Development of a Simultaneous Quantification Method for Multiple Modes of Nitrogen in Leaf Models Using Near-Infrared Spectroscopic Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Leaf Model Solution
2.1.2. Wet Leaf Model
2.1.3. Dry Leaf Model
2.2. Methods
2.2.1. NIR Spectroscopic Measurements
2.2.2. MIR Spectroscopic Measurements
2.2.3. Analytical Methods
- Spectral treatments
- Two-dimensional spectral analysis
- PLSR analysis
3. Results and Discussion
3.1. NIR Spectral Characteristics of Leaf Models Using Filter Paper as Structural Part of the Leaf Model
3.1.1. NIR Spectral Characteristics of Leaf Models
3.1.2. Nitrogen Content Determination Using the PRSR Method
3.2. Extraction of NIR Spectral Bands for Quantification of Nitrogen Components
3.3. NIR Spectroscopic Determination of Proteinic and Nitrate Nitrogen Contents
3.3.1. Prediction of Proteinic and Nitrate Nitrogen Contents in the Dry Leaf Model
3.3.2. Prediction of Proteinic and Nitrate Nitrogen Contents in the Wet Leaf Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fukatsu, T.; Hirafuji, M. Field monitoring using sensor-nodes with a web server. J. Robot. Mechatron. 2005, 17, 164–172. [Google Scholar] [CrossRef]
- Kameoka, T.; Hashimoto, A. A Sensing Approach to Fruit-Growing. In Wireless Sensor Networks and Ecological Monitoring, 1st ed.; Subhas, C., Mukhopadhyay., S.C., Jiang, J.-A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 3, pp. 217–246. [Google Scholar]
- Fukatsu, T.; Endo, G.; Ito, Y.; Kobayashi, K.; Saito, Y. Mobile robotic field server for field-scale and fruit-scale crop monitoring. Agric. Inf. Res. 2014, 23, 140–153. [Google Scholar]
- Fantin Irudaya Raj, E.; Appadurai, M.; Athiappan, K. Precision Farming in Modern Agriculture. In Smart Agriculture Automation Using Advanced Technologies, 1st ed.; Choudhury, A., Biswas, A., Singh, T.P., Ghosh, S.K., Eds.; Springer: Singapore, 2021; pp. 61–87. [Google Scholar]
- Cariou, C.; Moiroux-Arvis, L.; Pinet, F.; Chanet, J.-P. Internet of underground things in agriculture 4.0: Challenges, applications and perspectives. Sensors 2023, 23, 4058. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Zheng, B.; Chapman, S.C.; Potgieter, A.B.; Jordan, D.R.; Wang, X.; Singh, A.K.; Singh, A.; Hirafuji, M.; Ninomiya, S.; et al. A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics 2019, 2019, 1525874. [Google Scholar] [CrossRef]
- Peña, M.A.; Brenning, A. Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile. Remote Sens. Environ. 2015, 171, 234–244. [Google Scholar] [CrossRef]
- Moreno-Martínez, A.; Camps-Valls, G.; Kattge, J.; Robinson, N.; Reichstein, M.; van Bodegom, P.; Kramer, K.; Cornelissen, J.H.C.; Reich, P.; Bahn, M.; et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 2018, 218, 69–88. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming—Brief review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef]
- Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-time machine-learning based crop/weed detection and classification for variable-rate spraying in precision agriculture. In Proceedings of the 7th International Conference on Electrical and Electronics Engineering, Antalya, Turkey, 14–16 April 2020. [Google Scholar]
- Zhuqing, D.; Zhang, R.; Kan, Z. Quality and safety inspection of food and agricultural products by LabView Image Vision. Food Anal. Methods 2015, 8, 290–301. [Google Scholar]
- Tsukahara, A.; Kameoka, S.; Ito, R.; Hashimoto, A.; Kameoka, T. Evaluation of freshness of lettuce using multi-spectroscopic sensing and machine learning. J. Appl. Bot. Food Qual. 2020, 93, 136–148. [Google Scholar]
- Kameoka, T.; Hashimoto, A. Effective application of ICT in food and agricultural sector—Optical sensing is mainly described. IEICE Trans. Commun. 2015, 98, 1741–1748. [Google Scholar] [CrossRef]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine Vision Systems in Precision Agriculture for Crop Farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Azadni, R.; Rajabipour, A.; Jamshidi, B.; Omid, M. New approach for rapid estimation of leaf nitrogen, phosphorus, and potassium contents in apple-trees using Vis/NIR spectroscopy based on wavelength selection coupled with machine learning. Comput. Electron. Agric. 2023, 207, 107746. [Google Scholar] [CrossRef]
- Miao, X.X.; Miao, Y.; Liu, Y.; Tao, S.; Zheng, H.; Wang, J.M.; Wang, W.Q.; Tang, Q.Y. Measurement of nitrogen content in rice plant using near infrared spectroscopy combined with different PLS algorithms. Spectrochim. Acta Part A 2023, 284, 121733. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshoue, D.; Li, C. Sensing technologies for precision specialty crop production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
- Gümüş, B.; Balaban, M.Ö.; Ünlüsayın, M. Machine vision applications to aquatic foods: A review. Turk. J. Fish. Aquatic Sic. 2011, 11, 171–181. [Google Scholar]
- Böhner, N.; Hösl, F.; Rieblinger, K.; Danzl, W. Effect of retail display illumination and headspace oxygen concentration on cured boiled sausages. Food Packag. Shelf Life 2014, 1, 131–139. [Google Scholar] [CrossRef]
- Hashimoto, A.; Muramatsu, T.; Suehara, K.; Kameoka, S.; Kameoka, T. Color evaluation of images acquired using open platform camera and mini-spectrometer under natural lighting conditions. Food Packag. Shelf Life 2017, 14, 26–33. [Google Scholar] [CrossRef]
- Li, L.; Guo, J.; Wang, Q.; Wang, J.; Liu, Y.; Shi, Y. Design and experiment of a portable near-infrared spectroscopy device for convenient prediction of leaf chlorophyll content. Sensors 2023, 23, 8585. [Google Scholar] [CrossRef]
- Kameoka, S.; Isoda, S.; Hashimoto, A.; Ito, R.; Miyamoto, S.; Wada, G.; Watanabe, N.; Yamakami, T.; Suzuki, K.; Kameoka, T. A wireless sensor network for growth environment measurement and multi-band optical sensing to diagnose tree vigor. Sensors 2017, 17, 966. [Google Scholar] [CrossRef]
- Singh, G.; Yogi, K.K. Internet of things-based device/robots in agriculture 4.0. In Sustainable Communication Networks and Application, 1st ed.; Karrupusamy, P., Balas, V.E., Shi, Y., Eds.; Springer: Singapore, 2022; pp. 87–102. [Google Scholar]
- Muramatsu, T.; Suehara, K.; Kameoka, T.; Notaguchi, M.; Hashimoto, A. Development of multiband optical sensing method for phenotyping of tomatoes in cultivation site. Food Res. 2020, 4, 132–137. [Google Scholar] [CrossRef]
- Hashimoto, A.; Kihara, D.; Suehara, K.; Kameoka, T.; Kumon, T. Simple and rapid measurement of nitrate nitrogen content in plant using mid-infrared spectroscopic method. In Proceedings of the 8th Asian Conference for Information Technology in Agriculture, Taipei, Taiwan, 3–6 September 2012. [Google Scholar]
- Hashimoto, A.; Niwa, T.; Yamamura, T.; Suehara, K.; Kanou, M.; Kameoka, T.; Kumon, T.; Hosoi, K. X-ray fluorescent and mid-infrared spectroscopic analysis of tomato leaves. In Proceedings of the SICE-ICASE International Joint Conference 2006, Busan, Republic of Korea, 18–21 October 2006. [Google Scholar]
- Huck, C.W. New trend in instrumentation of NIR Spectroscopy—Miniaturization. In Near-Infrared Spectroscopy, 1st ed.; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B., Eds.; Springer: Singapore, 2021; pp. 193–210. [Google Scholar]
- Priori, S.; Mzid, N.; Pascucci, S.; Pignatti, S.; Casa, R. Performance of a portable FT-NIR MEMS spectrometer to predict soil features. Soil Syst. 2022, 6, 66. [Google Scholar] [CrossRef]
- Guo, J.; Huang, H.; He, X.; Cai, J.; Zeng, Z.; Ma, C.; Lü, E.; Shen, Q.; Liu, Y. Improving the detection accuracy of the nitrogen content of fresh tea leaves by combining FT-NIR with moisture removal method. Food Chem. 2023, 405, 134905. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Soothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Noda, I. Two-Dimensional Infrared Spectroscopy. J. Am. Chem. Soc. 1989, 111, 8116–8118. [Google Scholar] [CrossRef]
- Noda, I.; Dowrey, A.E.; Marcott, C.; Story, G.M.; Ozaki, Y. Generalized two-dimensional correlation spectroscopy. Appl. Spectrosc. 2000, 54, 236A–248A. [Google Scholar] [CrossRef]
- Morita, S. 2DShige. Available online: https://sites.google.com/view/shigemorita/home/2dshige (accessed on 11 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, A.; Suehara, K.-i.; Kameoka, T. Development of a Simultaneous Quantification Method for Multiple Modes of Nitrogen in Leaf Models Using Near-Infrared Spectroscopic Measurement. Sensors 2024, 24, 1160. https://doi.org/10.3390/s24041160
Hashimoto A, Suehara K-i, Kameoka T. Development of a Simultaneous Quantification Method for Multiple Modes of Nitrogen in Leaf Models Using Near-Infrared Spectroscopic Measurement. Sensors. 2024; 24(4):1160. https://doi.org/10.3390/s24041160
Chicago/Turabian StyleHashimoto, Atsushi, Ken-ichiro Suehara, and Takaharu Kameoka. 2024. "Development of a Simultaneous Quantification Method for Multiple Modes of Nitrogen in Leaf Models Using Near-Infrared Spectroscopic Measurement" Sensors 24, no. 4: 1160. https://doi.org/10.3390/s24041160
APA StyleHashimoto, A., Suehara, K. -i., & Kameoka, T. (2024). Development of a Simultaneous Quantification Method for Multiple Modes of Nitrogen in Leaf Models Using Near-Infrared Spectroscopic Measurement. Sensors, 24(4), 1160. https://doi.org/10.3390/s24041160