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Abstract: In this paper, we propose a new type of vision transformer (ViT) based on graph head
attention (GHA). Because the multi-head attention (MHA) of a pure ViT requires multiple parameters
and tends to lose the locality of an image, we replaced MHA with GHA by applying a graph to the
attention head of the transformer. Consequently, the proposed GHA maintains both the locality and
globality of the input patches and guarantees the diversity of the attention. The proposed GHA-
ViT commonly outperforms pure ViT-based models using small-sized CIFAR-10/100, MNIST, and
MNIST-F datasets and a medium-sized ImageNet-1K dataset in scratch training. A Top-1 accuracy of
81.7% was achieved for ImageNet-1K using GHA-B, which is a base model with approximately 29 M
parameters. In addition, with CIFAR-10/100, the existing ViT and parameters are reduced 17-fold
and the performance increased by 0.4/4.3%, respectively. The proposed GHA-ViT shows promising
results in terms of the number of parameters and operations and the level of accuracy in comparison
with other state-of-the-art ViT-lightweight models.

Keywords: vision transformer; graph head attention; multi-head attention; graph attention network;
lightweight model

1. Introduction

Transformers are among the most powerful neural network tools and have shown a
promising performance using sequential data when applied to natural language processing
(NLP) [1] and speech recognition [2]. A vision transformer (ViT) [3], applied in the field of
computer vision, is a leading algorithm used in various vision problems, including image
classification [3], image segmentation [4], object tracking [5], depth estimation [6], and
action recognition [7]. ViTs are an important approach because they can be used for image
processing without significantly changing the overall transformer architecture. Using a
transformer with a sequence of image patches applied as an input, and without the need for
a convolutional neural network (CNN), ViTs have achieved a performance exceeding that
of CNN-based models. Despite such a high performance, a ViT treats all the tokens equally
and ignores locality, thus losing the unique local structure of an image. In addition, ViTs
still have a disadvantage in that it is difficult for them to process high-resolution images
because of the large number of training data and self-attention operations. To address these
problems, several studies have been conducted on improving the transformer architecture.
Such studies can be divided into attempts at reducing the number of training data [8,9],
operations, and parameters [10–12], as well as maintaining the locality of an image [13–15].
To reduce the number of training data, the DeiT model [8] applies a competitive convolution-
free transformer with limited training data. This method relies on distillation tokens in
introducing a teacher–student strategy specific to the transformer, allowing students to
pay attention and learn from the teacher. Liu et al. [9] empirically analyzed various ViTs
and showed that convolution with vision transformers is generally much more effective
at generalization to fewer data. They also proposed a self-supervised assistant task to
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normalize the ViT training. A gated multi-layer perceptron (gMLP) [10] applies a simple
network architecture to reduce the numbers of operations and parameters, performing
as well as a transformer used in natural language and vision applications. A gMLP has
experimentally achieved the same level of accuracy but without the self-attention of a ViT,
thus demonstrating the lack of importance of self-attention. By replacing the self-attention
sublayer with a simple linear transform that mixes with the input token, FNet [11] can
accelerate the transformer encoder architecture with a limited decrease in accuracy. In
particular, the training time is significantly reduced by replacing the self-attention with a
Fourier transform without learnable parameters. To solve the problem of high-resolution
image processing, owing to the large number of self-attention operations, PVT [12] reduces
the number of operations of large feature maps using progressively size-reduced pyramids.
To maintain the locality of the image, a Swin transformer [13] applies a shifted window
consisting of several patches within each window, and the self-attention is calculated solely
for this window. This enhances the locality of the transformer because the attention is
calculated only for the region bounded by the window and not for the entire area. CeiT [15]
applies an image-to-token module to extract patches from the low-level features generated
instead of simple tokenization from raw input images. LocalViT [16] not only applies a
depth-wise convolution to the feedforward network to reduce the computational load but
also incorporates a wide range of design choices, such as an activation function, a layer
placement, and an expansion ratio, as a way to provide locality mechanisms.

However, such ViT-based methods do not properly consider the spatial geometric
relationship between local regions or between global and local regions and have limitations
in reducing the number of computations because they depend heavily on the combination
of multi-head attention (MHA). In addition, because ViTs require a large number of training
data, their performance is significantly reduced when trained using small datasets without
a pretraining step.

Contribution of This Work

In this study, to reduce the number of ViT operations and preserve the global and local
features of the image classification, we introduce a new graph head attention (GHA) mechanism
for ViT that replaces MHA with fewer graph heads using the proposed graph generation and
graph attention. From this, we show that GHA works effectively on small datasets and
outperforms SoTA models on conventional datasets. Our contributions are as follows:

• Unlike with other graph-based transformers [17–19], which apply graphs and atten-
tion in parallel and combine the outputs, this study is the first attempt to apply a
graph inside the transformer head and replace MHA with a few GHA mechanisms.
Moreover, there is no need for a class token in patch embedding, and thus the number
of operations can be reduced.

• The links of nodes with low attention scores are excluded using graph pooling, and the
node features are updated by applying GHA boosting to reflect the connectivity of the
neighboring nodes. This process preserves the feature locality and secures the diversity
of the attention. GHA-ViT not only creates tokens with local characteristics but also
learns the relationship between tokens using a graph structure, which eventually
strengthens the locality of the tokens.

• Because the graph structure is constructed using an attention matrix and the node
feature are extracted from a value matrix, additional learning parameters for a graph
construction are not required.

• GHA-ViT shows a promising classification performance with only scratch training
conducted on small and medium-sized datasets and no pre-training on large datasets.

Figure 1 shows the overall architecture of the proposed GHA-ViT model.
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Figure 1. Overall architecture of the proposed GHA-ViT model: (a) GHA encoder layer composed 
of a few graph heads. (b) The attention score is calculated as the scaled dot product of 𝑄 and trans-
posed 𝐾. Then, the graph generator is applied to the attention matrix 𝐴𝑇 for selecting sub-nodes 
and converted into an undirected graph 𝐴𝐷തതതത. (c) After graph generation, the value 𝑉 and an undi-
rected graph 𝐴𝐷തതതത are applied to a graph attention network (GAT). Based on the generated graph 
and node features 𝑉, the GAT gives different importance to the neighboring nodes. 

2. Related Studies 
Many studies have applied graphs to transformers [20–22]. A graph transformer net-

work (GTN) [20] was proposed to exclude noisy connections and include useful connec-
tions to tasks (e.g., metapaths) while learning effective node representations from the new 
graphs in an end-to-end manner to create new graph structures. Graphormer [21] utilizes 
a graph as a transformer to effectively encode the structural graph information into the 
model. With this model, centrality encoding, which can capture the node importance of 
the graph, and spatial encoding, which can capture the structural relationship between 
the nodes, are applied inside the transformer encoder. Yun et al. [22] proposed a GTN 
with another structure, which excludes noisy connections between graph nodes while pre-
serving the effective nodes within the transformer. A graph-oriented transform 
(GraFormer) [23] was proposed for 3D pose estimation. GraFormer not only fuses the in-
formation on the graph nodes by repeatedly stacking graph attention blocks and graph 
convolution layer blocks but can also model the topological structure of the graphs. How-
ever, the aforementioned graph transformer models are inapplicable to vision applica-
tions because they are designed for node classification (e.g., citations, movies, traffic, so-
cial networking, and protein interactions) and human poses rather than for images. 

Graph Vision Transformer Models 
Unlike graph transformers being applied to general node classification, relatively few 

studies have applied graphs to ViTs for vision applications. Shen et al. [17] proposed a 
graph interactive transformer (GiT) for vehicle reidentification. Using this method, the 
GiT is divided into two modules: the original transformer module for extracting powerful 
global patch features and a local correlation graph (LCG) module for extracting local fea-
tures that are distinct within the patch. The output features of the LCG and transformer 
modules are combined and used for downstream tasks. Zheng et al. [18] proposed a graph 
transformer network, which is a graph representation of an entire slide image, as well as 
a method for fusing transformers. The image patches become a set of nodes in the graph, 
and each node is connected by an edge. The constructed graph is put into the transformer 
using a graph convolutional network (GCN) and a pooling layer. The output of the trans-
former is applied to the MLP head for classification. Mesh Graphormer [19] integrated 
graph convolution with self-attention as a way to reconstruct human poses and meshes 
from a single image. It was proven that both the graph convolution and grid features of 
Mesh Graphormer helped improve the performance of a pure transformer. The vision 
graph neural network (ViG) [24] was the first to combine graph structures with images. It 
regards each image patch as a single graph node and employs k-NN to build the relations 

Figure 1. Overall architecture of the proposed GHA-ViT model: (a) GHA encoder layer composed of
a few graph heads. (b) The attention score is calculated as the scaled dot product of Q and transposed
K. Then, the graph generator is applied to the attention matrix AT for selecting sub-nodes and
converted into an undirected graph AD. (c) After graph generation, the value V and an undirected
graph AD are applied to a graph attention network (GAT). Based on the generated graph and node
features V, the GAT gives different importance to the neighboring nodes.

2. Related Studies

Many studies have applied graphs to transformers [20–22]. A graph transformer
network (GTN) [20] was proposed to exclude noisy connections and include useful connec-
tions to tasks (e.g., metapaths) while learning effective node representations from the new
graphs in an end-to-end manner to create new graph structures. Graphormer [21] utilizes
a graph as a transformer to effectively encode the structural graph information into the
model. With this model, centrality encoding, which can capture the node importance of
the graph, and spatial encoding, which can capture the structural relationship between the
nodes, are applied inside the transformer encoder. Yun et al. [22] proposed a GTN with
another structure, which excludes noisy connections between graph nodes while preserving
the effective nodes within the transformer. A graph-oriented transform (GraFormer) [23]
was proposed for 3D pose estimation. GraFormer not only fuses the information on the
graph nodes by repeatedly stacking graph attention blocks and graph convolution layer
blocks but can also model the topological structure of the graphs. However, the afore-
mentioned graph transformer models are inapplicable to vision applications because they
are designed for node classification (e.g., citations, movies, traffic, social networking, and
protein interactions) and human poses rather than for images.

Graph Vision Transformer Models

Unlike graph transformers being applied to general node classification, relatively few
studies have applied graphs to ViTs for vision applications. Shen et al. [17] proposed a
graph interactive transformer (GiT) for vehicle reidentification. Using this method, the
GiT is divided into two modules: the original transformer module for extracting powerful
global patch features and a local correlation graph (LCG) module for extracting local
features that are distinct within the patch. The output features of the LCG and transformer
modules are combined and used for downstream tasks. Zheng et al. [18] proposed a graph
transformer network, which is a graph representation of an entire slide image, as well as a
method for fusing transformers. The image patches become a set of nodes in the graph, and
each node is connected by an edge. The constructed graph is put into the transformer using
a graph convolutional network (GCN) and a pooling layer. The output of the transformer
is applied to the MLP head for classification. Mesh Graphormer [19] integrated graph
convolution with self-attention as a way to reconstruct human poses and meshes from a
single image. It was proven that both the graph convolution and grid features of Mesh
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Graphormer helped improve the performance of a pure transformer. The vision graph
neural network (ViG) [24] was the first to combine graph structures with images. It regards
each image patch as a single graph node and employs k-NN to build the relations between
each image patch. Despite the novelty of this approach, it has the disadvantage of capturing
only the similarities of the image patches without considering the latent image structure.
Graph and optimization-based heterogeneous structured pruning (GOHSP) [25] applied
graphs to optimize the model structure. However, because the interest was only in making
the model structure more lightweight, the learning limitations of the model, such as the
inductive bias, have not been improved.

In both research categories, a graph is not directly applied to the attention, and the
existing attention head and graph are combined. In this case, frequent feature dimension
scaling occurs for the feature combination, and the output is not a true combination of the
global and local features. In addition, because MHA is used as is and a graph is added as a
separate module, the number of operations can be increased. The remainder of this paper
is organized as follows. Section 3 provides a brief description of the ViT and graph neural
networks. We then present the details of the proposed GHA-ViT in terms of the architecture,
training, and testing in Section 4. Section 5 describes the experimental environment and
provides a comprehensive evaluation of the proposed method based on the results of
various experiments. Finally, some concluding remarks are given in Section 6.

3. Preliminaries
3.1. Vision Transformers

Inspired by the success of the transformer scaling used in NLP, the ViT [3] directly
applies a standard transformer to an image with minimal modifications. To achieve this,
the ViT splits the image into P patches (such as a token in NLP) with a feature dimension
of d and feeds a sequence of linear embeddings of these patches as input to the transformer.
After the embedded patch matrix H ∈ RP×d is normalized, it passes through the MHA
module and is fed to the MLP to generate the output of the encoder. The encoder consists
of L layers and is iteratively operated from 1 to L. Finally, the representation y is obtained
using calculations using the prediction head weight Wc ∈ Rd×|C| and bias bc ∈ R|C|,
where |C| is the number of classes.

3.2. Patch Generation

Pure ViTs apply a single convolutional-layer-based image tokenizer to place a given
image into a small patch. They divide an image into several patches according to the given
patch size without a replacement. In this regard, each patch has fundamental difficulty in
securing the locality of the image. It is therefore necessary to learn a significant number of
datasets to understand the inductive bias. In this study, we employed a pooling-layer-based
tokenizer [26] to overcome this limitation. The pooling layer, which is helpful in enhancing
the inductive bias, aids in escaping the big data paradigm.

3.3. Graph Attention Networks

A graph attention network [27] is a convolution-style neural network that can be ap-
plied to graph-structured data using a masked self-attentional layer. Unlike a GCN [28,29],
a GAT assigns different importance to nodes in the same neighboring group and can there-
fore improve the model capacity and help with the interpretation. This structure enables
inductive learning because such learning is possible without access to the entire graph. The
attention score redefines the input data by determining the importance of the neighbor of
node i as follows:

h′
i = σ(αiihiW + ∑j∈N (i) αijhjW) (1)

where N (i) is the number of nodes neighboring node i, α is the normalized attention score,
and W ∈ Rd×d′ is the trainable parameter for the node feature h ∈ Rn×d (n is the number
of nodes). σ is the activation function.
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4. A Graph-Head-Attention-Based ViT
4.1. Graph Head Attention

The attention head is the core idea of a transformer and calculates the attention
between each patch using three matrices: the query (Q), key (K), and value (V). The
attention score is calculated as the scaled dot product of Q and the transposed K, and it
can be executed in parallel. It therefore has an advantage over previous neural networks
in terms of its computational speed. The transformer uses MHA; thus, n heads can learn
different types of attention from the input and obtain a strong attention representation by
combining them [3]. In reality, however, not all the heads of the MHA have the same effect
on the attention performance of the transformer. Instead, only a part of the head affects the
performance, and the remainder focuses on unnecessary parts that negatively affect the
outcome of the final attention [30]. From this perspective, it is clear that MHA is inessential
for a transformer. In this section, we propose a new transformer that can receive more
attention with fewer GHA mechanisms and without the use of multiple heads.

Let X be the input of the encoder layer. Here, X consists of P patches, and the hidden
dimension of the input patch is dh. The i-th patch can then be denoted as xi ∈ Rdh and
X =

[
x1, x2, ···, xp

]
, X ∈ RP×dh . The Q, K, and V matrices have corresponding weight

matrices WQ, WK, and WV ∈ Rd×dh , and Q, K and V can be obtained from the dot product of
input X and the weight matrices. The attention matrix (AT) of the head is calculated as follows:

Q = XWQ

K = XWK, Q, K, V ∈ RP×dh

V = XWV

(2)

AT = so f tmax
(

QKT
√

dh

)
∈ RP×P (3)

4.2. Graph Structure Generation

To provide better generalization and performance in a CNN, the pooling layer plays
an important role in reducing the feature map size and broadening the receptive field.
However, this pooling operation cannot be applied directly to a graph because there is
no local information between the graph nodes. Therefore, inspired by the approaches
described in [31,32], we propose graph pooling containing local information based on a
mask filter. Graph pooling allows us to downsample the graph data and adaptively selects
a subset of nodes to form new, smaller graphs. In this respect, we apply the Top − k function
to the attention matrix AT to select sub-nodes with significant connectivity. Sparse distilled
nodes can be regarded a new form of graph structure derived from an attention matrix. In
other words, we consider the sparse matrix of these nodes to be the adjacency matrix AD
of a graph. In the case of a structure with a total number of patches P and a total number of
layers L, the value of k selected for each layer is increased by (0.8 × P)/L from a minimum
of 10% to a maximum of 80% of the total number of patches.

AD = Top − k(AT, k) (4)

We can now construct a graph consisting of node patches using AD. To consider the
self-edge of the node, AD adds an identity matrix I. However, as shown in Figure 2a,
directed and undirected edges are mixed into the initial graph constructed from AD. In a
transformer, because the attention is created according to interactions with neighboring
patches, a directed edge cannot guarantee the correct patch attention. Therefore, the mixed
graph must be converted into an undirected graph. For this purpose, the following graph
transformation method is proposed: First, as indicated in Equation (5), the upper matrix of
AD and its transpose are added to form a partially undirected graph, as shown in Figure 2b:
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ADtriU = triU(AD) + triU(AD)T (5)
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and (d) undirected graph AD. ∨ indicates OR operation.

Similarly, the lower matrix of AD and its transpose are added to form a partially
undirected graph, as shown in Figure 2c:

ADtriL = triL(AD) + triL(AD)T (6)

Finally, the upper matrix ADtriU and the lower matrix ADtriL generate an undirected
graph AD according to an OR operation ∨, as shown in Figure 2d.

AD = ADtriU ∨ ADtriL (7)

In addition, we employ a graph calibration process to render the graph robust to irregular
connectivity. The graph intensity ADI and graph weight ADw are applied as follows:

AD : =
(

AD + ADI
)
⊙ ADw (8)

where ADI , ADw ∈ RP×P is a trainable parameter and ⊙ indicates a Hadamard product.

4.3. Graph Head Attention Boosting

To improve the accuracy of the image classification, detailed attention can be obtained
using a MHA combination. However, MHA requires the weight matrices WQ, WK, and WV
for each head. Therefore, as the number of heads increases, more learning parameters and a
greater memory and computational time are required. In addition, because the attention of
each head becomes similar when the number of heads exceeds a certain criterion, removing
several attention heads during the test does not significantly affect the performance [30]. To
avoid the problems caused by MHA, we used fewer and demonstrated that the transformer
can operate successfully using only the proposed GHA. To ensure the diversity of attention,
similar to MHA with fewer attention heads, and to emphasize the correlation between
the graph nodes, we apply a GAT [27] to GHA. When using GHA instead of a general
MHA mechanism, securing the diversity of the attention is an extremely important part of
the successful operation of the GHA model. We previously extracted an AD representing
the relationship between the node patches from the attention matrix. Herein, we apply
the GAT to AD to achieve efficient attention computations between the nodes with AD.
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From AD and V, the attention coefficient e between the nodes i and j is obtained using the
learnable weight matrix Wc.

eij = FN
(
Wc · vi, Wc · vj

)
(9)

Here, an FN is a simple single-layer feedforward neural network that transforms the
input into R1×dh ×Rdh×1 → R . The above expression indicates the importance of the
features of the nodes i-j. At this time, j does not indicate all the nodes, only the neighbors
N (i) of node i. Finally, if it passes the softmax function, the following normalized attention

matrix
∼

AD can be calculated:

∼
ADij =

exp
(
eij
)

∑k∈N (i) exp(eik)
(10)

By applying Equation (10) to all the encoder layers, GHA can dynamically consider
the connections between the nodes to ensure the diversity of the node features. The final
GHA is produced by applying the node feature matrix V and the weight matrix Wgat of the

GAT to
∼

AD as follows:

GHA(V) = σ2

( ∼
AD · V · Wgat

)
(11)

where σ2 is a ReLU activation function. The value of GHA is obtained through the process
of Figure 1c. Because the GHA encoder consists of L layers, V is put into the first layer,
but from the second layer, V is changed to hl , the output of each layer. GHA(hl−1) of the
previous layer is again skip-connected (element-wise sum) with input hl−1.

h′
l = GHA(hl−1) + hl−1, l ∈ {1···L} (12)

After h′
l is linearly normalized (LN) again and applied to the FFN, it is similarly skip-

connected to the original h′
l to produce the output of the final encoder block, as shown in

Figure 1a.
hl = FFN

(
h′

l
)
+ h′

l , l ∈ {1···L} (13)

Finally, the output of the last encoder layer L, hL ∈ RP×dh , is passed to the readout
layer. For the readout layer sequence pooling (seq) [26], the mean and max values were
used to consider the diversity [33]. The multi-readout feature Hout is calculated:

Hout = hseq ∥ hmean ∥ hmax (14)

where ∥ denotes the concatenation operation between the node features. The multi-readout
feature Hout, which has passed through the readout, is then classified using an MLP. The
loss function was optimized using soft distillation [34,35].

5. The Dataset and Experimental Results

To evaluate the representation learning ability of the proposed GHA-ViT model, we
compared it with VGG-16 [36], ResNet [37] and MobileNetV2 [38], which are representative
CNN models; ViT-based methods [3,8,26,39]; MLP-based approaches [10,40,41]; and a
graph-based method [24,25]. We proved through our experiments that the performance of
the proposed model is similar to that of other state-of-the-art (SoTA) methods on several
benchmark datasets. In addition, we demonstrated the effect of the graph-generating
module through ablation experiments and demonstrated that a promising performance
can be achieved even if fewer heads are used through attention visualization.
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5.1. The Experimental Setup

Datasets. Various benchmark classification datasets are used to measure the capac-
ity of the model. CIFAR-10/100 [42], MNIST [43], and MNIST-Fashion [44] are used as
small-sized datasets, and ImageNet-1K [45] is used as a medium-sized dataset. Auto-
Augment [46], Rand-Augment [47], and random erasing [48] were used as data augmenta-
tion methods.

Baseline. We set the baseline of the GHA differently to prove that the proposed
GHA-ViT model can reduce the number of head and encoder layers. The basic structure of
the GHA-ViT is based on DeiT [8] because it is inherently capable of learning with a small
dataset. The baseline models are of two types, GHA-Base and GHA-Small, according to the
number of heads and layers. Table 1 summarizes the GHA model used as a baseline. In
addition to GHA-ViT, we used ResNet [37] as the CNN baseline model for the comparative
experiments. The ResNet model has a modified last MLP layer to suit the number of classes
for each experimental dataset. A pure ViT and DeiT are used as the transformer models
for comparison with the GHA-ViT. These methods also have changed last MLP layers to
obtain suitable outputs for each set of experimental data.

Table 1. Details on GHA-ViT model variants. “dim d” means hidden dimensions in encoders, and
“mlp Ratio” means a scaling factor for hidden dimensions of MLP. In GHA-*-L/β, L means number
of layers and β is patch size. * means model size (S: small, B: baseline).

Model Patch Size (β) Head Layers (L) dim d mlp Ratio

GHA-S-7/3 3 × 3 3 7 64 2
GHA-B-7/3 3 × 3 6 7 64 2
GHA-S-14/7 7 × 7 3 14 64 4
GHA-B-14/7 7 × 7 6 14 64 4

5.2. The Experiment Environment and Parameter Settings

We built a GHA-ViT model using the PyTorch framework. NVIDIA 3090Ti was used
for the training. The following parameters were used in the model training. AdamW was
used as the optimizer, and β1 = 0.9 and β1 = 0.999 were set as the values. The batch size was
set to 128 for all training and testing. The initial learning rate was set to 0.005, and cosine
warm-up and decay were used. The epoch was set to 300 for training, the input resolution
of ImageNet was 224 × 224, and a 32 × 32 resolution was used for the small-sized datasets.

5.3. Comparing the Performance with State-of-the-Arts Models

Table 2 presents the performance comparison results of the GHA-ViT model for the
small datasets when applying scratch training SoTA methods. GHA-ViT outperformed
the SoTA methods for all types of small datasets. In addition, the GHA-ViT demonstrated
efficient operation in terms of the learning parameters and operations. GHA-S, which is
a small version of the proposed GHA-ViT, outperformed the SoTA methods on CIFAR-
10 and CIFAR-100. GHA-B showed a 0.1% lower value than ResNet-18 on the MNIST
dataset and a 0.1% lower value than ViT12/4 on the MNIST-F dataset but achieved the best
performance for the CIFAR-10 and CIFAR-100 datasets. Owing to a low inductive bias,
transformer-based models [3,26] achieve an overall low performance in an environment
with small datasets. Compared with ViG-Ti [24], the proposed GHA-B also shows a higher
accuracy of 3.8% for CIFAR-10, 6.0% for CIFAR-100, 0.3% for MNIST, and 0.3% for MNIST-F.
These results confirm that the proposed GHA-ViT models perform well on small-sized
datasets by maintaining the high locality and globality of the images when using the pro-
posed graph structure. In terms of the number of parameters and operations, GHA-S uses
approximately 17-fold fewer parameters than pure ViT-12/4 and approximately 5.8-fold
fewer operations but shows a 4.3% higher accuracy on the CIFAR-100 dataset. GOHSP [25]
demonstrates a 0.6% higher performance than the proposed GHA-B. However, unlike
GHA-B, which applies only scratch training, GOHSP uses a pre-trained ViT model; there-
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fore, a difference of 0.6% indicates that GHA-B can achieve a good performance without
pre-training. In addition, GOHSP requires 5 M more parameters and 1070 additional
units of computational complexity than GHA-S. In comparison with SAL-ViT [49], the
proposed GHA also achieved a higher performance in the trade-off between computational
volume and performance. This shows that the proposed GHA uses graphs to preserve the
locality information more strongly and consume less computational costs than the attention
approximation method. From the overall results, we can see that the proposed GHA-ViT
method guarantees an inductive bias as high as that of a conventional CNN method and
that it operates efficiently, even with a small number of training data.

Table 2. Performance comparison of scratch-trained CNN and transformer-based models on small-
sized datasets. Image resolution is the same at 32 × 32.

Model Params (M) ↓ MACs (M) ↓ Top-1 (%) ↑
CIFAR-10 CIFAR-100 MNIST MNIST-F

VGG-16 [36] 20 155 90.1 70.7 99.7 94.6
ResNet-18 [37] 11 40 90.2 66.4 99.8 94.7
ResNet-34 [37] 21 80 90.5 66.8 99.7 94.7
ResNet-56 [37] 24 130 93.9 71.5 99.7 94.8

ResNet-110 [37] 43 260 94.1 72.6 99.7 95.1
MobileNetV2/0.5 [38] 1 10 84.7 56.3 99.7 93.9
MobileNetV2/2.0 [38] 8 20 91.0 67.4 99.7 95.2

ViT-12/4 † [3] 85 5520 94.8 74.1 99.6 95.4
ViT-Lite-7/16 †† [26] 3 20 78.4 52.8 99.6 93.2
ViT-Lite-7/8 †† [26] 3 60 89.1 67.2 99.6 94.4
ViT-Lite-7/4 †† [26] 3 260 93.5 73.9 99.7 95.1

CVT-7/8 [26] 3 60 89.7 70.1 99.7 94.5
CVT-7/4 [26] 3 250 94.0 76.4 99.7 95.3

CVT-7/3 × 2 [26] 3 1290 95.0 77.7 99.7 95.1
ViG-Ti [24] 6 1230 93.0 74.1 99.4 95.0

GOHSP ††† [25] 10 2020 97.4 - - -
SAL-ViT [49] 5 1601 95.9 77.6 - -

GHA-S-7/3 5 950 95.2 78.4 99.5 95.2
GHA-B-7/3 10 2130 96.8 80.1 99.7 95.3

†: Pure ViT consists of 12 multi-heads and 16 kernel sizes. However, because the image size is 32 × 32, the size of
the kernel is reduced (to 4) in the same way as using other methods. ††: The ViT-Lite version used a different
patch size on a 32 × 32 size input image. Experimental results of the ViT-Lite version are referenced from [26].
†††: The GOHSP used pre-trained weights from training on ImageNet.

We conducted experiments using the ImageNet-1K dataset to demonstrate that the
proposed model works effectively on small- and medium-sized datasets. Table 3 presents
the results of a performance comparison between the proposed GHA-ViT and other SoTA
methods. Compared with ResNet-152, among the CNN-based methods [37], the number
of parameters in the GHA-S model is reduced up to six times over, and the number of
operations is reduced up to 6.4 times over. In terms of accuracy, the GHAS model is slightly
inferior to ResNet-152, whereas the GHA-B model improves the Top-1 accuracy by 3.4%.
In a comparison with ViT-based methods [3,8,14,26,39], in terms of accuracy, the GHA-S
model has an increased Top-1 accuracy compared to that of PoolFormer-S12 under the same
conditions (Param and MACs). In the case of GHA-B, the Top-1 accuracy was the highest
at 81.7%; however, the number of operations was 1.1-fold higher than that of T2T-ViT-14
with a similar accuracy. Compared with MLP-based models [10,40,41], both the GHA-S
and GHA-B models increased their Top-1 accuracy by approximately 2% on gMLP-Ti
and gMLP-S, which have similar numbers of parameters and operations. In addition, in
comparison with ViG methods [24] using graph structures, the numbers of parameters
and operations are slightly higher, whereas the GHA-S and GHA-B models show high
accuracies of 3.8% and 1.3%, respectively. This is because the proposed GHA-ViT model
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can generate a graph structure with a higher efficiency than the graph generation method
used in ViG. When the GHA-B models are compared with GOHSP [25], the GHA models
show a 1.8% higher Top-1 accuracy. In the case of the GHAS model, the Top-1 accuracy
was 2.5% lower than that of GOHSP; however, the parameters and MACs were improved
by 1 M and 1 G in comparison with GOHSP, respectively. In terms of the parameters and
computational complexity, the proposed model is sufficiently competitive with other CNN
and ViT-based approaches.

Table 3. Performance comparison of scratch-trained CNN and transformer-based models on the
ImageNet-1K dataset. Image resolution is the same at 224 × 224.

Model Params (M) ↓ MACs (G) ↓ Top-1 (%) ↑ Top-5 (%) ↑
ResNet-50 [37] 26 4.3 76.2 95.0

ResNet-101 [37] 45 7.9 77.4 95.4
ResNet-152 [37] 60 11.6 78.3 95.9

ViT-S-16 [3] 47 10.1 78.1 -
DeiT-S [8] 22 4.6 79.8 95.0

CCT-14/7 × 2 [26] 22 18.6 80.6 -
T2T-ViT-14 [14] 22 4.8 81.5 -

PoolFormer-S12 [39] 12 1.8 77.2 -
PoolFormer-S24 [39] 30 3.0 80.3 -

Mixer-B /16 [40] 59 12.7 76.4 -
ResMLP-12 [41] 15 3.0 76.6 -

gMLP-Ti [10] 6 1.4 72.3 -
gMLP-S [10] 20 4.5 79.6 -
ViG-Ti [24] 7 1.3 73.9 92.0
ViG-S [24] 23 4.5 80.4 95.2

GOHSP [25] 11 2.8 79.9 -

GHA-S-14/7 10 1.8 77.4 93.5
GHA-B-14/7 29 5.9 81.7 95.8

5.4. Ablation Studies

Graph Structure Generation. To verify the efficiency of the proposed graph generation
method, we observed the difference in accuracy according to the change in the graph
structure on various datasets, as shown in Table 4. Here, Gw/o creates a graph using
only the Top − k method from the attention map, and GtriU creates a graph using an
upper triangular matrix. In addition, GtriL creates a graph using a lower triangular matrix.
When Gall generated graphs considering both the upper and lower triangular matrices,
we obtained a higher accuracy than in the other three cases for all the datasets. As an
interesting aspect of the experiment, the performance when only Gw/o was used was higher
than when only GtriU and GtriL were applied. This is because a complex graph structure
maintains the association between the tokens without artificially breaking them. From the
experiments, we observed that if we create a graph structure by considering only specific
regions of the attention map, the graph cannot accurately reflect the overall characteristics
of the image.

Table 4. Comparison of accuracy (%) according to the methods of graph structure generation.

Dataset Gw/o GtriU GtriL Gall

CIFAR-10 93.2 93.1 92.8 95.2
CIFAR-100 73.8 73.7 73.0 78.4

MNIST 99.4 99.3 99.4 99.5
MNIST-F 94.8 94.7 94.8 95.2
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Effect of the Multi-Readout Feature. To prove the effectiveness of the multi-readout
feature, we conducted a comparison experiment with various readout methods, as shown
in Table 5. Table 5 indicates that the proposed multi-readout feature exhibits the highest
performance for all the small datasets. From the results, we can see that the combined
multi-readout features help classify the final image more effectively than using only the
readout features obtained using simple operations, such as max or average operations.

Type of Graph Convolution. Table 6 presents the results when a representative graph
convolution was applied to GHA-ViT. The GCN [28], GIN [50], and GAT [27] were used as
graph convolution methods. As shown in Table 6, the proposed GHA-ViT method does not
exhibit a large difference in the various graph convolution operations. This indicates that
the GHA inherently has a highly flexible structure. Among the three graph convolutions,
the highest accuracy was obtained when a GAT was used because a GAT assigns a different
importance to patches in the same neighbor group, unlike a GCN or GIN, which treat all
the relationships between patches in the same manner. In this study, a GAT was used as
the default graph convolution when considering the experiment results.

Table 5. Effect of the multi-readout feature. Comparison of accuracy (%) of different readout layers
on small-sized datasets.

Dataset Mean Max Seq Multi

CIFAR-10 93.9 92.5 91.1 95.2
CIFAR-100 73.8 72.1 75.1 78.4

MNIST 99.2 99.4 99.2 99.5
MNIST-F 94.8 93.4 94.9 95.2

Table 6. Accuracy (%) difference for different types of graph convolution. The results from GHA-S
on small-sized datasets.

Dataset GCN GIN GAT

CIFAR-10 94.5 94.9 95.2
CIFAR-100 76.7 77.1 78.4

MNIST 99.4 99.4 99.5
MNIST-F 94.8 94.9 95.2

5.5. Graph Visualization

To simplify describing the suitability of the proposed graph structure generation
method, we visualized the graph structure generated from the GHA-ViT based on a small
(S) model. Figure 3 shows the adjacency matrix created by the GHA-S and the graph
generation method of a ViG [24], which generates an adjacency matrix by directly applying
k-NN to the input image patches. As shown in Figure 3, the graph structure created using
k-NN includes background patches that are unrelated to the target patch. When using
the proposed graph generation method, only patches that have a strong relationship with
the target patch were selected. This indicates that a graph generation method using an
attention map is more effective than an image-based k-NN method. In addition, when we
check the tokens generated by the proposed method, we can see that the tokens around the
target token are selected. This indicates that the proposed graph generation method can
preserve the feature locality.
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Figure 3. Graph structure visualization generated using the proposed graph generation method:
(a) adjacency matrix generated using k-NN of the ViG [24] and (b) adjacency matrix using the GHA-S.
The red line on the adjacency matrix indicates the row corresponding to the target patch (red star and
box area) of the image. Patches on the right side of the adjacency matrix are patches that have the
highest relationship with the target patch (yellow triangle and box area). As can be seen in Figure 3,
the proposed method selects only patches that have a high relationship with the target patch, whereas
the adjacency matrix generated using the k-NN method includes background images that have a low
relationship with the target patch.

6. Conclusions

In this paper, we proposed a new GHA method that can overcome the limitations of
MHA, the core module of ViTs. By converting the attention map operation from a matrix
perspective into a graph perspective, it is possible to significantly reduce the number of
unnecessary operations and parameters while maintaining the accuracy of the image classi-
fication. We also demonstrated that the attention feature space embedded into multiple
heads differed insignificantly from that when fewer graph heads were used. Through
scratch training and experiments using various small datasets, the proposed GHA-ViT
demonstrates promising results without being significantly affected by the number of
datasets. In future studies, to improve the mask filter when constructing a graph and
achieve a more meaningful attention output, we plan to apply a method combining differ-
ent graph-pooling approaches such as graph U-NET [31]. Through such additional studies,
the ViT performance of the GHA structure is expected to be significantly improved in
comparison with that of MHA-based ViT approaches.
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