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Abstract: Obstructive sleep apnea (OSA), a prevalent sleep disorder, is intimately associated with
various other diseases, particularly cardiovascular conditions. The conventional diagnostic method,
nocturnal polysomnography (PSG), despite its widespread use, faces challenges due to its high cost
and prolonged duration. Recent developments in electrocardiogram-based diagnostic techniques
have opened new avenues for addressing these challenges, although they often require a deep
understanding of feature engineering. In this study, we introduce an innovative method for OSA
classification that combines a composite deep convolutional neural network model with a multimodal
strategy for automatic feature extraction. This approach involves transforming the original dataset
into scalogram images that reflect heart rate variability attributes and Gramian angular field matrix
images that reveal temporal characteristics, aiming to enhance the diversity and richness of data
features. The model comprises automatic feature extraction and feature enhancement components
and has been trained and validated on the PhysioNet Apnea-ECG database. The experimental
results demonstrate the model’s exceptional performance in diagnosing OSA, achieving an accuracy
of 96.37%, a sensitivity of 94.67%, a specificity of 97.44%, and an AUC of 0.96. These outcomes
underscore the potential of our proposed model as an efficient, accurate, and convenient tool for
OSA diagnosis.

Keywords: obstructive sleep apnea; diagnosis; continuous wavelet transform; Gramian angular field;
hybrid dataset; convolutional neural network; automatic feature extraction

1. Introduction

Obstructive sleep apnea (OSA) is a widely recognized respiratory disorder marked by
recurrent obstruction and collapse of the upper airway during sleep, resulting in periodic
hypoxia. In its severe manifestation, OSA is implicated in the etiology of several comorbidi-
ties, including, but not limited to, systemic hypertension, coronary artery disease, cardiac
arrhythmias, and cerebrovascular pathologies [1]. Characteristically, subjects suffering
from OSA exhibit more than 30 episodes of apnea per seven-hour sleep cycle. Each episode
is defined by a cessation of nasal and oral airflow for a duration exceeding ten seconds,
constituting a clinical manifestation recognized as a complete apnea event.

Sleep apnea (SA) manifests in three distinct forms: obstructive sleep apnea (OSA),
central sleep apnea (CSA), and mixed sleep apnea (MSA), each distinguished by character-
istic respiratory patterns [2]. OSA results from physical obstruction of the upper airway,
whereas CSA originates from the brain’s inability to transmit the requisite signals to the
respiratory muscles. Globally, OSA affects approximately one billion individuals [3]. The
dataset utilized in this study predominantly focuses on OSA, thereby directing the primary
emphasis of this research towards the classification of OSA.

If not addressed, OSA can precipitate a range of health complications, encompassing
disturbances like snoring-induced awakenings, migraines, afternoon lethargy, cognitive
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concentration challenges, memory deficits, and psychological issues, including anxiety and
depression [4]. Polysomnography (PSG) stands as the gold standard for OSA diagnosis,
encompassing the monitoring of various physiological parameters, such as airflow, res-
piratory effort, electroencephalography (EEG), electrocardiography (ECG), and oxygen
saturation (SaO2) during sleep [5]. However, the precision of PSG is counterbalanced
by its demands for extensive time and specialized expertise, presenting hurdles in terms
of financial cost, time consumption, and potential patient discomfort. Creating accurate,
affordable, and easily accessible technology for identifying and tracking sleep events is
essential in lessening cardiovascular, psychiatric, and various other health risks associated
with sleep apnea. Recent advancements in single-channel signal analysis, including the use
of ECG, SaO2, and respiratory signals, are being pursued to reduce diagnostic expenses
and improve user-friendliness [6–10]. The utilization of ECG is particularly noteworthy
due to its pivotal role in OSA pathology and its compatibility with wearable technology
applications. While multi-lead ECGs offer a comprehensive view of cardiac activity, cap-
turing heart functions and potential anomalies more thoroughly, single-lead ECGs hold
advantages for long-term continuous monitoring essential for the early detection and man-
agement of OSA. Particularly in the realm of home medical monitoring, single-lead ECGs
stand out for their portability and lower cost. By employing refined algorithms and feature
extraction methods, it is possible to somewhat offset the informational limitations inherent
in single-lead signals.

Initially, traditional machine learning algorithms were employed for OSA detection.
Nevertheless, given the intricacy of physiological signals and the constrained extraction
capabilities inherent in these algorithms, recent scholarly attention has pivoted towards so-
phisticated deep learning models. Leveraging the advancements in computational prowess,
deep learning algorithms have outperformed their traditional machine learning counter-
parts in autonomously extracting significant features. Several automated OSA detection
methodologies have been introduced to alleviate the technical and economic constraints as-
sociated with conventional PSG. Research indicates a close correlation between OSA events
and signal fluctuations, involving variations in heart rate variability (HRV), alterations
in the morphology of ECG signals, and changes in the duration of the QRS complex [11].
Experiments have shown that algorithms integrating morphological variability features
tend to yield superior results [12]. Furthermore, in the process of OSA detection, the focus
is typically placed on the characteristics of HRV.

Drawing on a multimodal strategy, data from multiple sources can sometimes comple-
ment each other, revealing patterns not visible when using single data types in isolation.
This approach assists in generating more reliable predictions. In the deep learning field,
multimodality refers to the use of diverse forms of information as inputs for deep learning
models [13]. This study proposes the multi-feature automatic extraction for detecting OSA
(MFAE-OSA) method. Addressing the issue of insufficient generalization capabilities of
a single model for multiple features [14], this study proposes the utilization of a hybrid
model for the extraction of multiple features, achieving high-precision detection when
multiple features are inputted. The contributions of this research are as follows:

(1) Utilization of a range of input data and application of continuous wavelet transform
(CWT) to produce scalogram images from ECG signals that highlight HRV features.
In addition to HRV, the research also uses the Gramian angular field (GAF) technique
to convert ECG signals into images that reflect temporal features. This methodology
serves to expand the feature set and enrich the input data. Such integration of various
techniques offers new avenues for feature selection in the detection of OSA, enhancing
the multidimensional analysis capabilities of the study;

(2) A hybrid ensemble CNN model is designed for OSA detection. The model integrates
both residual and inception architectural frameworks and employs a soft voting
mechanism with gentle weighting for evaluation. By utilizing diverse model archi-
tectures for automatic feature extraction and enhancement, the system is capable of
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concurrently processing multi-feature datasets. This approach eliminates the need for
manual feature extraction, thereby reducing the potential for human error;

(3) The proposed method has the potential to be accurate and efficient for diagnosing
OSA. The findings indicate that the suggested classifier can attain an accuracy of
96.37%, a sensitivity of 94.67%, a specificity of 97.44%, and an AUC of 0.96 on the
hybrid image datasets.

The rest of this article is organized as follows: Section 2 presents the related work.
Section 3 describes the dataset and preprocessing. Section 4 presents the materials and
methods. Section 5 describes the experiment and result. Finally, we discuss and conclude
the paper in Section 6.

2. Related Work

Over the past few decades, numerous techniques for identifying OSA through ECG
signals have been developed. According to Ucak et al. [15], apneic episodes are related
to changes in the RR interval in the ECG signal. Valavan et al. [16] presented a detection
method that utilizes support vector machines (SVMs) employing a grid search algorithm.
This technique is trained using features derived from ECG data, specifically focusing on
heart rate variability (HRV). Viswabhargav et al. [17] proposed that employing a sparse
residual entropy feature within a radial basis function (RBF) kernel-based support vector
machine (SVM) classifier enhances performance, as evidenced by the recorded accuracy,
sensitivity, and specificity values of 78.07%, 78.01%, and 78.13%, respectively. Sharma
et al. [12] used Hermite expansion coefficients for the analysis of one-minute ECG signals
and applied a least-squares support vector machine (LS-SVM) classifier equipped with a
Gaussian radial basis function (RBF) kernel. This approach resulted in an achieved accuracy
of 83.4%. Kunyang et al. [18] introduced a model for sleep apnea (SA) classification based on
neural networks (NNs) integrated with hidden Markov models (HMMs). Their framework
employed a hybrid approach combining sparse autoencoders, neural networks, and HMMs.
The classification accuracy of this model for detected apnea events reached 84.7%. However,
it is noted that stacked sparse autoencoders primarily serve as an unsupervised feature
transformation mechanism and may not effectively extract features.

Tripathy et al. [19] proposed an innovative method for the analysis of cardiopulmonary
(CP) signals, integrating fast adaptive bivariate empirical mode decomposition (EMD) with
crossing time–frequency analysis. This approach constructs the CP signal by amalgamating
the heart rate (HR) and respiratory rate (RR) components derived from the ECG signal. By
employing a combination of the SVM and the random forest classifiers within a 10-fold
cross-validation setup, their approach resulted in average sensitivity and specificity rates
of 82.27% and 78.67%, respectively.

A multitude of ECG signal attributes utilized for classification in these methodologies
can be ascertained through manual determination. The extraction of the QRS complex
waves is predominantly conducted using manually selected features. Predominantly,
contemporary approaches depend on nonlinear attributes sourced from physiological data,
alongside frequency and time domain representations, necessitating considerable expertise
and interpretative knowledge. This often necessitates extensive manual preprocessing.
Addressing this, Wang et al. [20] proposed an approach employing an augmented LeNet-
5 convolutional neural network (CNN) for OSA classification, automating the feature
extraction and reaching 87.6% accuracy.

Advancements in image-centric research have markedly amplified the application
of deep learning in the realms of medical imaging and signal processing. Deep neural
networks (DNNs) have demonstrated efficacy in the field of ECG analysis. In [21], the study
utilized spectrogram signatures obtained from ECGs through the fast Fourier transform
(FFT) for classifying OSA, achieving a detection accuracy of 92.6%. In [22], the authors
presented a method for detecting OSA using a DNN that processes ECG scalograms created
through wavelet transform, attaining a per-minute class accuracy of 86.22%. Using fused
scalogram and spectrogram images, Niroshana et al. [23] proposed that 2D-CNNs can
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perform OSA detection on fused spectral images with, on average, 92.4% accuracy, 92.3%
recall, and 92.6% specificity.

Although fusion image methods have been proposed, these predominantly focus on
the heart rate variability (HRV) characteristics post-image transformation. In contrast, our
method extends beyond this focus by incorporating Gramian angular field (GAF) matrix
images, which encapsulate temporal characteristics, thereby enriching the feature set. This
approach offers a multifaceted perspective for OSA detection by providing a diverse set
of features. Moreover, while previous studies often rely on single-model approaches, our
proposed hybrid ensemble model is capable of processing different features simultaneously.
Furthermore, the accuracy of this integrated learning approach is expected to surpass that
of individual classifiers due to the collective performance enhancement.

3. Dataset and Preprocessing
3.1. Dataset

For the purpose of obtaining dependable outcomes, our study utilized the PhysioNet
Apnea-ECG database (available at: https://physionet.org/content/apnea-ecg/1.0.0/ ac-
cessed on 1 January 2024), publicly made accessible by Philipps University [24]. Table 1
delineates the characteristics of single-lead ECG signals as found in the database:

Table 1. Parameters of single-lead ECG signals.

Parameter Description

Signal Type ECG signal from a single lead
Number of Signals 70

Sampling Frequency 100 Hz
Frequency Range 0.05–40 Hz
Signal Duration 420–600 min

The dataset includes specialist annotations for every one-minute interval of the ECG
signal [24,25]. Each segment of signals was labeled and classified as either “normal breath-
ing” (N) or “impaired breathing” (A), without differentiating hypopnea.

3.2. Signal Preprocessing

ECG signals gathered from monitoring frequently encounter different types of noise
interference. To enhance analytical quality, these signals necessitate denoising. Standard
practice involves filtering the signal to remove unwanted frequency components, maintain-
ing its intrinsic structure. The amplitude range of unprocessed, noisy ECG signals spans
from −2 V to +2 V. In signal processing, if the filter order is insufficient, there is a risk of
losing parts of the output signal. In scenarios where the cutoff frequency is set too low,
some ECG signals may become irretrievable. For mitigating high-frequency disruptions,
ECG signals were filtered using a fourth-order Butterworth low-pass filter, set at a cutoff
frequency of 40 Hz [26]. Baseline drift, characterized by the deviation of the signal’s base
axis, alters its normal baseline trajectory. Muscle noise, often generated during physical
exertion, can similarly impact signal integrity. In medical settings, the use of a series of
leads and adhesive electrode patches is essential, generally affixed to predetermined sites
on the patient’s torso, arms, and legs. These electrodes are adept at detecting the subtle
electrical currents emanating with each cardiac cycle, thus facilitating the acquisition of the
patient’s ECG data. The interaction between the electrodes and the patient’s movements
can introduce muscle noise into these data due to the physical connectivity and motion.
To combat this challenge, contemporary methodologies have been developed to diminish
muscle noise interference through specific advancements in material science. An example
is the development by J. Cao et al. [27] of a nano-LM-based, highly durable, and stretch-
able electrodes, designed for the prolonged dynamic monitoring of human health. Signal
preprocessing techniques are also applied as a strategy to reduce noise impact. Owing to
the availability of public data, this study employs filtering techniques to reduce the impact
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of noise. To address these issues, a bandpass filter, specifically a fourth-order filter with a
passband of 0.5 Hz to 15 Hz, was employed [28]. Considering the presence of biologically
implausible data points, a median filter was utilized to eliminate isolated noise peaks and
align adjacent values more closely with the true signal [29]. Additionally, due to individual
variations in ECG signals, a z-score function was applied to standardize, facilitating more
consistent analysis. This function is defined as Equation (1):

z =
x − µ

σ
, (1)

where µ represents the mean and σ denotes its variance.
Figure 1 illustrates the signal transformation process during preprocessing. Shown

in red circle, not only does the electrocardiogram become smoother after processing, but
the amplitude of the P and T waves that did not change significantly increases, making
subsequent analysis easier. The samples used in this study were one-minute segments.
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Figure 1. Method for the preprocessing of ECG segments. (a) Segment of the original ECG. (b) De-
noised and scaled signal part.

The samples used in this study were one-minute segments. Although the minimum
duration of an OSA episode is 10 s, the probability of an OSA occurrence being split
increases as the time window for segmenting the entire record is reduced. This division
results in a decrease in the proportion of the sample’s effective area, thereby escalating
the difficulty of OSA detection. Conversely, if the time window for sample segmentation
is increased, the proportion of OSA occurrence within the effective area of the sample
is similarly reduced. Consequently, this study employs a one-minute time window for
data segmentation, which is strategically chosen to optimally mitigate the aforementioned
issues. This time frame is considered to effectively balance the need for detailed data
capture against the risk of fragmenting critical OSA episodes.

4. Materials and Methods

The design of the proposed system is illustrated in Figure 2. Two hybrid datasets
were created from the denoised dataset. On the preprocessed data, CWT and GAF were
employed to generate the scalogram and GAF matrix image datasets, respectively. After
training a composite model with a hybrid dataset, the result was obtained via a soft
voting mechanism.

4.1. Generate Multimodal Images

Transforming electrocardiogram (ECG) signals into hybrid two-dimensional images
offers considerable benefits by enriching feature diversity and capturing multidimensional
data. This process allows for the visual representation of inherent temporal, frequency,
and time–frequency information embedded within one-dimensional signals, thereby en-
hancing their feature representation. Nonetheless, this transformation introduces potential
challenges. The conversion from signal to image might result in the loss of information,
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making the selection of appropriate conversion methodologies and parameters critical to
ensure that the transformed images accurately mirror the characteristics of the original
signals. Inappropriate conversion techniques may lead to the omission of essential features,
underscoring the importance of choosing the correct conversion approach. Therefore, we
selected the CWT and GAF as our two conversion methods.
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4.1.1. Scalogram Image Datasets via CWT

Time–frequency representations of signals are frequently used to interpret the infor-
mation contained in physiological, linguistic, and geophysical signals. This technique is
adept at discerning complex, multidimensional, and irregular signal characteristics. In
contexts involving irregular data, the continuous wavelet transform (CWT) demonstrates
notable proficiency [30]. Given the multifrequency nature of ECG signals, transforming
them into the time–frequency domain is crucial for effective feature extraction. The CWT,
widely recognized as a preeminent tool in time–frequency analysis, utilizes a spectrum of
wavelet functions to dissect signals within the time–frequency domain.

CWT not only adopts, but also advances the localizing principle of the short-time
Fourier transform (STFT). Unlike STFT, CWT is capable of offering high temporal resolu-
tion and low frequency resolution at higher frequencies, and conversely, high frequency
resolution and low temporal resolution at lower frequencies. This is achieved through
the adjustment of scale and translation parameters [31]. Consequently, scale maps gener-
ated by CWT provide a more nuanced and precise representation of signals across both
low- and high-frequency domains. When applied to the irregular ECG signal, the CWT
reveals a scale map with varying intensities of light and dark, thereby facilitating the clear
identification of apnea signals. The CWT is expressed by Equation (2):

Cx(s, τ) =
1√

s

∫ ∞

−∞
x(t)φ∗

(
t − τ

s

)
dt, (2)

where s represents a scale parameter, τ is a translation parameter, and φ(t) denotes the
wavelet function. The scale [29] can be converted into frequency using Equation (3).

F =
Fc × fs

s
, (3)
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where Fc represents the center frequency of φ(t), while fs is the sampling frequency
of x(t) [31].

The impact of time–frequency is dependent on the selection of the mother wavelet. We
used the Morlet wavelet [32] because it closely resembles the changing trend of the ECG
and is extensively applied to the analysis of ECG signals, which is defined as Equation (4):

φ(t) =
1√
bπ

e−( t
b )

2ej2πFct
, (4)

Parameter b is a bandwidth parameter, which is a constant in the equation. The
scalogram image generation process is shown in Figure 3.
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4.1.2. GAF Matrix Image Datasets via GAF

Gramian angle summation field (GASF) and Gramian angle difference field (GADF)
are two variants of the GAF algorithm used to encode time-series signals as images [33].
Transferring the time series to the polar coordinate space so that it has time characteristics
is the central idea here.

To ascertain the scaled value
∼
X, it is necessary to ensure that the scaled signal X falls

within the interval [−1, 1]. For n real-valued observations in a time series x = x1, x2, . . . , xn,
normalized from −1 to 1 as Equation (5):

∼
X =

xi − max(x) + (xi − min(x))
max(x)− min(x)

, (5)

This method yields angular values within the [0,π] range, where the radius is equiva-
lent to the timestamp, as described in Equation (6).{

ϕ = arccos(
∼
x i),−1 ≤ ∼

x i ≤ 1,
∼
x i ∈

∼
X

r = ti
N , ti ∈ N

, (6)

The time signature is denoted by ti in the above equation, and the range of the polar
coordinate is standardized by a constant, N. Following the transformation into a polar
coordinate system, the triangular differences between each point are employed to determine
the temporal correlations over various time intervals.

The definition of the GASF and GADF is given in Equation (7).{
GASF = cos

(
ϕi + ϕj

)
GADF = sin

(
ϕi − ϕj

) , (7)
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The GAF matrix image generation process is shown in Figure 4.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 20 
 

 

The time signature is denoted by 𝑡 in the above equation, and the range of the polar 
coordinate is standardized by a constant, N. Following the transformation into a polar 
coordinate system, the triangular differences between each point are employed to 
determine the temporal correlations over various time intervals. 

The definition of the GASF and GADF is given in Equation (7). ቊ𝐺𝐴𝑆𝐹 = cos (𝜙 + 𝜙)𝐺𝐴𝐷𝐹 = sin (𝜙 − 𝜙), (7) 

The GAF matrix image generation process is shown in Figure 4. 
Upon the creation of the image, it is essential to resize it to dimensions of (224 × 224). 

Figures 3 and 4 display the scale maps and GAF matrix images derived from ECG 
segments. Figure 3 demonstrates the process of scalogram generation for the ECG, 
transformed utilizing the CWT technique. In contrast, Figure 4 showcases the procedure 
for converting ECGs into matrix images via the GAF method. As previously stated, a 
dataset comprising 27,282 samples for training and 6821 samples for testing was compiled. 

 
Figure 4. Generation process of GAF matrix image datasets. 

4.2. Multi-Feature Automatic Extraction Network 
The ResNet [34] model, with its residual block architecture, presents numerous 

advantages in feature extraction. The residual learning mechanism facilitates the training 
of deep networks and addresses the vanishing gradient problem by allowing direct 
gradient propagation through skip connections. This structure enables the capture of 
more complex features within the data and ensures the integrity of feature information 
throughout the network, thereby enhancing the effectiveness of feature extraction and 
offering robust generalization capabilities. Consequently, when extracting features from 
datasets with multifaceted characteristics, our multi-feature automatic extraction network 
OSA-residual model is constructed based on the classical structure of residual blocks, as 
depicted in Figure 5. 

Figure 4. Generation process of GAF matrix image datasets.

Upon the creation of the image, it is essential to resize it to dimensions of (224 × 224).
Figures 3 and 4 display the scale maps and GAF matrix images derived from ECG segments.
Figure 3 demonstrates the process of scalogram generation for the ECG, transformed
utilizing the CWT technique. In contrast, Figure 4 showcases the procedure for converting
ECGs into matrix images via the GAF method. As previously stated, a dataset comprising
27,282 samples for training and 6821 samples for testing was compiled.

4.2. Multi-Feature Automatic Extraction Network

The ResNet [34] model, with its residual block architecture, presents numerous ad-
vantages in feature extraction. The residual learning mechanism facilitates the training of
deep networks and addresses the vanishing gradient problem by allowing direct gradient
propagation through skip connections. This structure enables the capture of more complex
features within the data and ensures the integrity of feature information throughout the
network, thereby enhancing the effectiveness of feature extraction and offering robust
generalization capabilities. Consequently, when extracting features from datasets with
multifaceted characteristics, our multi-feature automatic extraction network OSA-residual
model is constructed based on the classical structure of residual blocks, as depicted in
Figure 5.

The model uses an RGB three-channel image signal with a data size of 224 × 224 as the
input. After 32 7 × 7 convolution filters, a ReLU activation layer, and a 3 × 3 MaxPooling,
the processed signal is sent to the residual blocks, as depicted in Figure 6. The residual
module is used to restore the data dimension, and a single residual module is composed
of two successive convolutional layers, followed by a 1 × 1 convolutional layer used for
skip connection purposes. A ReLU activation layer is added to each convolutional layer in
the residual block to aggregate the feature maps from the block. Thereafter, the resultant
output from each residual block is transmitted to subsequent residual blocks. There are
four residual blocks with different numbers of filters in the model, and the number f of
filters is 64, 128, 256, and 512 in sequence. To prevent overfitting in the model, a dropout
layer with a rate of 0.5 was added. Dropout layers are employed in DNN models to reduce
overfitting and decrease errors in generalization [35].
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4.3. Extract Feature Enhancement Network

In the MFAE-OSA architecture, an extract feature enhancement network was inte-
grated. This aims to enhance the generalization capabilities; a departure from the singular
network form typically employed for feature extraction is adopted, incorporating addi-
tional network architectures. Moreover, owing to the deployment of two distinct networks
for feature extraction, the resultant feature representations exhibit variance. This diversifica-
tion and enhancement of features serve to enrich the overall feature landscape, contributing
to a more robust and comprehensive feature-extraction process.

Should separate network enhancements be applied to each type, the overall complexity
of the structure would escalate. Therefore, opting for the reinforcement of a singular type
emerges as the optimal strategy. Consequently, this approach focuses exclusively on the
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enhancement of features derived from CWT images, which are more representative in the
context of OSA diagnosis. This targeted enhancement is aimed at balancing the intricacy of
the model with the efficacy of the feature-strengthening process.

The inception block [36], as a structural unit within deep learning networks, is charac-
terized by its multiple parallel convolutional and pooling operations, enabling it to process
features of varying scales concurrently. This capability allows for the capture of multi-level
details in images, thereby enhancing the model’s ability to recognize features. Consequently,
our extract feature enhancement network OSA-inception model was constructed based on
the classical architecture of the inception block, leveraging its inherent strengths in detailed
feature capture and recognition for improved model performance in OSA detection, as
depicted in Figure 6.

The inception block, designed to avoid block alignment issues, confines its filter sizes
to 1 × 1, 3 × 3, and 5 × 5. The 1 × 1 convolution serves a dual purpose: it reduces
dimensionality and rectifies linear activation through ReLU. This structure’s modularity
enables facile adjustments and expansions. OSA-Inception integrates nine inception struc-
tural blocks, encompassing convolutional, maximum pooling, dense, and supplementary
layers. Sequential to the 32 convolutional filters of 7 × 7, a ReLU activation layer is em-
ployed. Figure 6 illustrates the sequential passage of the output through various inception
structures.

Feature extraction from the input feature response map is accomplished in four ways:
through 3 × 3 pooling and convolution kernels of three different scales: 1 × 1, 3 × 3,
and 5 × 5. By amalgamating the attributes of each channel, the feature extraction process
became more efficient. The specifics of the filter parameters are outlined in Table 2.

Table 2. Number of filters in the 2D-inception-CNN.

Inception f1 f2 f3 f4 f5 f6

Inception 1 64 96 128 16 32 32
Inception 2 128 128 256 32 64 64
Inception 3 192 96 128 16 32 32
Inception 4 160 112 224 24 46 64
Inception 5 128 128 256 24 48 64
Inception 6 112 144 288 32 64 64
Inception 7 256 160 320 32 128 128
Inception 8 256 160 320 32 128 128
Inception 9 384 192 384 48 96 64

MaxPooling with dotted blocks is executed twice within the architecture, specifically
between Inception 2 and Inception 3, and again between Inception 7 and Inception 8, to
mitigate the risk of model overfitting. Subsequently, the output from the final residual
block is directed to a 0.5 dropout layer, further safeguarding against overfitting.

4.4. Ensemble Block

Ensemble learning [37] refers to the method of integrating multiple models through a
particular strategy and enhancing the precision of decision-making through group decision-
making. Effective ensemble learning, in addition to requiring that the learning effect of
each base learner be excellent, also requires that the difference between each base learner
be as large as possible. Consequently, ensemble learning has a significant impact when
combined with a model with a large variance. The performance of an ensemble learner will
be superior to that of a solitary classifier. Several methods can be used to integrate learning,
but this article utilizes the voting mechanism. The method of voting represents a relatively
less complex approach within the realm of ensemble learning, capable of reducing the
overall computational load. Hard voting, a commonly employed technique, operates on
the principle of majority rule. In contrast, soft voting assigns varying weights to different
models. Given the presence of four classification models in this study, the possibility of a tie
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scenario under hard voting is plausible. Therefore, soft voting is preferentially chosen due
to its capacity to weigh the contributions of each model, thereby ensuring a more nuanced
and balanced decision-making process. Equation (8) was used to determine the result, and
the sum of weights for each category was computed.

Value
(

Label = ‘N′ or ‘A′) = ∑ wi, (8)

where wi represents the weight associated with each model’s result, as determined through
empirical experimentation. Figure 7 depicts the specific weight assignment for each model.
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5. Experiment and Result
5.1. Experiment Settings

Existing methods in OSA deep learning detection using single-lead ECG signals
extract RR intervals and R-peak amplitudes from ECGs and use one-dimensional deep
learning models for classification. In addition, the ECG time-series signal is transformed
into a spectrogram and is classified using a two-dimensional deep learning model. To
assess the effectiveness of the proposed approach, we selected six widely recognized
models for comparative analysis: LeNet-5 [20], AlexNet [22], VGG16 [38], OSA-Residual,
OSA-Inception, and LSTM [39]. The required feature method for classification with a
one-dimensional deep learning model was derived from [20], with the 5 min segment
replaced by a 1 min segment.

5.2. Performance Evaluation

The present study introduces a composite image-centric approach for the detection of
OSA in one-minute segments of ECG. The effectiveness of this newly introduced method
was assessed by comparing it with current techniques, using performance metrics including
overall accuracy (Ac), sensitivity (Sn), specificity (Sp), and area under the curve (AUC) [40],
as determined via Equations (9)–(11):

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Sensitivity =
TP

TP + FN
, (10)
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Specificity =
TN

TN + FP
, (11)

In this context, FP and TP are used to signify false positives and true positives,
respectively, while FN and TN are employed to indicate false negatives and true nega-
tives, respectively.

Additionally, given that deep learning models necessitate larger data volumes com-
pared with other machine learning approaches, reliance on a singular dataset might prove
inadequate for validation objectives. Consequently, this study employed a 10-fold cross-
validation strategy [41] to affirm the reliability and robustness of the proposed model. This
entailed the random partitioning of the training dataset into ten distinct subsets, with each
subset serving alternately as training and validation sets.

5.3. Comparison of 1D CNN Model and 2D CNN Model

For comparative analysis, six standard deep learning models were utilized, with
variations in the input data type. The outcomes of this comparison are presented in
Table 3. Notably, due to its limited scale, the LeNet-5 model is not applicable for input data
comprising CWT and GAF types in the two-dimensional CNN model; thus, it was excluded
from the comparison. Additionally, the LSTM network, a typical model exemplifying
temporal characteristics, was incorporated for comparison against the temporal-type data
of GAF.

Table 3. Comparison results of 1D CNN model and 2D CNN model with different input types.

Input Types Models Ac Se Sp AUC

RR-interval
R-Peaks

LeNet-5 82.43% 72.95% 88.09% 0.81
AlexNet 85.02% 77.89% 89.28% 0.84
VGG16 86.06% 80.19% 89.56% 0.85

OSA-Inception 86.42% 80.95% 89.68% 0.85
OSA-Residual 82.49% 74.12% 87.48% 0.81

LSTM 62.70% 45.52% 71.02% 0.50

CWT

AlexNet 87.83% 83.30% 90.54% 0.87
VGG16 90.08% 86.25% 92.37% 0.89

OSA-Inception 90.65% 84.68% 94.21% 0.89
OSA-Residual 91.18% 82.10% 94.55% 0.90

GASF

AlexNet 62.90% 42.28% 71.22% 0.50
VGG16 62.90% 42.28% 71.22% 0.50

OSA-Inception 62.90% 42.28% 71.22% 0.50
OSA-Residual 72.23% 61.72% 78.29% 0.70

GADF

AlexNet 62.45% 45.30% 72.37% 0.50
VGG16 62.45% 45.30% 72.37% 0.50

OSA-Inception 62.45% 45.30% 72.37% 0.50
OSA-Residual 75.46% 70.57% 79.68% 0.75

As depicted in Table 3, the results of the two-dimensional CNN models gener-
ally surpassed those of the one-dimensional CNN models, particularly when manually
extracting features following the conversion of time series data into images. Specifi-
cally, the OSA-Inception model and OSA-Residual model demonstrated superior per-
formance when processing a CWT time–frequency map as the input, achieving accuracies
of 90.65% and 91.18%, respectively. Consequently, the OSA-Inception model was selected
for feature enhancement.

Within the GAF type category, the initial three models exhibited limited effectiveness
in classification. This limitation was attributed to the minimal distinction between the
converted images of normal and apnea categories in the GAF series type changes, impeding
these models from acquiring additional feature information through continuous learning
and feature extraction. However, the OSA-Residual model network was an exception. Its
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unique residual structure facilitated the direct transmission of features from one layer to the
subsequent layer, enabling more comprehensive feature extraction. Thus, the OSA-Residual
model was capable of accurately classifying data within the GAF category. Although its
efficiency was somewhat lower compared with the CWT type, it still outperformed the
LSTM model, which also possessed temporal characteristics.

The two-dimensional models demonstrate a heightened capacity for extracting ef-
fective features. Moreover, the image conversion method effectively retained the feature
values of the original signal to the greatest extent, minimizing errors associated with man-
ual feature extraction. Therefore, these four models were selected for the ensemble, aligning
with the study’s focus on maximizing feature extraction accuracy and efficiency.

5.4. Robustness Evaluation and Ablation Experiment

Given that the MFAE-OSA model encompasses multiple inputs and constitutes a
composite framework, it necessitates the execution of ablation studies to substantiate
its effectiveness. This involves conducting experiments on each individual module of
MFAE-OSA independently, as well as incrementally adding modules for comprehensive
ablation analysis. This systematic approach allows for a thorough evaluation of each
component’s contribution to the overall model performance, ensuring a robust validation
of the MFAE-OSA architecture.

Figure 8 illustrates the distribution of validation accuracy among the seven models,
alongside the implemented 10-fold cross-validation for the proposed model. A notable
divergence in the results’ variance was observed in the initial four models, aligning with
the operational principles of the soft voting mechanism, which effectively leveraged large
variance characteristics for optimal benefit. The comparative consistency in validation
accuracy across all folds suggested the model’s robust adaptability to novel datasets.
Figure 9 presents the aggregate accuracy, sensitivity, and specificity for the seven models
subjected to cross-validation.
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The 10-fold cross-validation demonstrated that the outcomes of the proposed model
were relatively concentrated and exhibited the highest value in comparison with the
other models. In the seven experimental setups, the average accuracies were recorded at
71.55%, 89.14%, 72.27%, 71.95%, 83.94%, 84.31%, and 90.31%, respectively. Correspond-
ingly, the average sensitivities were 55.50%, 84.42%, 60.30%, 58.06%, 86.28%, 66.41%, and
79.52%, respectively.

Furthermore, the average specificities were as 78.71%, 91.92%, 79.32%, 80.14%, 94.59%,
95.18%, and 94.74%, respectively. Although the average value of the proposed model’s
sensitivity was not high, it had the highest value among these performance indicators.

The efficacy of the MFAE-OSA architecture was demonstrably affirmed, with the em-
bedded soft voting mechanism proving not only effective, but also significantly enhancing
performance. This validation underscores the architectural soundness of MFAE-OSA and
the strategic incorporation of the soft voting system, contributing markedly to its overall
functional proficiency.

5.5. MFAE-OSA Model Results

In Table 4, the results of the proposed model are compared with the single best model.

Table 4. Comparative analysis of the proposed model and the sub-model.

Input Types Models Ac Se Sp AUC

CWT OSA-Inception 92.80% 89.45% 94.80% 0.92
CWT OSA-Residual 91.31% 87.87% 93.38% 0.91
GASF OSA-Residual 74.26% 63.74% 80.59% 0.72
GADF OSA-Residual 79.27% 72.46% 83.36% 0.78
Hybrid MFAE-OSA 96.37% 94.67% 97.44% 0.96

The proposed model demonstrated the highest performance, achieving an accuracy
of 96.37%, a sensitivity of 94.67%, and a specificity of 97.44%. Compared with other in-
dividual models, this model’s efficacy was vastly superior. Owing to its high sensitivity,
the incidence of missed detection was low. In the application scenario of disease detec-
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tion, it is crucial to detect the disease to the greatest extent feasible. In addition, it had a
high specificity, indicating a low false-positive detection rate, which is crucial for disease
detection. Sensitivity and specificity contain inherent contradictions, so they will be de-
termined in conjunction with the ROC curve. The ROC curve is shown in Figure 10. The
proposed model achieved the highest AUC score of 0.96, indicating that it had the best
performance overall.
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5.6. Comparison with Existing Methods

Given the frequent utilization of the Apnea-ECG database in apnea diagnostics, a mul-
titude of automated obstructive sleep apnea (OSA) detection techniques are documented in
the literature. In this context, the efficacy of our approach was benchmarked against other
methodologies that also employ the Apnea-ECG database. Table 5 presents a comparative
analysis of the per-segment OSA detection capabilities of the proposed strategy relative to
various extant methods.

This demonstrates a significant performance boost using the same dataset. When
using OSA-Inception and OSA-Residual to evaluate the data type with a format of CWT,
our singular OSA-Inception and OSA-Residual also outperform Singh et al.’s [22] model,
with accuracy increases of 6.6% and 5.11%, respectively. Wang et al.’s [20] model was 8.5%
more accurate than the comparative LeNet-5 experiment in Table 3. This is because the
samples used in the comparison experiment were one-minute segments, whereas Wang’s
samples were five-minute segments. This demonstrates that increasing the sample size
can enhance precision. Our method processes better with one-minute sample segments in
disease diagnosis, as shorter sample lengths are more advantageous for real-time diagnosis.
Considering that a lower false negative rate is more significant in the detection of apnea, the
sensitivity of the classifier is particularly important. It was determined that our proposed
model had the highest sensitivity, which was at least 2.37% higher. Moreover, our model
outperformed the comparison model in terms of specificity by at least 2.64%. Although
we propose that using a single GAF image type model does not work well, soft voting
ensemble learning substantially improved the accuracy, sensitivity, and specificity of the
final model, in addition to providing the time characteristics of the GAF image types.
Compared with the original work [18], the network structure settings were modified, the
input of GASF-type data was added, and the voting mechanism was modified so that the
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accuracy, sensitivity, and specificity increased by 5.44%, 10.99%, and 2.15% respectively. It
can be seen that accuracy and sensitivity have vastly improved.

Table 5. Comparison of the proposed approach and previous methods for segment-based
OSA detection.

Reference Method Ac Se Sp

Viswabhargav et al. [17] SVM 78.10% 78.00% 78.10%

Song et al. [6] HMM-SVM 86.20% 82.60% 88.40%

Sharma et al. [12] LS-SVM 83.40% 79.50% 88.40%

Kunyang et al. [18] EDR signal NN and HMM 84.70% 88.90% 82.10%

Wang et al. [20] LeNet-5 90.93% 83.10% 90.30%

Singh et al. [22] CNN, Scalogram 86.20% 90.00% 83.80%

Isuru Niroshana et al. [23] CNN, Fused images 92.40% 92.30% 92.60%

Zhou et al. [14] Ensembled, Hybrid 90.93% 83.68% 95.29%

Proposed

OSA-Inception, CWT Scalogram 92.80% 89.45% 94.80%

OSA-Residual, CWT Scalogram 91.31% 87.87% 93.38%

OSA-Residual, GASF 74.26% 63.74% 80.59%

OSA-Residual, GADF 79.27% 72.46% 83.36%

MFAE-OSA, Hybrid 96.37% 94.67% 97.44%

The efficacy of the MFAE-OSA algorithm presented is attributed to the synergistic
integration of residual and inception architectures. The residual architecture efficiently facil-
itates the direct transfer of information across layers, supporting in-depth training, whereas
the inception architecture adeptly captures image features at different scales, thereby aug-
menting the network’s expressive power and operational efficiency. The amalgamation of
these frameworks results in a robust, adaptable, and efficient network configuration. This
configuration enhances the capability for feature extraction, improves the flow of gradients,
boosts the adaptability of the network, and maintains a balance between efficiency and
performance, culminating in superior performance outcomes.

This observation indirectly corroborates the role of the diverse dataset provided in
our study, which serves a complementary function in the feature extraction process. Such a
dataset enhances the overall efficacy of feature extraction by integrating varied data types,
thereby enriching the model’s input and potentially leading to more robust outcomes.

6. Discussion and Conclusions

This study aims to develop a hybrid image-based OSA detection method, integrating
multimodal strategies with a composed model based on residual and inception structures.
By transforming 1 min electrocardiogram segments, a hybrid image collection was gen-
erated to enhance the diversity of the dataset’s features. Our algorithm capitalizes on
the diversified advantages of multi-model feature extraction to identify the incidence of
OSA, outperforming existing automatic OSA detection methods in accuracy and other
performance metrics. The incorporation of diverse inputs enabled the model to apprehend
physiological information across multiple dimensions. HRV features delineate the cardiac
response to apnea events, while temporal features indicate the chronological order of
these events. This amalgamation of information provides a more enriched feature set for
the identification of OSA. The features chosen are complementary, allowing the model
to evaluate information from various perspectives with greater precision. Moreover, the
variety in feature inputs not only bolsters the model’s capacity for generalization, but also
mitigates the risk of overfitting. In essence, introducing these varied feature inputs into the
model has not only elevated the precision of OSA detection.



Sensors 2024, 24, 1159 17 of 19

Instead of relying on a singular feature input, this study employs a broader feature
selection strategy that includes scalogram images with HRV features obtained through
CWT transformation and matrix images with temporal features acquired via GAF transfor-
mation. This approach offers a wider research direction for high-precision OSA diagnosis in
multi-feature input scenarios. In contrast to traditional OSA detection research, which may
involve the manual extraction of fundamental features from R-wave central electrocardio-
gram signals and require high-level expertise, our study eschews such methods to eliminate
errors from manual feature extraction and constraints due to the need for advanced skills.

In our study, we converted electrocardiogram signals into hybrid two-dimensional
images, further facilitating automatic feature extraction. This provides an efficient and reli-
able method for OSA diagnosis. The method used for images is not limited by the duration
of the signal, and the resizing feature allows for adapting the signal to a specific size. This
indicates that the method exhibits high resistance to interference and transferability, even
in the presence of complex signals.

Using hybrid image datasets, our model achieved 96.3% accuracy, 94.67% sensitiv-
ity, 97.44% specificity, and an AUC score of 0.96. In comparison with other studies, the
proposed model had superior performance for one-minute sample classification without
requiring manual feature extraction, which is dependent on the expertise and specialized
knowledge of the researchers, thus helping to avert potential errors. Since our model
operates on a single-lead ECG channel basis, it is applicable to wearable electronic devices
or smart home medical monitoring, which is less expensive and more convenient than
conventional sleep monitoring. This holds substantial importance for monitoring sleep
apnea and initiating early therapeutic interventions. Furthermore, the foundation of the
proposed model lies in the diagnosis of OSA through the utilization of ECG signals. As
a result, ECG signals can serve the purpose of detecting other cardiovascular conditions,
such as arrhythmias, conduction abnormalities, acute coronary syndromes, ventricular
hypertrophy, and hypertrophy. This has several benefits for telemedicine.

Nevertheless, our methodology is subject to several limitations. Owing to the
Apnea-ECG dataset’s annotation in one-minute intervals, there exists the possibility
of apnea/hypopnea events spanning two such intervals, or a single interval containing
multiple events. Moreover, the dataset lacks differentiation between hypopnea and apnea
events in its annotations, categorizing all events under obstructive or mixed types. This
limitation suggests that our proposed method might not effectively discriminate between
hypopnea and apnea or detect central events. To mitigate these concerns, future research
should consider employing datasets with finer temporal annotations and distinguishing
among various types of respiratory pause events. Multi-modal data integration is under
consideration, involving the incorporation of various data sources, such as oxygen satura-
tion (SpO2), respiratory effort, and heart rate variability (HRV), along with ECG signals.
Combining these data sources can provide a more holistic view of physiological changes
during sleep events, enhancing the model’s capability to distinguish between hypopnea
and apnea. Furthermore, the development of algorithms capable of accommodating diverse
time intervals and identifying mixed-type events is crucial for enhancing generalizability.
Through such enhancements, the model’s proficiency in detecting and categorizing com-
plex respiratory events within actual clinical settings can be improved, thereby facilitating
more effective diagnosis and treatment of OSA.
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