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Abstract: In recent years, significant progress has been witnessed in the field of deep learning-based
object detection. As a subtask in the field of object detection, traffic sign detection has great potential
for development. However, the existing object detection methods for traffic sign detection in real-
world scenes are plagued by issues such as the omission of small objects and low detection accuracies.
To address these issues, a traffic sign detection model named YOLOv7-Traffic Sign (YOLOv7-TS) is
proposed based on sub-pixel convolution and feature fusion. Firstly, the up-sampling capability of
the sub-pixel convolution integrating channel dimension is harnessed and a Feature Map Extraction
Module (FMEM) is devised to mitigate the channel information loss. Furthermore, a Multi-feature
Interactive Fusion Network (MIFNet) is constructed to facilitate enhanced information interaction
among all feature layers, improving the feature fusion effectiveness and strengthening the perception
ability of small objects. Moreover, a Deep Feature Enhancement Module (DFEM) is established to
accelerate the pooling process while enriching the highest-layer feature. YOLOv7-TS is evaluated on
two traffic sign datasets, namely CCTSDB2021 and TT100K. Compared with YOLOv7, YOLOv7-TS,
with a smaller number of parameters, achieves a significant enhancement of 3.63% and 2.68% in
the mean Average Precision (mAP) for each respective dataset, proving the effectiveness of the
proposed model.
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1. Introduction

With the rapid development of Artificial Intelligence (AI) and Deep Learning (DL)
technology, traffic sign detection, as a part of intelligent transportation, has become a
popular research topic. In real-world scenes, traffic sign detection can assist drivers in
accurately assessing information and reduce cases of neglect and misidentification caused
by fatigue or inattention to avoid accidents. However, practical traffic sign detection can be
affected by several factors, such as illumination, bad weather, and occlusion. Therefore, it
is important to design a robust traffic sign detector with high detection accuracy.

For increased driver perceptibility, traffic signs usually have striking colors and special
shapes. Traditional traffic sign detection focuses on feature extraction and classification.
Color or shape features are extracted by different approaches for traffic sign recognition
through a classifier. Benallal et al. [1] performed traffic sign detection through color
segmentation by comparing the differences between the RGB components. However, the
RGB color space is highly sensitive to changes in the lighting environment, making it
difficult to achieve stable results. Ruta et al. [2] employed a normalization process to
enhance the RGB color space, to better extract and detect the differences between the three
colors (red, yellow, and blue). Nguwi et al. [3] converted traffic sign images from the
RGB to the HSI color space and segmented the images with a fixed threshold due to the
insensitivity of the latter to illumination changes. Fleyeh et al. [4] employed an AdaBoost
binary classifier-based color segmentation approach. Yang et al. [5] proposed a model
based on a color probability map in the Ohta space. Loy et al. [6] attempted to establish
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the possible center of mass location through the symmetry of the image and the edge
information to detect traffic signs. However, this method does not apply to all shapes and
has poor generalization. The Hough transform approach utilized by Zaklouta et al. [7] to
extract specific shape features achieved better detection results. Abukhait et al. [8] utilized
both traffic sign color and shape features and demonstrated a strong detection performance,
even when the traffic sign shape was distorted or obscured by foreign objects. Although
traditional methods for traffic sign detection demonstrated satisfactory performance at the
time, they still face the following limitations: Firstly, traditional approaches often rely on
manually designed features to represent traffic signs. This may overlook some complex
textures, shapes, or background variations since manually designed features struggle
to capture intricate linear relationships. Secondly, factors such as lighting conditions,
different perspectives, and occlusion pose challenges to traditional traffic sign detection.
Under these circumstances, traffic signs exhibit varying appearances, making it difficult
for traditional methods to adapt to such changes. Thirdly, due to the diversity in the
appearance of traffic signs and backgrounds, traditional methods struggle to generalize
across different scenes and datasets, challenging their robustness in practical applications.
Lastly, the computational complexity of traditional methods is relatively high, rendering
them unsuitable for meeting real-time requirements.

Since the achievements of AlexNet [9] in the field of visual recognition in 2012, an
increasing number of DL methods have been proposed and applied to object detection,
replacing the traditional algorithms. These DL-based object detection methods can be
broadly categorized into two groups, namely Two-Stage and One-Stage algorithms. The
first ever Two-Stage object detection algorithm with industrial-grade accuracy, Regions
with CNN features (R-CNN), was introduced by Girshick et al. [10]. A selective search ap-
proach was utilized by R-CNN to extract 2000 candidate regions, which were subsequently
predicted individually. However, despite its breakthrough accuracy, R-CNN is plagued by
significant speed limitations due to the generation of candidate regions and extensively
repetitive computations. The efficiency of R-CNN has been optimized by Spatial Pyramid
Pooling in Deep Convolutional Networks for Visual Recognition (SPP-Net) [11], which
extracts features from the entire feature map and uses a spatial pyramid pooling layer to
handle features of arbitrary sizes. The SPP-Net training process remains complex, although
it has been improved compared with R-CNN. Fast R-CNN [12] unifies the classification
and regression problems with a deep network implementation, eliminating the need for
additional storage and dramatically improving the training speed. Faster R-CNN [13]
became the first object detector with near real-time performance, integrating the four main
steps, i.e., feature extraction, candidate region generation, regression of predicted edge
position parameters, and object category determination, into the Region Proposal Network
(RPN). Libra R-CNN [14] solves the imbalance problem during training with high accuracy
improvement by introducing Intersection over Union (IoU) balanced sampling, balanced
pyramid, and balanced Mean Absolute Error (L1 loss). Despite the significant enhance-
ments in detection performance brought about by these Two-Stage algorithms, their speed
still does not meet the demands of real-time object detection. This issue is tackled by the
introduction of One-Stage object detection algorithms. You Only Look Once (YOLO) [15]
transforms object detection into a regression problem and adopts CNNs to complete the
prediction of bounding boxes and category determination, truly ushering in the era of
real-time object detection. A detection accuracy on par with Faster R-CNN is achieved by
Single Shot MultiBox Detector (SSD) [16], while maintaining the detection speed through
the prediction of multi-scale features and the introduction of an anchor mechanism. In
YOLOv2 [17], batch normalization is incorporated into the network to expedite model
convergence, and the K-Means algorithm is utilized to determine the size and position of
prior frames, resulting in better-matching detection frames for real objects. Darknet-53 is
employed as the YOLOv3 [18] backbone, and the concept of Feature Pyramid Network
(FPN) [19] is introduced for feature fusion at different scales, further enhancing detection
performance. YOLOv4 [20] employs a new backbone, CSPDarknet53, by combining the
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Cross Stage Partial Network (CSPNet) [21] with Darknet-53. This model additionally in-
corporates Spatial Pyramid Pooling (SPP) and Path Aggregation Network (PANet) [22] to
expand the receptive field of features and improve feature fusion. In YOLOv5 [23], the
feature fusion capabilities are enhanced by incorporating the CSP structure into the fusion
network. Simultaneously, the Focus structure is added to the backbone network to perform
slicing operations on feature maps, reducing algorithm computation and accelerating pro-
cessing speed. Gui et al. [24] achieved a more lightweight model in YOLOv5 by introducing
lightweight convolutional operations. Simultaneously, the incorporation of the bottleneck
attention module was employed to extract effective information, thereby enhancing the
accuracy of the model. Recently, breakthroughs have been achieved in the field of com-
puter vision with models based on Transformer [25] architecture. The Vision Transformer
(ViT) [26] applies the Transformer architecture to sequences of image patches, further ad-
vancing image classification tasks. ViT-FRCNN [27] integrates ViT with RPN to accomplish
object detection tasks based on the transformer backbone. Xie et al. [28] proposed a novel
integrated network, ViT-MVT, designed for joint optimization of image classification tasks
and other downstream tasks, such as object detection and semantic segmentation. ViT-MVT
demonstrates exceptional performance across multiple visual tasks, surpassing existing
methods while requiring considerably less total storage. Wang et al. [29] proposed an
MDL-NAS framework based on ViT, achieving high performance across various vision
tasks and maintaining storage efficiency for model deployment through a coarse-to-fine
searching space design and a joint-subnet search algorithm.

As a sub-type of object detection, traffic sign detection can benefit from the application
of DL-based algorithms. However, this task has higher requirements for detection accuracy
and speed. As a result, various studies have attempted to improve these algorithms in
order to achieve improved traffic sign detection. Gavrilescu et al. [30] revealed that com-
pared with Fast R-CNN, Faster R-CNN exhibited superior real-time traffic sign detection
performance. Based on Faster R-CNN, Yang et al. [31] proposed a method utilizing an
attention network to replace the RPN, improving the accuracy for both the TT100k [32]
and BTSD [33] datasets. Additionally, Zhang et al. [34] introduced a cascaded R-CNN [35]
approach to acquire multi-scale features from the pyramid and weighted them through
dot products and softmax operations, thereby emphasizing traffic sign features and en-
hancing detection accuracy. The aforementioned algorithms are all formulated based on
the Two-Stage object detection approach, and despite the significant improvement in ac-
curacy, meeting real-time requirements is challenging due to the slower speed inherent
in Two-Stage object detection. Mohd-Isa et al. [36] incorporated SPP into the YOLOv3
framework, enabling traffic sign recognition for real-world images of varying sizes through
multi-scale pooling. This modification results in improved detection accuracy along with
increased detection speed. Wang et al. [37] developed a lightweight YOLOv4 algorithm by
replacing the backbone with a lightweight architecture, MobileNetv2 [38], and attention
mechanisms were also employed to enhance the model’s detection capabilities. In summary,
DL-based traffic sign detection algorithms are characterized by increased robustness and
higher detection accuracy compared with traditional methods. Simultaneously, One-Stage
algorithms offer advantages in real-time processing, better aligning with the requirements
of traffic sign detection.

Despite the better traffic sign detection results and faster speeds offered by the YOLO-
series-based One-Stage algorithms, the problem of the high leakage rates of small objects
persists. Detecting small objects has always been a challenging task in object detection.
Firstly, small objects typically exhibit low-resolution with limited visual information, mak-
ing the extraction of effective features more challenging. Secondly, detection methods based
on neural networks typically extract deep-level features with rich semantic information
for object detection. The dimensions of these features progressively diminish, causing the
network to gradually lose spatial resolution and detailed information during the forward
propagation process, thereby affecting the detection of small objects. In recent years, several
methods have been proposed to achieve breakthroughs in the field of small object detection.
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Liang et al. [39] introduced FS-SSD as a method for small object detection in UAV images.
However, the algorithm introduces hyperparameters that are not conducive to optimization.
Liu et al. [40] employed contextual information, encompassing object and scene features,
as well as relationships between coexisting objects, to enhance the performance of small
object detection. The approach relying on context fusion enhances the accuracy of object
detection to a certain extent. However, identifying contextual information from a global
scene that is beneficial for enhancing small object detection remains a challenging research
problem. Li et al. [41] employed generative adversarial learning by mapping the features of
small low-resolution objects into features equivalent to those of high-resolution objects to
attain the same detection performance as that of larger-size objects. Nevertheless, training
generative adversarial networks poses challenges, and achieving a well-balanced relation-
ship between generators and discriminators is not easily realized. Zhu et al. [42] utilized
Transformer Prediction Heads (TPH) to globally model the feature maps. While it enhances
the detection capabilities for small objects, the complex structure of the Transformer also
introduces a certain degree of redundancy to the model. In addition to the problem of
small object detection, the number of feature channels can be directly reduced by the
feature map extraction process using a 1 × 1 convolution, potentially leading to the loss of
feature channel information. At the same time, the detection accuracy can be affected by
insufficient feature fusion. Therefore, a traffic sign detection model, YOLOv7-Traffic Sign
(YOLOv7-TS), based on sub-pixel convolution [43] and feature fusion is proposed in this
study. Firstly, the up-sampling capability of sub-pixel convolution is utilized to integrate
the channel dimension pixels and preserve channel information, thus extracting feature
maps with richer features. Additionally, a small object detection layer is introduced to
the feature fusion network, and the integration map is employed to enhance information
interaction among all feature layers, which reduces the rate of small object omissions
and improves the effectiveness of feature fusion. Furthermore, the highest-layer feature
enhancement is accomplished by the addition of global average pooling and global max
pooling, which provide the highest-layer feature with global information and significant
information. Feature fusion is then employed to impart the benefits of the highest-layer
feature to every other layer, ultimately enhancing the detection accuracy of the model. The
major contributions of this study can be summarized as follows:

1. A Feature Map Extraction Module (FMEM) is devised to mitigate channel information
loss during feature map extraction by employing sub-pixel convolution.

2. A Multi-feature Interactive Fusion Network (MIFNet) is developed to leverage the
rich details of the small object detection layer and employ the integration map to
enhance the interaction of information across all feature layers. The perceivability
for small traffic sign objects is enhanced, and the effect of feature fusion is improved
while reducing the model parameters.

3. A Deep Feature Enhanced Module (DFEM) is established, in which the highest feature
is enriched by integrating global average pooling and global max pooling within the
Spatial Pyramid Pooling Cross-Stage Partial Channel (SPPCSPC). Simultaneously,
pooling is accelerated without altering the size of the original receptive field, thereby
speeding up the inference of DFEM.

4. To validate the effectiveness of YOLOv7-TS, a substantial number of experiments
are conducted on the CCTSDB2021 [44] and TT100K traffic sign datasets. These
experiments demonstrate the commendable detection performance of YOLOv7-TS.

2. Related Work
2.1. YOLOv7

The latest object detector in the YOLO series is YOLOv7 [45], and the structure is
depicted in Figure 1. It primarily consists of four components, namely, input, backbone,
feature fusion network, and prediction. The complete YOLOv7 detection process is as
follows: Initially, the images are preprocessed by YOLOv7, resizing them to a fixed size of
640 × 640 × 3 pixels to meet the input requirements of the backbone. Subsequently, deeper
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features are continuously extracted within the backbone using CBS modules, Efficient
Long-range Attention Network (ELAN) [46] modules, and Max Pooling Reduction (MP)
modules. Among these components, CBS comprises the convolution, batch normalization,
and Sigmoid Linear Units (SiLU) activation function. The ELAN is constructed by stacking
different CBS modules, employing a denser residual structure to aid optimization. The
four feature layers, each processed through the different CBS modules, are stacked and
subsequently integrated through another CBS module. This integrated result in the output
feature has twice the number of channels as the input feature. The MP module employs
max pooling in the upper branch and convolution in the lower branch. In both branches,
the number of channels is halved by a 1 × 1 convolution, and both branches are spliced to
produce down-sampled output feature with the same number of channels as the input fea-
ture. The YOLOv7 backbone outputs three feature layers of different sizes: 20 × 20 × 1024,
40 × 40 × 1024, and 80 × 80 × 512. These feature layers are then subjected to channel
number adjustment through a 1 × 1 convolution and subsequently input into the Path
Aggregation FPN (PAFPN) for feature fusion. The optimization process is aided by the
SPPCSPC module, which leverages residual edges while enabling the highest feature to
acquire receptive field information at different scales. The number of channels of the three
feature layers of varying sizes is adjusted using RepConv, which draws inspiration from
the concept of Re-parameterization Visual Geometry Group (RepVGG) [47] and introduces
three residual branches to assist in training. These channel-adjusted feature layers are
then fed into the YoloHead for prediction. In the deployment phase, the intricate residual
structure is reparameterized into a 3 × 3 convolution, reducing the network complexity
while maintaining high prediction performance. YOLOv7 outperforms all known object
detection models in both speed and accuracy, ranging from 5 to 160 Frames Per Second
(FPS). Its exceptional performance makes it suitable to be used as a baseline model for
traffic sign detection. However, issues such as the loss of channel information and detection
leakage of small traffic sign objects still exist. Therefore, this study focuses on improving
YOLOv7 to create an object detector specifically tailored for traffic sign detection.
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2.2. Sub-Pixel Convolution

Sub-pixel convolution is proposed for image super-resolution tasks, in which low-
resolution images are super-resolved by generating high-resolution images through sub-
pixel convolution. Therefore, sub-pixel convolution is an up-sampling method, and its
sampling process is shown in Figure 2. For the input image W × H × C (where W, H, and
C refer to the width, height, and channel dimensions, respectively), the number of image
channels is firstly expanded to C × r2 with a 1 × 1 convolution, where r is the expansion
factor. The expanded image becomes W × H × C × r2. Subsequently, the pixels in C
are shuffled by the sub-pixel convolution to enlarge W and H by r times and obtain the
up-sampled image, r W × r H × C. Mathematically, the pixel shuffle operator, PS, can be
expressed as:

PS(T)x,y,c = T⌊x/r⌋, ⌊y/r⌋, C · r · mod(y, r) + C · mod(x, r) + c (1)

where T denotes the input feature and PS(T)x,y,c denotes the output feature pixels at the (x,
y, c) coordinates. By initially adjusting the number of channels and subsequently applying
sub-pixel convolution, it is ensured that the number of channels of the output image is
consistent with that of the input image, while simultaneously increasing the resolution.
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2.3. Integration Map

A variety of semantic information is contained within the various feature layers of
a neural network. Rich semantic information is encompassed by deep features, which
is utilized for recognizing object types; rich detail information is abundant in shallow
features, which is utilized to clearly localize objects. Due to their high-resolution, small
objects can be more effectively perceived using shallow features. The fusion of both deep
and shallow features is common in digital image processing tasks. Fan et al. [48] achieved
good performance by employing a feature fusion module to receive and process different
levels of features. An effective framework was established using FPN for merging feature
maps at different scales to accomplish visual tasks through a top-down pathway, which
has subsequently been widely adopted and subjected to extensive research [49,50]. An
additional bottom-up pathway has been explored using PAFPN to further enhance the
low-level information in the deep layers. A weighted bidirectional FPN has been proposed
by Scalable and Efficient Object Detection (EfficientDet) [51] for executing simple and
rapid feature fusion. Nevertheless, the fused features are required to possess balanced
information from each level of resolution. The fused features are influenced by the afore-
mentioned methods, placing greater emphasis on neighboring resolutions and reducing
the significance of features with farther resolutions. As a result, the semantic information
within the non-neighboring layers becomes diluted during the continuous feature fusion.

Integrating and refining multi-scale features through the introduction of a balanced
feature pyramid is achieved by Libra R-CNN. The main structure utilized for this purpose
is the integration map, which serves to enhance the interaction of information between
all feature layers and mitigate the loss of semantic information in non-adjacent feature
layers during the fusion process. The application process of the integration map is depicted
in Figure 3. The low-resolution features are subjected to up-sampling through linear
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interpolation, while the high-resolution features are adjusted to the same resolution size
via adaptive max pooling. Subsequently, the integration map is generated through simple
averaging. At this point, rich information in multi-scale feature layers is incorporated into
the integration map, with due consideration given to the information from non-adjacent
layers. Following this, the restoration of the original resolution features is facilitated by
the integration map through linear interpolation up-sampling and adaptive max pooling,
enhancing the original features across all layers.
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3. YOLOv7-Traffic Sign (YOLOv7-TS)
3.1. Overall Architecture

While traffic sign detection algorithms based on the YOLO series have indeed achieved
remarkable results in terms of both detection accuracy and speed, they still encounter three
significant challenges. The first issue pertains to the loss of channel information during
the feature map extraction process, while the second relates to the high detection leakage
rate of small objects. The third issue concerns both the loss of information in the fusion
process of non-adjacent feature layers and the inadequacy of the fusion. To address these
issues, YOLOv7-TS is proposed as an extension of YOLOv7, and its structure is depicted
in Figure 4. The YOLOv7-TS primarily comprises four components: input, backbone,
feature fusion network, and prediction. The backbone is employed to extract features at
various resolutions. The Feature Map Extraction Module (FMEM) is positioned between
the backbone and the feature fusion network to facilitate feature map extraction, ensuring
the retention of rich channel information from different feature layers. The feature maps
extracted by FMEM contain both high-level semantic information and low-level detail
information, which has a positive role in promoting target recognition and localization.
Within the feature fusion network, the Multi-feature Interactive Fusion Network (MIFNet)
is utilized to facilitate information interaction among all features, thereby enhancing the
effectiveness of feature fusion. Simultaneously, the integration of detailed information from
the high-resolution feature map aids in the precise localization of small objects, mitigating
the issue of missed detections for small objects. Additionally, the highest-layer feature is
enhanced using the Deep Feature Enhanced Module (DFEM), ensuring the provision of
both global and significant information, thereby benefiting all layers through feature fusion.
Ultimately, the fused features are subjected to classification and regression within the final
prediction component.
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The complete process for YOLOv7-TS is as follows: The input images are initially
adjusted to a fixed size of 640 × 640 × 3 and fed into the YOLOv7-TS backbone. Then,
four feature layers, S2, S3, S4, and S5, are generated by the backbone, corresponding to
the outputs of stages 2 to 5, with 256, 512, 1024, and 1024 channels, respectively. The
output, S2, of stage 2 is added as the small object detection layer. Subsequently, FMEM
performs the sub-pixel convolution for the inputs S2–5 to transform the channel dimension
information of the different feature layers into spatial dimensions. The up-sampled images
are then added element-by-element, with the initial feature layers of the same resolution,
to obtain the feature maps F2–4. The feature map F5 is generated directly from S5 without
any other operations. Further, F2–5 are processed by MIFNet for feature fusion, where
F2–4 are channeled into PAFPN for pyramid feature fusion, while F5 is directly involved
in the generation of the integration map after feature enhancement and no longer enters
PAFPN. The purpose of this step is to alleviate the increase in the number of parameters
brought about by the four-layer feature fusion, and simultaneously, avoid excessive feature
fusion that could potentially affect the fusion effect. The DFEM is used to perform feature
enhancement for F5. Building upon the original SPPCSPC, global average pooling and
global max pooling are incorporated in the residual path to provide global information
and significant information to the highest-layer feature, respectively. Simultaneously, the
original pooling structure is altered by DFEM, and pooling continues based on the result of
the previous layer using a small pooling kernel. This achieves pooling acceleration with the
same receptive field to enhance the overall module speed. The feature-enhanced F5 and the
pyramidal feature-fused F2–4 are jointly involved in generating the integration map for the
interaction among all feature layers and fusion effect enhancement. Finally, each feature
layer is restored to its original resolution for subsequent predictions by max pooling and
linear interpolation up-sampling. The details and design philosophy of this network will
be elaborated in Sections 3.2–3.4.

3.2. Feature Map Extraction Module (FMEM)

As representatives of the One-Stage object detection algorithms, the YOLO series
algorithms have been widely employed for real-time detection due to their exceptional
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detection speed. In pursuit of computational efficiency, the YOLO series algorithms employ
a simple 1 × 1 convolution to extract features with a specific number of channels for feature
fusion, as demonstrated in Figure 5. However, this practice results in the loss of channel
information, even with the latest iteration, i.e., YOLOv7. Recently, numerous FPN-based
networks have been predominantly applied for the development of efficient modules
within the pyramid to enhance fusion results. However, these approaches do not inherently
tackle the issue of channel information loss and fail to effectively harness the rich channel
information present in the backbone output features.
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The FMEM is designed to solve this issue by leveraging the abundant channel infor-
mation within Si through sub-pixel convolutional up-sampling, ultimately enhancing the
detection capabilities. Sub-pixel convolution, as a form of up-sampling, contributes to the
model in the following aspects: Firstly, it aids in recovering the lost detailed information in
deep features while preserving rich semantic information within channels. Secondly, the
feature maps extracted through sub-pixel convolution encompass both high-level semantic
information and low-level detailed information, actively facilitating simultaneous object
localization and recognition. Thirdly, by increasing the spatial dimension, the model fully
learns the positional information of small objects, resulting in a more precise localization of
the bounding boxes for small objects. This up-sampling method firstly requires the image
to expand the number of channels by a 1 × 1 convolution, and then, increase the spatial
dimension by shuffling the channel dimension pixels. The feature channel information
is not lost, but transformed into spatial dimension information and retained. Typically,
additional computational overhead is introduced by the process of expanding the number
of channels. However, the sufficient number of channels of S3–5 in this study allows the
images to be up-sampled directly using a sub-pixel convolution, and the need to expand
the number of channels using a 1 × 1 convolution is nullified. Therefore, the feature
channel information is retained without requiring additional computation. The structure
of FMEM is shown in Figure 6. Once S2–5 are input into the FMEM, S2 is solely involved
in channel adjustment through a 1 × 1 convolution; S5 exclusively employs sub-pixel
convolution; whereas S3 and S4 simultaneously engage in sub-pixel and 1 × 1 convolutions.
Subsequently, the features obtained through sub-pixel convolution and channel number
adjustment are added element-wise, followed by a 1 × 1 convolution, resulting in feature
maps F2–4. The F2–4 feature maps are generated by fusing the rich channel information in
S3–5, based on S2–4. The FMEM process can be expressed using the following equations:

F2 = C1×1
(

C1×1(S2) + SPC(S3)
)

(2)
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F3 = C1×1
(

C1×1(S3) + SPC(S4)
)

(3)

F4 = C1×1
(

C1×1(S4) + SPC(S5)
)

(4)

where Si and Fi denote the input and output of FMEM, C1×1 represents the 1 × 1 convolu-
tion, and SPC is the sub-pixel convolution. Subsequently, the obtained feature maps are
input into MIFNet for feature fusion.
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3.3. Multi-Feature Interactive Fusion Network (MIFNet)

Traffic sign detection mainly occurs in autonomous driving and assisted driving
scenarios, and there are more small objects at a distance. This is primarily because there is
a braking distance following emergency braking maneuvers, and early detection of traffic
signs is essential to alert the driver and mitigate potential risks. YOLOv7 possesses the
detection speed and model size requirements for traffic sign detection scenarios. However,
the down-sampling multiple of YOLOv7 is relatively large, feature maps with the resolution
of 20 × 20, 40 × 40, 80 × 80 in the lower three layers are usually selected, and it is difficult for
the deeper feature maps to learn the features of small objects. Furthermore, YOLOv7 utilizes
the PAFPN structure for feature fusion, merging semantic information from higher levels to
naturally impart distinct contextual information to lower-level feature maps. Nonetheless,
the feature fusion process exclusively involves the combination of neighboring feature
layers, neglecting direct interactions of non-neighboring feature layers, and diluting their
semantic information over multiple iterations.

In this study, we establish MIFNet to improve the detection performance of YOLOv7
for small objects and facilitate information interaction across all feature layers. Firstly,
four feature layers are fed as inputs to MIFNet. Incorporating a high-resolution feature
map to provide additional detailed information and employing feature fusion benefits the
overall model, thus enhancing the perception of small objects. Inspired by Libra R-CNN,
we further combine the integration map with PAFPN to augment multi-level features using
the same depth-integrated balanced semantic feature map to enhance the information
interaction between all feature layers. Lastly, to reduce the model parameters, the highest-
level feature is directly utilized for integration map generation after feature enhancement,
without utilizing the pyramid feature fusion of PAFPN. The rich contextual information
in the highest-level feature is not lost but fully harnessed in generating the integration
map, benefiting the other layers. Moreover, when the highest-level feature is fully utilized,
excessive fusion can lead to unnecessary aliasing effects, which can have a negative impact
on the fusion results. The structure of MIFNet is illustrated in Figure 7, where F3–5 are the
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original input feature layers and F2 is the added small object detection layer. PAFPN is
utilized to fuse the features F2–4 to obtain the P2–4 feature layers with increased perception
of small objects. Additionally, F5 alone uses the DFEM for feature enhancement to generate
feature P5, and the details of this module are described in Section 3.4. The integration
map, I (40 × 40 × 256; consistent with F4), is created from the four feature layers after
pyramid feature fusion or enhancement by linear interpolation up-sampling and adaptive
max pooling, respectively. The information interaction between features at different scales
is facilitated by this process, thus ensuring the full utilization of features at each layer. The
process of generating an integration map can be given by the following equation:

C2 = MaxPool(P2) (5)

C3 = MaxPool(P3) (6)

C4 = UPSample(P4) (7)

C5 = UPSample(P5) (8)

I =
1
4

5

∑
i=2

Ci (9)

where Pi denotes the features generated from Si after PAFPN feature fusion or DFEM
feature enhancement, Ci represents the result of Pi after max pooling or up-sampling,
MaxPool stands for the adaptive max pooling operation, and UPSample denotes linear
interpolation up-sampling. The feature layers are then restored to the original resolution
by adaptive max pooling and linear interpolation up-sampling for subsequent prediction.
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3.4. Deep Feature Enhanced Module (DFEM)

Widely employed for enhancing the contextual information of features, SPP entails
the extraction of various receptive field features to output fixed-size feature vectors. In
YOLOv7, the SPPCSPC structure imparts distinct contextual information to the highest-
level feature, enhancing every feature layer through the feature pyramid. The structure of
SPPCSPC is illustrated in Figure 8. In the SPPCSPC structure, three independent pooling
layers with varying kernels are employed to capture the contextual information from
different receptive fields in the highest-level feature. The entire process can be represented
by the following equation:

X = C1×1
(

C3×3
(

C1×1(F5)
))

(10)

R1 = MaxPoolk=5(X) (11)
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R2 = MaxPoolk=9(X) (12)

R3 = MaxPoolk=13(X) (13)

P5 = C1×1
(

Cat
(

C3×3
(

C1×1(Cat(Ri, X))
)

, C1×1(F5)
))

, i = 1, 2, 3 (14)

where F5 denotes the input feature layer, X represents the feature that will undergo pooling
operations, C1×1 stands for the 1 × 1 convolution, C3×3 denotes the 3 × 3 convolution, k is
the size of the max pooling kernel, Ri signifies the result after max pooling, P5 symbolizes
the total output of SPPCSPC, and Cat is the concatenation operation.
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To enhance the highest-level feature and improve the fusion effect of MIFNet, DFEM
is introduced on the basis of SPPCSPC in this study, as illustrated in Figure 9. In the
separate residual path, global average pooling and global max pooling are introduced
initially. The outcomes of these pooling operations are subsequently broadcast to align
with the resolution of the feature in the residual branch and added element-by-element
to enhance the original feature. Simultaneously, inspired by SPPF in YOLOv5, the three
independent pooling layers are improved in DFEM by connecting them in a way that small
pooling kernel layers are utilized for output. This approach not only achieves pooling
results equivalent to those obtained with a larger pooling kernel, preserving the receptive
field, but also facilitates accelerated pooling, thereby enhancing the overall inference speed
of the entire module. Ultimately, the result from the residual branch is concatenated with
the accelerated pooling result to obtain the final output. This process can be represented
using the following equations:

X = C1×1
(

C3×3
(

C1×1(F5)
))

(15)

R1 = MaxPoolk=5(X) (16)

R2 = MaxPoolk=5(R1) (17)

R3 = MaxPoolk=5(R2) (18)

Y = C1×1(F5) (19)

P5 = C1×1
(

Cat
(

C3×3
(

C1×1(Cat(Ri, X))
)

, θ(GMP(Y)) + Y, θ(GAP(Y)) + Y
))

, i = 1, 2, 3 (20)

where F5 denotes the input feature layer, X represents the feature to undergo the max
pooling operation, C1×1 stands for the 1 × 1 convolution, C3×3 stands for the 3 × 3 convo-
lution, k means the max pooling kernel size, Ri represents the results after max pooling,
Y represents the feature that will undergo global pooling, GMP signifies the global max
pooling, GAP signifies the global average pooling, θ symbolizes the broadcasting operation,
P5 manifests the total output of DFEM, and Cat is the concatenation operation. Through
DFEM, the overall pooling process is accelerated while retaining the original receptive field.
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Simultaneously, the original feature layer is endowed with global information and crucial
information, enhancing the overall features.
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4. Experiments and Discussion

To demonstrate the effectiveness of the proposed model in this study, the experimen-
tal results are discussed in this section. To start, the datasets used in the experiments
are introduced. Following this, a comprehensive presentation of the experiment setup
and evaluation criteria is provided. Subsequently, we discuss the ablation experiments
conducted to validate the effectiveness of the introduced modules. Finally, to verify the
advantages of the proposed model, the model is compared with the baseline model and
other common models.

4.1. Datasets
4.1.1. CCTSDB2021

The CCTSDB2021 dataset, created by Changsha University of Science and Technology,
China, is one of the most recognized traffic sign datasets. The dataset is subdivided into
three important categories, namely, “mandatory”, “prohibitory”, and “warning”. The
training and validation sets consist of 16,356 and 1500 images, respectively. To enrich the
training dataset, images captured under a variety of weather conditions, such as foggy
weather and snowy conditions, are also included in the CCTSDB2021 dataset. Examples
of the three different categories of traffic signs and sample images from the CCTSDB2021
dataset are illustrated in Figures 10 and 11, respectively.
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4.1.2. TT100K

The TT100K dataset, curated and released by a joint laboratory between Tsinghua
University and Tencent, comprises ~100,000 street-level images from various cities in China,
and the traffic signs in these images are annotated with bounding boxes. A comprehensive
range of traffic sign categories is covered by the dataset, totaling 221 different classes of
traffic signs, comprising a total of 9176 images. The training and validation sets comprise
6105 and 3071 images, respectively. A significant data imbalance issue is encountered
due to only 45 classes having over 100 instances and nearly half of the classes having
only single-digit instances. Consequently, for our experiments, only these 45 traffic sign
categories are selected, and all other classes in the TT100K dataset are excluded. The
training and validation sets are subsequently reconfigured to a 9:1 ratio. The 45 traffic sign
classes with over 100 instances in the TT100K dataset and sample images from the TT100K
dataset are shown in Figures 12 and 13.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 29 
 

 

categories are selected, and all other classes in the TT100K dataset are excluded. The train-
ing and validation sets are subsequently reconfigured to a 9:1 ratio. The 45 traffic sign 
classes with over 100 instances in the TT100K dataset and sample images from the TT100K 
dataset are shown in Figures 12 and 13. 

 
Figure 12. The 45 traffic sign classes with more than 100 instances in the TT100K dataset. 

 
Figure 13. Sample images of the TT100K dataset. 

4.2. Evaluation Metrics and Implementation Details 
4.2.1. Evaluation Metrics 

To quantitatively evaluate the performance of proposed model, precision (P), recall 
(R), F1 score (F1), mean average precision (mAP), the number of parameters (Params), and 
frames per second (FPS) are adopted as the evaluation metrics. The proportion of true 
positive samples among samples detected as positive by the model is denoted as P. R rep-
resents the proportion of true positive samples detected by the model among all positive 
samples. F1 combines both precision and recall to reflect the model’s detection perfor-
mance, with a higher value indicating better detection performance. The mAP is the aver-
age value of AP for all categories, where AP means the accuracy for a single class. A higher 
mAP value indicates better overall detection accuracy for the model. Params is employed 
to measure the model’s complexity, and it is related to the amount of computer memory 
resources the model occupies. Smaller Params values indicate fewer model parameters 
and less memory usage. FPS is the number of images the model can detect per second. A 

Figure 12. The 45 traffic sign classes with more than 100 instances in the TT100K dataset.



Sensors 2024, 24, 989 15 of 28

Sensors 2024, 24, x FOR PEER REVIEW 15 of 29 
 

 

categories are selected, and all other classes in the TT100K dataset are excluded. The train-
ing and validation sets are subsequently reconfigured to a 9:1 ratio. The 45 traffic sign 
classes with over 100 instances in the TT100K dataset and sample images from the TT100K 
dataset are shown in Figures 12 and 13. 

 
Figure 12. The 45 traffic sign classes with more than 100 instances in the TT100K dataset. 

 
Figure 13. Sample images of the TT100K dataset. 

4.2. Evaluation Metrics and Implementation Details 
4.2.1. Evaluation Metrics 

To quantitatively evaluate the performance of proposed model, precision (P), recall 
(R), F1 score (F1), mean average precision (mAP), the number of parameters (Params), and 
frames per second (FPS) are adopted as the evaluation metrics. The proportion of true 
positive samples among samples detected as positive by the model is denoted as P. R rep-
resents the proportion of true positive samples detected by the model among all positive 
samples. F1 combines both precision and recall to reflect the model’s detection perfor-
mance, with a higher value indicating better detection performance. The mAP is the aver-
age value of AP for all categories, where AP means the accuracy for a single class. A higher 
mAP value indicates better overall detection accuracy for the model. Params is employed 
to measure the model’s complexity, and it is related to the amount of computer memory 
resources the model occupies. Smaller Params values indicate fewer model parameters 
and less memory usage. FPS is the number of images the model can detect per second. A 

Figure 13. Sample images of the TT100K dataset.

4.2. Evaluation Metrics and Implementation Details
4.2.1. Evaluation Metrics

To quantitatively evaluate the performance of proposed model, precision (P), recall
(R), F1 score (F1), mean average precision (mAP), the number of parameters (Params),
and frames per second (FPS) are adopted as the evaluation metrics. The proportion of
true positive samples among samples detected as positive by the model is denoted as P. R
represents the proportion of true positive samples detected by the model among all positive
samples. F1 combines both precision and recall to reflect the model’s detection performance,
with a higher value indicating better detection performance. The mAP is the average value
of AP for all categories, where AP means the accuracy for a single class. A higher mAP
value indicates better overall detection accuracy for the model. Params is employed to
measure the model’s complexity, and it is related to the amount of computer memory
resources the model occupies. Smaller Params values indicate fewer model parameters and
less memory usage. FPS is the number of images the model can detect per second. A higher
FPS indicates faster model speed and the ability to process a larger number of images per
second. These evaluation metrics can be calculated using the following formulas:

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

F1 =
2PR

P + R
(23)

AP =
∫ 1

0
P(R)dR (24)

mAP =
1
N

N

∑
i=1

APi (25)

where TP represents the number of samples correctly detected as traffic signs, FP means the
number of detected traffic signs with incorrect labels compared with the ground truth, FN
denotes the number of samples where traffic signs are present in reality but not detected,
and N is the total number of detected categories.
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4.2.2. Implementation Details

To maintain objectivity, all the experiments in this study are performed on a setup with
the following specifications: Linux operating system; PyTorch 1.7.1, CUDA version 11.7;
and NVIDIA A100 40 G GPU. The reported FPS values in this study are obtained directly
in the GPU environment. The IoU threshold for calculating mAP is set to 0.5. We employe
the Adam training optimizer with an initial learning rate of 0.001. To save memory space,
the batch size is set to 8. During training, the number of epochs is set to 100 and 300 for the
CCTSDB2021 and TT100K datasets, respectively.

4.3. Ablation Experiments

To confirm the effectiveness of the modules proposed in YOLOv7-TS, extensive abla-
tion experiments are conducted on both datasets and the experimental results are analyzed.

4.3.1. Ablation Study of FMEM

With YOLOv7 adopted as the baseline model, the FMEM input feature layer is mod-
ified to include three layers to match the three-layer output of the YOLOv7 backbone.
FMEM is then incorporated into YOLOv7 to extract feature maps while reducing channel
number loss. The specific experimental results of these two methods on the CCTSDB2021
and TT100K datasets are displayed in Table 1.

Table 1. Results of the ablation study for FMEM.

Method P (%) R (%) F1 (%) mAP (%)

Methods on CCTSDB2021 dataset
YOLOv7 92.11 70.45 79.84 82.39

YOLOv7 + FMEM 93.12 72.69 81.65 83.70

Methods on TT100K dataset
YOLOv7 91.46 83.01 87.03 89.77

YOLOv7 + FMEM 91.78 84.17 87.81 90.71

YOLOv7 obtains the values of 92.11%, 70.45%, 79.84%, and 82.39% for P, R, F1, and
mAP, respectively, for the CCTSDB2021 dataset. However, after addressing the channel
information loss, YOLOv7 + FMEM achieves P, R, F1, and mAP values of 93.12%, 72.69%,
81.65%, and 83.70%, respectively, which are 1.01%, 2.24%, 1.81% and 1.31% higher than the
respective values for YOLOv7. Similarly, on the TT100K dataset, YOLOv7 + FMEM achieves
P, R, F1, and mAP increments of 0.32%, 1.16%, 0.78%, and 0.94%, respectively, compared
with YOLOv7. This comparative analysis of experimental data for the two methods
demonstrates the superior detection performance and accuracy of YOLOv7 + FMEM. This
effect is due to a reduction in the channel information loss by FMEM during feature map
extraction, improving the overall detection performance.

To present the results of the ablation experiments more clearly, examples of the results
with both datasets are provided for the two methods in Figures 14 and 15. From these
figures, it is evident that YOLOv7 detects objects with relatively low confidence scores.
However, after incorporating FMEM, the confidence scores for all detected objects increase
due to its ability to preserve the channel information lost in basic YOLOv7. Among the
objects missed by YOLOv7, some are detected after the addition of FMEM, but a few
individual objects remain undetected, which indicates that while the preserved channel
information may not completely resolve the issue of missing small objects, it still has a
positive impact. Meanwhile, in the second set of comparison images in Figure 14, YOLOv7
misclassifies a “speed limit 30” traffic sign as “speed limit 50”, which is corrected upon
FMEM incorporation. In summary, these experimental results collectively provide evidence
of the effectiveness of FMEM.
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4.3.2. Ablation Study of MIFNet

The impact of the MIFNet on traffic sign detection performance is also investigated.
Ablation experiments are conducted on both datasets to assess the following models:
(a) baseline YOLOv7, (b) YOLOv7 + integration map, (c) YOLOv7 + integration map + small
object detection layer, and (d) YOLOv7 + MIFNet. The experimental results for these four
methods are presented in Table 2.

Table 2. Results of the ablation study for MIFNet.

Method P (%) R (%) F1 (%) mAP (%)

Methods on CCTSDB2021 dataset
YOLOv7 92.11 70.45 79.84 82.39

YOLOv7 + integration map 93.87 71.89 81.42 82.99
YOLOv7 + integration map +
small object detection layer 90.34 78.21 83.84 83.91

YOLOv7 + MIFNet 92.23 78.36 84.73 84.02

Methods on TT100K dataset
YOLOv7 91.46 83.01 87.03 89.77

YOLOv7 + integration map 92.89 83.78 88.10 90.12
YOLOv7 + integration map +
small object detection layer 92.25 86.96 89.53 91.45

YOLOv7 + MIFNet 92.13 87.12 89.56 91.48

Using the CCTSDB2021 dataset, YOLOv7 + integration map achieves P, R, F1, and mAP
values of 93.87%, 71.89%, 81.42%, and 82.99%, respectively, demonstrating an improvement
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of 1.76%, 1.44%, 1.58%, and 0.60% compared with YOLOv7. This improvement can be at-
tributed to the enhanced feature fusion effect due to the substantial information interaction
among all feature layers. Further, with the addition of the small object detection layer, the
obtained values are 90.34%, 78.21%, 83.84%, and 83.91%, respectively. While the P value is
slightly lower than that of YOLOv7, the R, F1, and mAP values exhibited improvements
of 7.76%, 4.00%, and 1.52%, respectively. This indicates that the high-resolution feature
provides more detailed information, facilitating the model recognition of small objects.
Finally, YOLOv7 + MIFNet achieves P, R, F1, and mAP values of 92.23%, 78.36%, 84.73%,
and 84.02%, respectively, with the CCTSDB2021 dataset, demonstrating an improvement of
0.12%, 7.91%, 4.89%, and 1.63%, respectively, compared with YOLOv7, and 1.89%, 0.15%,
0.89%, and 0.11%, respectively, compared with YOLOv7 + integration map + small object
detection layer. Although the number of feature layers used for the pyramid feature fusion
is reduced with MIFNet, the detection accuracy does not decrease, but rather shows a
slight improvement. This indicates that when feature information is already fully utilized,
additional rounds of feature fusion may not necessarily result in performance gains and
may even exacerbate model parameter redundancy. Using the TT100K dataset, excellent
performance is also demonstrated by YOLOv7 + MIFNet, and all indicators are improved,
verifying the superiority of MIFNet for small object detection and feature fusion.

The comparative sample results of YOLOv7 and YOLOv7 + MIFNet using both
datasets are displayed in Figures 16 and 17. From these figures, it is noticeable that
after using MIFNet for feature fusion, the detected objects exhibit higher confidence scores.
This can be attributed to the excellent feature fusion capability of MIFNet, which enhances
the model detection performance. Additionally, YOLOv7 + MIFNet successfully detects
and accurately categorizes the objects that are missed or misclassified by YOLOv7 due to
the former’s effective utilization of detailed information in the high-resolution feature layer.
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To demonstrate that MIFNet can achieve favorable feature fusion effects, attain higher
detection accuracy, and simultaneously reduce the model parameters, we present a pa-
rameter comparison in Table 3. With the utilization of the integration map, the model
parameters decrease by 1.8 M compared with YOLOv7. Upon the addition of the small
object detection layer and using the four-layer structure, the model parameters increase
by 1.3 M. When applying MIFNet to YOLOv7, the model parameters reduce to 28.2 M,
representing a decrease of 8.7 M compared with YOLOv7. Through the experimental
data and visualization of detection results, it is conclusively demonstrated that MIFNet
effectively reduces the model parameters while simultaneously enhancing accuracy.

Table 3. Comparison of the parameters among several models.

Method Params (M)

YOLOv7 36.9
YOLOv7 + integration map 35.1

YOLOv7 + integration map + small object detection layer 36.4
YOLOv7 + MIFNet 28.2

4.3.3. Ablation Study of DFEM

To validate the effectiveness of DFEM, we conduct ablation experiments with both
datasets for the YOLOv7 + DFEM model. The experimental results are presented in Table 4.

Table 4. Results of the ablation study for DFEM.

Method P (%) R (%) F1 (%) mAP (%)

Methods on CCTSDB2021 dataset
YOLOv7 92.11 70.45 79.84 82.39

YOLOv7 + DFEM 94.24 71.23 81.14 83.71

Methods on TT100K dataset
YOLOv7 91.46 83.01 87.03 89.77

YOLOv7 + DFEM 92.36 84.12 88.05 90.96

Applied to the CCTSDB2021 dataset, YOLOv7 + DFEM obtains P, R, F1, and mAP
values of 94.24%, 71.23%, 81.14%, and 83.71%, respectively, demonstrating improvements
of 2.13%, 0.78%, 1.30%, and 1.32%, respectively, compared with YOLOv7. Similarly, with
the TT100K dataset, YOLOv7 + DFEM demonstrates improvements of 0.90%, 1.11%, 1.02%,
and 1.19% in the P, R, F1, and mAP values, respectively, compared with YOLOv7. The
highest-level feature is enhanced by providing it with global and crucial information. After
combining it with the different receptive fields provided by the upper branch pooling, all
feature layers benefit from feature fusion.

The comparative detection results of YOLOv7 and YOLOv7 + DFEM using the
CCTSDB2021 and TT100K datasets are shown in Figures 18 and 19. Compared with
YOLOv7, the enhancement of the highest-level feature by DFEM improves the model
detection performance, and the confidence of all detected objects is improved. Some small
objects that are initially missed due to the low confidence scores of YOLOv7 are now de-
tected with higher confidence after feature enhancement with DFEM, indicating its positive
impact on small object detection. Additionally, objects incorrectly detected by YOLOv7 are
also correctly identified by YOLOv7 + DFEM. These results collectively demonstrate the
effectiveness of DFEM in enhancing the highest-layer feature.
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To demonstrate that the introduction of pooling acceleration in DFEM can speed up the
inference of the whole module, we present a parameter and inference time comparison in
Table 5 among SPPCSPC, DFEM (without pooling acceleration), and DFEM. By comparing
these, it is evident that DFEM (without pooling acceleration) increases the module parame-
ters compared with SPPCSPC, simultaneously extending the inference time. This is due
to the fact that DFEM (without pooling acceleration) adds global max pooling and global
average pooling to the residual branch on the basis of SPPCSPC. After introducing pooling
acceleration in DFEM, the module parameters remain unchanged compared with DFEM
(without pooling acceleration). However, the inference time is reduced. Simultaneously,
there is a significant improvement in inference speed compared with SPPCSPC.

Table 5. Comparison of the parameters and inference time among several modules.

Method Params (M) Inference Time (s)

SPPCSPC 7.6 1.2542
DFEM (without pooling acceleration) 8.1 1.2787

DFEM 8.1 1.0588

4.3.4. Ablation Study between Different Modules

The modules proposed in this study achieve varying degrees of performance im-
provement on the YOLOv7 baseline network. We further conduct ablation experiments to
demonstrate that the concurrent application of the three proposed modules on YOLOv7
does not have a negative impact and can yield favorable results, as shown in Table 6.
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Table 6. Results of the ablation study between the components in the proposed method.

Method F1 (%) mAP (%)

Methods on CCTSDB2021 dataset
YOLOv7 79.84 82.39

YOLOv7 + FMEM + MIFNet 84.34 85.08
YOLOv7 + FMEM + DFEM 82.25 84.59
YOLOv7 + MIFNet + DFEM 83.96 84.83

YOLOv7+ FMEM + MIFNet + DFEM 84.90 86.02

Methods on TT100K dataset
YOLOv7 87.03 89.77

YOLOv7 + FMEM + MIFNet 89.36 91.80
YOLOv7 + FMEM + DFEM 88.79 91.33
YOLOv7 + MIFNet + DFEM 89.50 91.95

YOLOv7+ FMEM + MIFNet + DFEM 89.92 92.45

It can be observed that for the CCTSDB2021 dataset, YOLOv7 + FMEM + MIFNet,
which simultaneously focuses on rich channel information and feature fusion, achieves
an F1 value of 84.34% and mAP of 85.08%. Values of 82.25% and 84.59%, respectively, are
obtained by YOLOv7 + FMEM + DFEM, which benefits from the preservation of channel
information and the enhancement of high-level features. YOLOv7 + MIFNet + DFEM,
in which high-level features are enhanced and the enhanced features are propagated to
other layers through feature fusion, achieved values of 83.96% and 84.83%. Significant
improvements in the F1 score and mAP are exhibited by these three methods, indicating
that model performance and detection accuracy can be enhanced by any combination of
the proposed components in this study. When introducing all the proposed components
into YOLOv7 simultaneously, the F1 and mAP values obtained are 84.90% and 86.02%,
which are the highest values among the five methods. In addition, the experimental results
using TT100K dataset also reach the same conclusion. This ablation experiment fully
demonstrates the effectiveness of simultaneously introducing the components proposed in
this study into the benchmark model.

4.4. Comparison Experiments

To validate the superiority of the YOLOv7-TS model, a comparison is conducted
between YOLOv7-TS and the baseline model YOLOv7, as well as other common models.

4.4.1. Comparison Experiment between YOLOv7-TS and YOLOv7

Table 7 presents the comparative experimental results of YOLOv7 and YOLOv7-TS
tested on both datasets to demonstrate the superiority of the latter, which is based on the
YOLOv7 baseline model and incorporates FMEM, MIFNet, and DFEM.

Table 7. Results of the YOLOv7 and YOLOv7-TS.

Method P (%) R (%) F1 (%) mAP (%) Params (M) FPS

Methods on CCTSDB2021 dataset
YOLOv7 92.11 70.45 79.84 82.39 36.9 42.3

YOLOv7-TS 92.69 78.31 84.90 86.02 34.7 37.0

Methods on TT100K dataset
YOLOv7 91.46 83.01 87.03 89.77 36.9 43.1

YOLOv7-TS 92.36 87.60 89.92 92.45 34.7 37.3

A noteworthy trend is that YOLOv7-TS makes substantial strides in both model
performance and detection accuracy, albeit at the cost of a modest reduction in speed.
Specifically, using the CCTSDB2021 dataset, YOLOv7-TS demonstrates improvements of
0.58%, 7.86%, 5.06%, and 3.63% in P, R, F1, and mAP, respectively, compared with YOLOv7.
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Similarly, with the TT100K dataset, it demonstrates enhancements of 0.90%, 4.59%, 2.89%,
and 2.68% in P, R, F1, and mAP, respectively. These advancements can be attributed to
the emphasis of YOLOv7-TS on leveraging rich channel information, bolstering feature
quality, and refining feature fusion techniques. Moreover, YOLOv7-TS achieves a reduction
of 2.2 million parameters relative to YOLOv7, underscoring the efficacy of employing a
three-layer feature pyramid fusion approach in MIFNet for mitigating the redundancy of
model parameters.

For the sake of a clearer comparison of the detection results and regions of inter-
est between the two models, the experimental results and heatmaps are visualized in
Figures 20–23. In Figures 20 and 21, it is revealed that when traffic signs are very small,
issues such as missing objects and low confidence in the detected objects are exhibited by
YOLOv7. Conversely, higher confidence levels in object detection are consistently yielded
by YOLOv7-TS, thus attesting to the successful mitigation of channel information loss
and the enhancement of feature fusion. Furthermore, the objects that are overlooked by
YOLOv7 are accurately detected by YOLOv7-TS, signifying its superior capability in per-
ceiving small objects. In Figures 22 and 23, the regions of interest and perceptual abilities
of both models are depicted. The red boxes in the figures reflect that YOLOV7-TS has a
stronger sensing ability than YOLOv7, enabling easier detection of nearby objects. With
the incorporation of MIFNet, commendable perception capability for distant small objects
is exhibited by YOLOv7-TS, whereas it remains a challenge for YOLOv7. In summary,
the effectiveness of YOLOv7-TS in the realm of traffic sign detection is confirmed by the
presented experimental results.
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4.4.2. Comparison Experiment between YOLOv7-TS and Other Popular Models

Comparative traffic sign detection experiments are also conducted between YOLOv7-
TS and other common Two-Stage and One-Stage object detection algorithms using the
CCTSDB2021 dataset, as shown in Table 8.
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Table 8. Results of the and YOLOv7-TS and different methods tested on the CCTSDB2021 dataset.

Method F1 (%) mAP (%) FPS (%)

Faster R-CNN 66.52 56.58 4.9
Libra R-CNN 69.93 61.35 8.8

Dynamic R-CNN 69.83 60.01 9.0
SSD 42.00 49.20 22.3

YOLOv3 56.77 50.48 20.3
YOLOv4 62.15 51.69 16.6

RetinaNet 65.69 57.78 8.9
YOLOv5s 77.23 80.92 41.3
YOLOv5m 78.59 81.65 30.8
SC-YOLO 84.50 84.30 -

YOLOv7-TS 84.90 86.02 37.0

A significant advantage in terms of model performance and detection accuracy is
exhibited by YOLOv7-TS compared with all other models. Specifically, Faster R-CNN,
which utilizes a single feature layer without employing multi-scale feature fusion, achieves
F1 and mAP values of 66.52% and 56.58%, respectively. Libra R-CNN, which is designed
to pursue balance across three different levels during the training process, achieves F1
and mAP values of 69.93% and 61.35%, respectively. Dynamic R-CNN [52], which lever-
ages dynamic label assignment strategies to adaptively adjust label assignment criteria,
achieves F1 and mAP values of 69.83% and 60.01%, respectively. Although these Two-
Stage algorithms show improved detection performance compared with R-CNN, they
overlook feature enhancement, resulting in F1 and mAP values lower than those achieved
by YOLOv7-TS. Furthermore, Two-Stage detection algorithms necessitate the generation
of candidate regions prior to detection, leading to significantly slower detection speeds.
In the case of One-Stage algorithms, the lowest performance is achieved by SSD, with F1
and mAP values of only 42.00% and 49.20%, respectively. This can be attributed to its
direct use of multi-scale features for prediction by SSD while neglecting feature fusion and
enhancement. The classic YOLOv3 algorithm achieves F1 and mAP values of 56.77% and
51.69%, respectively, and YOLOv4, achieves further improvements of 5.38% and 1.21%,
respectively. Although FPN is employed for feature fusion in YOLOv3, it overlooks feature
enhancement. Information with varying receptive fields is introduced through SPP in
YOLOv4, but it does not match the feature enhancement achieved by DFEM. Class imbal-
ance issues during the training of One-Stage algorithms are addressed by RetinaNet [53]
through the introduction of focal loss, resulting in F1 and mAP values of 65.69% and
57.78%, respectively, surpassing those of YOLOv3 and YOLOv4. However, its detection
speed struggles to meet real-time requirements. YOLOv5s achieves F1 and mAP values
of 77.23% and 80.92%, respectively, while maintaining a high speed, while YOLOv5m
sacrifices speed for higher detection accuracy. However, the issue of channel information
loss during feature map extraction is not addressed by the YOLOv5 series, resulting in
experimental results inferior to those of YOLOv7-TS. SC-YOLO [54], an improvement upon
YOLOv5s, uses cross-stage attention networks and enhanced feature fusion, effectively
improving small object detection capabilities and achieving F1 and mAP values of 84.50%
and 84.30%, respectively. However, it still does not surpass the proposed YOLOv7-TS
model. In summary, in testing on the CCTSDB2021 dataset, an F1 score of 84.90% and
an mAP of 86.02% are achieved by YOLOv7-TS at 37.0 FPS, surpassing all other common
algorithms. While it may not match the speed of YOLOv5s, YOLOv7-TS vastly outperforms
it in terms of detection performance and accuracy.

5. Conclusions

In this study, we propose a traffic sign detection model named YOLOv7-TS, building
upon YOLOv7 as its foundation. Firstly, the issue of feature channel information loss caused
by the 1 × 1 convolution for feature map extraction is addressed through the introduction of
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FMEM. The feature maps extracted through FMEM simultaneously encompass high-level
semantic information and low-level detailed information, actively promoting both object
recognition and localization. Secondly, MIFNet is designed to enhance the feature fusion
by promoting information interaction among all feature layers. Simultaneously, the rich
detail information in the high-resolution feature map is combined to locate small objects
and alleviate the problem of missing detection of small objects. Thirdly, DFEM enriches
the highest-layer feature and improves the inference speed of the whole module. The
highest-level feature containing global information and crucial information improves the
detection accuracy of the model through feature fusion. In summary, YOLOv7-TS leverages
the rich channel semantic information and spatial detail information in multi-scale features.
Through feature enhancement and a more effective feature fusion network, the entire
model benefits from these aspects. The analysis in the experimental section shows that
YOLOv7-TS achieves higher F1 scores and mAP values compared with YOLOv7 and other
common models. This fully demonstrates the excellent performance and highest detection
accuracy of the model in traffic sign detection. The comparison of the results and heatmaps
between YOLOv7-TS and YOLOv7 indicates that YOLOv7-TS alleviates the shortcomings
of YOLOv7 in small object detection, showing a stronger ability to perceive small objects.
However, in terms of FPS, our model lags behind YOLOv7 and YOLOv5s. This is attributed
to the more complex architecture of YOLOv7-TS, requiring larger computational resources,
resulting in a relatively slower inference speed. Our future work will focus on optimizing
the model architecture, exploring the use of lightweight backbone networks and lightweight
convolutions, while refining module details to reduce computational overhead and improve
model speed.

This study was conducted based on traffic sign datasets. There are still many potential
challenges and factors that should be considered when applying the model to real-world
scenarios for traffic sign detection: Firstly, real-world environments exhibit diverse condi-
tions. Changes in lighting due to different times of day and weather conditions may lead to
variations in the appearance of traffic signs. Adverse weather, such as rain, snow, or haze,
can blur or partially obstruct signs, making them more challenging to detect. Seasonal
changes may alter road and environmental conditions, impacting sign visibility. Different
road situations, such as wet, slippery, uneven, or dirty roads, may affect the clarity of traffic
signs. Secondly, specific regions in the dataset may have distinct geographical and cultural
characteristics compared with the target deployment area, posing challenges in detection
due to regional variations. Thirdly, dynamic context adaptation is essential. Real-world
scenarios often encompass dynamic contexts, such as urban versus rural environments
or highways versus local roads. The model should dynamically adjust based on specific
circumstances, considering factors such as traffic density, speed limits, and road infrastruc-
ture. Addressing these potential challenges requires the model to have higher robustness
and stronger generalization capabilities when detecting in real-world scenarios. Several
strategies can be employed: Firstly, data augmentation is crucial. Utilizing diverse data
augmentation techniques, including random rotation, flipping, scaling, and brightness
adjustments, helps simulate the diversity present in real-world scenarios. This aids in
enhancing the model’s robustness to different environments and backgrounds. Secondly,
training with multi-source data is essential. Integrating data from various regions and
diverse scenarios ensures that the model encounters a broader range of contexts during the
training phase. This contributes to improving the model’s generalization performance in
different geographical and cultural environments. Thirdly, transfer learning is a valuable
approach. Employing transfer learning methods allows the model to transfer knowledge
learned in one region or scenario to another. This accelerates the adaptation process of the
model to new environments. Fourth, it is beneficial to include an environment awareness
module and real-time feedback. An environment awareness module is introduced into the
model to capture and deal with environmental changes and adjust the detection strategy.
The real-time feedback mechanism continuously monitors the performance of the model
in real-world scenarios, enabling online adjustment based on actual feedback. Beyond
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adapting to diverse environments and backgrounds, deploying the model in real-world
scenarios necessitates considerations of integration with existing systems, ethical concerns,
and adherence to legal regulations. Seamless integration ensures effective deployment and
collaboration with other components of traffic infrastructure. As artificial intelligence ap-
plications become more prevalent in real-world settings, compliance with ethical standards
and legal regulations becomes paramount. Ensuring the model’s privacy compliance in
public spaces is essential. In our future research, we will focus on addressing the potential
challenges associated with deploying the model in real-world scenarios, continually en-
hancing the model’s robustness and generalization to deliver outstanding performance in
various environments and contexts.
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