interscapular back placement of the WIMU PROTM device does
not affect heart rate measurement accuracy with a GARMINTM chest strap during cycling exercise in
laboratory conditions.

Keywords: technology; sports performance; internal load; wearables; sensor; precision

1. Introduction

In elite sports, athletes and professional teams continuously search for performance
improvement based on indicators that allow them to gain a competitive edge [1]. Among
the wide variety of performance indicators, heart rate (HR) is commonly used to evaluate
cardiac status [2,3]. Defined as a vital physiological variable, it helps in measuring internal
load and prescribing exercise intensities [4,5]. Moreover, coaches need HR data in real-game
contexts for decision-making [6]. This need has led to the development of devices that
can provide live data during training and competition [3]. Among the different available
options, chest straps have proven validity and reliability and have become the most widely
used device for HR measurement [3–5].

Furthermore, it is essential to mention that sports performance monitoring should
be more holistic and integrative than only measuring HR [7,8]. Thanks to the advances
in sports technology, there is a tendency towards different device integration (e.g., Global
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Position Systems, accelerometers, gyroscopes, magnetometers, etc.) with the capacity for
connectivity to external devices, providing more realistic data of athletes’ demands in real-
game contexts [1,6,9]. In this sense, one of the most widely used devices by professional
teams and researchers is the WIMU PROTM, a validated wearable multi-sensor unit [10–13].

Regarding HR monitorisation, the WIMU PROTM includes a GARMINTM HR moni-
tor [14,15]. Although the GARMINTM device is connected and coded via ANT+ technology
to avoid interference, the question arises as to whether the placement of the GPS on the
back could affect HR data accuracy [16]. In this sense, reference articles have shown that
body mass index, device placement and device handling can be related to HR measurement
errors [17]. For example, wearable photoplethysmography technique-based sensors can cre-
ate a significant variation in heart rate outcomes based on the place (i.e., proximal vs. distal;
dominant vs. non-dominant) applied, even though the same device is used [18]. Moreover,
the back placement of the multi-sensor is widely adopted in team sports [19,20] and is now
gaining popularity in individual sports [21,22] and various disciplines [23]. Therefore, the
authors find it relevant to assess whether the back placement of the sensor has any impact
on the accuracy of HR data collected by chest straps during physical activities.

For the above reasons, this preliminary research aims to determine whether the multi-
sensor device’s placement could affect the HR signal reception and, thus, the accuracy of the
data in athlete monitorisation during a controlled laboratory situation. It was hypothesised
that the placement of the WIMU PROTM multi-sensor device on the back may affect the
HR signal reception and, thus, the data accuracy.

2. Materials and Methods
2.1. Experimental Approach to the Problem

A cycling exercise test based on the warm-up of the Function Threshold Power 20
(FTP20) test was performed in the laboratory [24] using two WIMU PROTM (RealTrack
System, Almeria, Spain) devices to verify whether there is a difference in HR values
when placing the tracking device in different locations (scapula height and bicycle’s
handlebar—20 cm from the chest) (Figure 1). Raw data were extracted from both devices
to analyse intra-class correlations, biases and significant differences between them.
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Figure 1. Equipment and participant instrumentation during testing.

2.2. Participants

Thirty-two physical education students (20 men and 12 women) enrolled at the Uni-
versity of Murcia in the 2023/2024 academic period volunteered to participate in the study
(Men: 20 ± 0 years; 175.5 ± 4.4 cm; 78.9 ± 10.4 kg—Women: 20 ± 0 years; 163.5 ± 4.8 cm;
58.3 ± 6.4 kg). All participants were free from injury during testing and were asked to
maintain their regular hydration and feeding before the test. The study was approved by
the local Ethics Committee (ID: 3495/2021) and followed the ethical recommendations for
studies in humans established by the Declaration of Helsinki.
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2.3. Procedure

Participants were asked to refrain from performing vigorous-intensity exercise the day
before each session while maintaining a similar diet throughout the testing. They arrived
at the laboratory 30 min before tests to be instructed about test procedures. The volunteers
wore two HR monitor chest belts (GARMINTM, Garmin Ltd., Olathe, KS, USA) attached
to the ribcage under the musculus pectoralis major (Figure 1). Each HR monitor was
synchronised with WIMU PROTM devices by ANT+ technology, which collects data at 4 Hz.
The WIMU PROTM devices were placed in two locations: (1) scapula height and (2) cycle
ergometer’s handlebar—20 cm from the chest—for further comparison (Figure 1). The
cycling test was conducted on a cycle ergometer (BODYTONE EX4, Bodytone International
Sports S.L., Murcia, Spain) based on the warm-up of the 20 min trial (FTP20) to analyse
possible differences between HR data in both conditions. Participants performed a cycling
test consisting of a warm-up (5 min of light pedalling at ~100 W, followed by three 1 min
efforts pedalling at 100 rpm interspersed with a 1 min recovery of light intensity cycling),
a 5 min all-out effort and, finally, 4 min of light pedalling as a cool-down (Figure 2). A
specific pacing tactic was not suggested, although participants were encouraged to achieve
the highest mean power during the 5 min all-out effort. During the test, participants
were blinded to intensity but were allowed to see time and cadence for individual pacing
strategies. WIMU PRO™ software (SPRO™, version 989, Realtrack Systems SL, Almería,
Spain) was used to compute HR. The WIMU PROTM is an inertial recording device that
monitors physical activity and movement in real time. This inertial device uses different
sensors to record the data (GNSS, UWB, 4 × 3D accelerometer, 3 × 3D gyroscope, 3D
magnetometer, barometer, WIFI, bluetooth, ANT + and USB connection). The information
recorded by the sensors was converted into quantitative data using the software SPROTM.
Raw data were exported to an Excel Spreadsheet (Microsoft Corporation, Redmond, WA,
USA) for further analysis.
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Figure 2. Study design, device placement and intensities performed by participants.

2.4. Statistical Analysis

Data are presented as mean, standard deviation (SD) and Confidence Interval at
95% (95%CI). Firstly, to compare the differences between locations of both WIMU PROTM

devices in HR, one-dimensional statistical parametric mapping (SPM) techniques were
implemented to analyse a time-series signal along the test [25]. For this analysis, data
were normalised considering the test duration from 0% to 100%. The SPM1D Python
(Anaconda Navigator 2.3.2) was used by applying a paired t-test (as the data presented
a normal distribution). Secondly, the intra-class correlation coefficients (ICCs) of HR
between the locations of both WIMU PROTM devices were obtained using RStudio (version
2023.06.0, package “irr”), based on a single-rater measurement, absolute agreement and a
2-way random-effects model. ICC values were classified as 1.00–0.81 (excellent), 0.80–0.61
(very good), 0.60–0.41 (good), 0.40–0.21 (reasonable) and 0.20–0.00 (deficient) [26]. Finally,
Bland–Altman plots were used to examine the agreement between HR derived from both
devices [27].
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3. Results

Figure 3 shows the HR raw data obtained during the cycling test in both sensor
positions. The mean value obtained for both sensors was 117.5 ± 8.0 bpm for the warm-up,
164.7 ± 13.2 bpm for the 5 min all-out effort, and 147.4 ± 10.7 bpm for the cool-down.
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Figure 3. Mean (line) and Confidence Interval at 95% (shaded interval) of the heart rate response
during the cycling warm-up (data left of the first vertical dotted line), 5 min all-out effort (data
between the two vertical dotted lines) and cool-down (data right of the second vertical dotted line),
with the WIMU PROTM devices placed in two different locations (Back: scapula height; Bicycle:
bicycle’s handlebar—20 cm from the chest). The colour of the signal presented is the result of the two
colours of both sensors being overlapped.

SPM analysis did not present differences between sensor positions at any moment of
the test (Figure 4, p > 0.05). The left panel of the figure shows how the heart rate of both
sensors overlaps throughout the test, and the right panel shows the statistics of the paired
t-test, which has a value of 0 throughout the test, not being altered at any moment.

Mean and SD values were obtained for each phase (warm-up, 5 min all-out effort and
cool-down), and ICC values were calculated (Table 1). ICC values were excellent between
the locations of both devices, obtaining an ICC value of 1.00 (p < 0.001) in the three phases
(warm-up, 20 min time trial and recovery).

Table 1. Mean and standard deviation (SD) for the WIMU PROTM devices placed in two different
locations (Back: scapula height; Bicycle: bicycle’s handlebar—20 cm from the chest) for each phase
of the test (warm-up, 5 min all-out effort and cool-down). Intra-class correlation coefficient (ICC)
between both locations was determined with its Confidence Interval at 95% (95%CI).

Bicycle Back ICC Results

Phase Mean SD Mean SD ICC p-Value 95CI Lower 95CI Upper

Warm-up 117.5 8.0 117.5 8.0 1.00 <0.001 1.00 1.00
5 min all-out effort 164.7 13.2 164.7 13.2 1.00 <0.001 1.00 1.00

Cool-down 147.4 10.7 147.4 10.7 1.00 <0.001 1.00 1.00
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Figure 4. (Left): mean (line) and standard deviation (shaded interval) of the heart rate response
during all the cycling tests (warm-up, a 5 min all-out effort and cool-down), with the time normalised
as a percentage of the total time of the test. Data from the two locations of the WIMU PROTM devices
are shown superimposed. (Right): the paired t-test (SPM1D) compared the heart rate between both
locations of WIMU PROTM devices (scapula height vs. bicycle’s handlebar—20 cm from the chest).
The y-axis displays the one-dimensional SPM {t}. A significant effect (p < 0.05) is present where the
black line is above the upper horizontal dotted line.

Bland–Altman plots (Figure 5) show that the bias between devices in the three phases
was 0.0 ± 0.1 bpm, with no modification of this bias depending on the mean HR. The
±1.96 standard deviations of the bias (which is the same as the 95%CI of the bias) for the
warm-up, 5 min all-out effort and cool-down were ±0.2 bpm, ±0.3 bpm and ±0.2 bpm,
respectively.
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4. Discussion and Conclusions

This preliminary research aimed to determine if the WIMU PROTM placement could
affect the HR signal reception and, thus, the data accuracy in athletes’ monitorisation during
controlled laboratory situations. The main results were that no differences were observed
between the two device locations assessed, showing an excellent intra-class correlation
coefficient at any moment of the cycling test and a bias value between both locations of
0.00 ± 0.1 bpm. The authors’ hypothesis was rejected as the WIMU PROTM on the back did
not affect the HR signal reception and data accuracy.

The statistical analysis demonstrated the total agreement between the two situations
(inter-scapula vs. bicycle’s handlebar) without any influence of intrinsic or extrinsic factors.
Although other HR measurement systems are affected by position or athlete character-
istics, the SPM test reveals no differences during the entire trial, regardless of exercise
intensity and athletes’ individuality. In addition, excellent intra-class correlation values
were found during the warm-up (ICC = 0.99, [1.00–1.00], p < 0.001), the 5 min all-out effort
(ICC = 0.99, [1.00–1.00], p < 0.001) and the cool-down (ICC = 0.99, [1.00–1.00], p < 0.001). The
Bland–Altman plots also confirm these results with mean bias values of 0.00 and minimum
standard deviations with upper and lower limits close to zero.

Research on the impact of device placement on heart rate measurements has yielded
mixed results. Jung et al. [28] found that the placement of a Fitbit HR did not significantly
influence heart rate measurements, while Brage et al. [29] reported that the placement of
the Actiheart at the level below the sternum yielded cleaner heart rate data. Our results
align with previous studies that aimed to verify HR measurement accuracy in exercise and
sports contexts [3,28,30]. Specifically, the WIMU PROTM devices focused on the importance
of multi-device integration for a more comprehensive understanding of athletes’ physical
demands (external and internal load management) [1,12]. Moreover, the results contribute
to previous studies that delved into how device location could affect data accuracy [12].
Although WIMU PROTM positions have been shown to affect external load data [31],
HR measurements through GARMINTM chest straps have been proven to be accurate,
independent of the WIMU PROTM location [12]. A possible explanation for our findings is
the high accuracy of chest strap monitors, with better agreements with ECG measurements
than other technologies. Specifically, the GARMINTM chest strap telemetry for heart rate
works using a piezoelectric transducer to detect heart sounds on the chest surface [32].
Parak et al. [30] found that chest straps are more accurate than vests, with a mean absolute
percentage error (MAPE) of 0.76% for chest straps and 3.32% for vests. Pasadyn et al. [33]
also found that chest strap monitors, such as the Polar H7, had the greatest agreement with
ECG measurements among others, followed by the Apple Watch III. In fact, the chest strap
can more easily be adjusted tightly to different chest circumferences compared to other
non-invasive devices, making it suitable for continuous monitoring during various types of
exercise. Furthermore, heart rate monitors that use ANT+ technology have been designed
with better signal conditioning to prevent misleading displays, enhancing accuracy and
usability [34,35].

Furthermore, considering that most team sports use these multi-device systems to
monitor athletes’ internal and external load, this research confirms the HR accuracy with
the most extended device locations (HR chest strap and back interscapular GPS). Coaches,
technical staff and athletes can be confident with the HR data obtained through the system
proposed in this research.

This study was considered to be preliminary due to its limitations and limited scope.
Firstly, the HR recordings were not compared with a more rigorous approach, such as
an electrocardiogram. Secondly, the results apply only to the HR monitor device tested.
Thirdly, the devices and placements were tested on young, healthy volunteers during
cycling in a laboratory setting. Indoor cycling may not fully represent young adults’
physical activity. Hence, generalisations cannot be made for other sports and exercise
environments, children or older adult age groups, or individuals of different body sizes
or clinical populations. Future studies could analyse various types of fitness trackers and
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a broad range of activities ranging from sedentary to vigorous intensities with balanced
maintenance in each intensity.

In conclusion, the interscapular back placement of the WIMU PROTM device does not
affect HR accuracy measurement with a GARMINTM chest strap during cycling exercise in
laboratory conditions. These results confirm the reliability of multi-sensor devices in sports
performance monitoring, especially underlining the consistency of HR data considering
device location. This study supports multi-sensor wearable technology in professional
sports contexts and gives confidence to coaches and athletes in integrating these metrics
for performance analysis and decision-making. Future research should aim to replicate
these findings in different sports environments, with different multi-sensor devices and
populations, to ascertain the study findings.
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