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Abstract: Respiratory diseases represent a significant global burden, necessitating efficient diagnostic
methods for timely intervention. Digital biomarkers based on audio, acoustics, and sound from the
upper and lower respiratory system, as well as the voice, have emerged as valuable indicators of
respiratory functionality. Recent advancements in machine learning (ML) algorithms offer promising
avenues for the identification and diagnosis of respiratory diseases through the analysis and process-
ing of such audio-based biomarkers. An ever-increasing number of studies employ ML techniques to
extract meaningful information from audio biomarkers. Beyond disease identification, these studies
explore diverse aspects such as the recognition of cough sounds amidst environmental noise, the
analysis of respiratory sounds to detect respiratory symptoms like wheezes and crackles, as well
as the analysis of the voice/speech for the evaluation of human voice abnormalities. To provide a
more in-depth analysis, this review examines 75 relevant audio analysis studies across three distinct
areas of concern based on respiratory diseases’ symptoms: (a) cough detection, (b) lower respiratory
symptoms identification, and (c) diagnostics from the voice and speech. Furthermore, publicly avail-
able datasets commonly utilized in this domain are presented. It is observed that research trends are
influenced by the pandemic, with a surge in studies on COVID-19 diagnosis, mobile data acquisition,
and remote diagnosis systems.

Keywords: respiratory symptoms; respiratory disease; audio analysis; signal processing; machine
learning; digital biomarkers; audio-based biomarkers; systematic review

1. Introduction

Respiratory diseases mainly affect the lungs and, consequently, the vocal cords, lead-
ing to changes in an individual’s voice timbre. The sounds produced during coughing
and breathing, known as respiratory sounds, can provide valuable information for the
identification and diagnosis of respiratory diseases. With the continuous improvement
of technology, these sounds can be easily recorded nowadays with minimal invasiveness,
making them effective diagnostic tools [1]. Moreover, in recent years, advances in ML
have also enabled the development of software tools capable of the automated analysis of
respiratory sounds. These tools employ algorithms to examine the sound signals generated
by the human respiratory system, identifying patterns indicative of specific diseases.

Several attributes of respiratory sounds contribute to the diagnosis of respiratory
diseases. For instance, concerning the upper respiratory sounds, the type (dry or wet)
and the duration of the cough could indicate a possible respiratory disease [2]. On the
other hand, in the lower respiratory, the presence of crackles, wheezes, and stridor in
respiratory sounds often suggests that an underlying respiratory disease may be present. In
addition, voice and speech sounds offer important clues regarding respiratory diseases. For
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example, voice pitch and volume changes could indicate an early sign of conditions such
as laryngeal carcinoma and vocal cord dysfunction [3]. ML algorithms can leverage these
sound characteristics, analyze the changes, and provide diagnostic tools for such conditions.

In recent years, research on the cough and respiratory sounds classification has gained
momentum, particularly in 2020 and 2021 due to the emergence of the COVID-19 pandemic.
As a direct consequence of the spread of the COVID-19 respiratory disease, researchers
directed their focus on the classification of body sounds, which could be useful biomarkers
of the disease. Regarding the cough domain, two main sub-problems arose. The first
pertains to the differentiation of coughs based on the underlying conditions such as Asthma,
chronic obstructive pulmonary disease (COPD), and COVID-19 [4–6], whereas the second
is related to the identification of individual cough instances in a voice recording [7]. As far
as respiratory sound classification is concerned, the field has significantly less attraction but
great popularity nonetheless. The current focus is on replacing the standard auscultation
procedure performed by the doctor with remote auscultation utilizing an IoT device [1].

It is worth noting that the integration of ML and Artificial Intelligence (AI) into the
analysis of these sounds also allows for revolutionizing, in a groundbreaking manner,
the identification and diagnosis of respiratory diseases. AI leads to the development of
automated intelligent systems, which in turn, offer quick and accurate diagnoses, reducing
the need for invasive procedures, enabling early treatment of respiratory conditions, and
providing continuous monitoring of the patient, even remotely. As a result, these systems
have the potential to reduce the burden on healthcare systems by providing diagnosis-
assistive tools for medical experts as well as valuable information and data to stakeholders
that can influence healthcare on a large scale.

However, there are still several limitations regarding automated and effective respira-
tory disease identification. Therefore, the primary objective of this literature review is to
summarize recent studies, identify the current approaches and trends, and pave the way
for future advancements in the domain. Three types of respiratory audio biomarkers were
identified to be the most commonly used among studies for the identification of respiratory
diseases and patient health monitoring with the use of ML techniques. These are cough
sounds, respiratory sounds, and voice/speech sounds. Consequently, this three-in-one
review exclusively focuses on each biomarker area separately, examines the relevant studies,
and provides a critical presentation of their findings.

Research Questions. Specifically, the main research questions we examined that led us
to conduct this systematic review, are the following: (a) what are the trends in respiratory
disease identification over the last 5 years, and which are the domain-specific studies, (b) is
it feasible to detect respiratory diseases or their symptoms using machine learning-based
methods, digital signal processing, and feature engineering, and (c) what are the most
prominent methods and datasets for the respiratory diseases’ identification? In response to
those questions, we carried out our study, which answers the aforementioned concerns.
Specifically, answers to (a) and (b) are intended for business, healthcare providers, research,
and policy-makers, while answering question (c) via our research, we pave the path for ML
research regarding the specific domain of smart respiratory disease identification.

The remaining sections of this document are organized as follows: Section 2 outlines
the methodology employed for selecting the studies included in this review. Sections 3–5
present the findings related to each audio biomarker, respectively. Next, Section 6 describes
the publicly available datasets that are most frequently utilized in the studies reviewed.
Moreover, Section 7 offers an overview of the findings and discusses our remarks, and
finally, Section 8 concludes the review.

2. Methods

To select relevant studies, we utilized Google Scholar and PubMed as the primary
resources. Due to the various variations of respiratory diseases, a single query would yield
a substantial number of studies. Moreover, studies with low relevance to the topic could be
collected, as similar terminology is also used in purely medicine-related studies. Therefore,
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queries were constructed for each of the signature respiratory sounds, and the research
results were derived from papers published until 30 November 2022.

The first signature sound commonly used for respiratory disease identification and
diagnosis is a cough. Numerous studies on cough recognition as well as disease iden-
tification from cough sounds exist. To include studies from both sub-topics, a single
search was performed on the mentioned search engines, using various keywords such as
“cough detection”, “cough classification”, “cough sounds”, “machine learning”, and other
performance-related keywords like “specificity”, “accuracy”, and “sensitivity”. The 1st
query in the code snippet below corresponds to the search conducted for cough-related
studies and is structured to cover all possible combinations of the specified words.

1. ("cough detection" OR "cough classification" OR "cough sounds"
OR "cough audio" OR "cough analysis")
AND

("specificity" OR "accuracy" OR "sensitivity" OR "f1"
OR "true positive" OR "AUC" or "MFCC")

Breath and lung sounds on the other hand, whether captured by stethoscopes, micro-
phones, or mobile devices, constitute another set of signature sounds relevant to respiratory
diseases. These sounds mainly correspond to symptoms from the lower respiratory tract.
Again, in this case, the same search engines were utilized, employing keywords such
as “respiratory disease classification”, “lung sound classification”, “respiratory sound”,
“machine learning”, and performance-related keywords similar to those used for the cough
search. Despite the specificity of individual searches, a significant number of studies were
returned. The 2nd query related to that subject can be seen in the code snippet below.

2. ("respiratory disease classification"
OR "respiratory sound classification"
OR "lung sound classification" OR "respiratory sound")
AND

("ML" OR "machine learning")
AND

("accuracy" OR "AUC" OR "f1" OR "sensitivity")

Last but not least, the human voice is also one of the biomarkers that can be used in
the identification and diagnosis of respiratory diseases. However, creating a query was
deemed non-optimal due to the extensive use of the human voice in the identification of
various diseases using machine-learning techniques. Consequently, a manual search was
conducted to identify appropriate studies that are relevant to our review topic.

After gathering the results from the search queries, a filtering phase was employed.
Duplicate results were removed, and the analysis primarily focused on full papers. Ad-
ditionally, studies published prior to 2017 were excluded. Furthermore, studies with a
minimal number of citations were excluded, as this indicates a potential lack of proper
evaluation by the research community. Following the filtering phase, the final set of stud-
ies included in our review was constructed by manually assessing titles, abstracts, and
conclusions. Through a rigorous process, highly informative and significant studies were
deliberately selected.

The flowchart in Figure 1 describes the sources, numbers, and fates of all identified
and screened records in this review. After all the filtering processes a total of 75 studies
were found to be eligible to be added in this review. The distribution of these publications
based on the domain of interest is illustrated in Figure 2.
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Figure 1. Review process flowchart.

Figure 2. Domain distribution of the included studies.

To provide insight into the retrieval of low-relevance studies, Figure 3 compares
the available studies on the classification of neurodegenerative diseases and respiratory
diseases using voice recordings and ML. Specifically, the 3rd query, which can be seen
below relates to the retrieval of the neurodegenerative studies. It is observed that there is a
significant difference between the number of studies that are related to neurodegenerative
diseases’ identification compared to the ones that correspond to respiratory diseases. In
particular, the number of studies that are published during the same time period akin
to neurodegenerative diseases is almost double those that are relevant to respiratory
diseases’ analysis.

3. ("Alzheimer" OR "Parkinson’s disease" OR "bradykinesia")
AND

("speech signal processing" OR "speech sounds"
OR "Voice Recognition" OR "speech classification")
AND

("classification" OR "accuracy")
AND

("machine learning" OR "deep learning")
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Figure 3. Number of neurodegenerative studies vs. number of respiratory studies.

Regarding the cough domain, Figure 4 presents a visual depiction of the distribution of
the included studies across different publication years, providing a graphical representation
of the distribution of studies across each different publishing year. Notably, there is
an observable increasing trend in the number of domain-related studies, which can be
attributed to the ongoing COVID-19 pandemic. Additionally, it is worth mentioning that,
although some studies may currently have relatively low citation counts, there appears to
be a promising trend indicating potential future citations, considering the review’s scope
extends up until November 2022.

Figure 4. Distribution of cough-related studies across publication years.

In the respiratory sounds classification domain, Figure 5 provides a graphical repre-
sentation of the distribution of studies included in this review based on their respective
publication years. The Figure illustrates a consistently growing and sustained interest in
this topic over the past few years, indicating a continuous and stable research focus in this
area since 2019.

Figure 5. Distribution of respiratory sounds related studies across publication years.
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Finally, Figure 6 visually presents the distribution of studies related to voice/speech
analysis for the identification of respiratory diseases, categorized based on their respective
publication years, within the context of this review. Notably, there is a noticeable rise in the
number of related studies in 2021, possibly attributed to the COVID-19 pandemic, which
likely spurred increased research focus on respiratory disease identification and related
voice/speech analysis.

Figure 6. Distribution of voice/speech analysis related studies across publication years.

3. Cough Sounds Analysis for Upper Respiratory Symptoms

In this Section, a review of the analysis of cough sounds and the outcomes that this
process yields using ML methodology takes place. In particular, we start by describing
how the proper datasets were created that were used by the corresponding studies for
automated intelligent analysis. Afterward, the focus of these studies regarding the analysis
of the sounds or the identification of diseases is outlined, and subsequently, the algorithmic
approach for both data processing and AI modeling of how the studies conducted their
analysis is described and some significant results are presented. Table 1 summarizes the
studies that are presented in this Section.

Table 1. Cough sounds analysis related papers.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[8] 2020 Cough
Detection

Private-110
subjects

(various resp.
diseases)

Various
Microphones

XGBoost, RF,
DT

Feature
Extraction

from cough
events

Acc: 93%
Sens: 97%
Spec: 95

[9] 2020
Disease Iden-

tification:
COVID-19

Private-2660
subjects

Web App,
Various

Microphones

CNN w/1
Poisson

biomarker
and

3 pre-trained
ResNet50

MFCCs AUC: 97%

[10] 2020
Disease Iden-

tification:
COVID-19

ESC-50,
Audioset-

Cohort
n.s.

Various
Microphones

CNN,
VGG16 MFCCs

Accuracies:
COVID/Non-
COVID: 70%
Cough/Non-

Cough:
90%

[11] 2021
Disease Iden-

tification:
COVID-19

Private-8380
positive,

6041 negative
instances

N/A 2D CNN EMD and
MFCCs AUC: 97%
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Table 1. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[12] 2021
Disease Iden-

tification:
COVID-19

Coswara,
Virufy-
Cohort

n.s.

Web App,
Various

Microphones

SVM, KVM,
RF

Common
Short Term

Features and
MFCCs

AUC: 90%

[13] 2021
Disease Iden-

tification:
COVID-19

Private-240
acoustic
data—

60 normal,
20 COVID-19

subjects

Smartphone LSTM (RNN)

Spec.
Centroid,

Spec. roll-off,
ZCS, MFCC

(+∆∆)

Acc: 97%, F1:
97.9%

[6] 2021
Disease Iden-

tification:
COVID-19

Private-
Cohort

n.s.

Crowdsourced
audio

recordings,
Various

Microphones

XGBoost Feature
Extraction Acc: 97%

[14] 2020

Cough
Detection,

Disease Iden-
tification:

COVID-19

ESC-50 and
Private-543
Recordings

(96 bronchitis,
130 pertussis,
70 COVID-19,
247 Normal)

N/A

1 CNN for
Cough

Classification
and 3 CNNs

for
COVID-19
detection

Mel-
spectrograms

to images

Accuracies:
Cough

Detection:
95.5%

COVID-19
Identifica-

tion:
92.64%

[15] 2021

Disease Iden-
tification:

Bronchitis,
Asthma,

COVID-19,
Healthy

N/A N/A
Fully

connected
NN layer

Questionnaire
and Cough

Embeddings
Acc: 95.04%

[16] 2022

Cough
Detection,

Disease Iden-
tification:

COVID-19

Virufy-
Cohort

n.s.
N/A DNN

Windowing
and Feature
Extraction

Acc: 97.5%

[17] 2022 Cough
Detection

Corp
Dataset-42
volunteers

(18 CAP,
4 asthma,
17 COPD,

3 other resp.
illness)

Digital
Recorder CNN MFCCs Acc: 99.64%,

IoU: 0.89

[18] 2022 Cough
Detection

Public/
Private-3228
cough and

480,780
non-cough

sounds

Various
Microphones GB Classifier

Feature
Extraction

and manual
selection

Acc: 99.6%
(Validation

only on
hospital data

from
children)
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Table 1. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[19] 2022

Cough
Detection,

Disease Iden-
tification:

COVID-19

Cambridge,
Coswara,

Virufy,
NoCoCoDa -
Cohort n.s.

Various
Microphones

Adaboost,
MLP,

XGBoost,
Gboost, LR,

K-NN,
HGBoost to

MCDM

Feature
Extraction Acc: 85%

[5] 2022

Disease Iden-
tification:

COPD,
AECOPD

Private-177
volunteers
(78 COPD,

86 AECOPD,
13 not used)

Various
Microphones N/A Feature

Extraction

ROC Curve:
0.89,

agreement
w/ clinical

study

[20] 2013

Symptom
Identifica-
tion: Wet

Cough, Dry
Cough

Private-78
Patients

High-end
Microphones LR Feature

Extraction
Sens: 84%,
Spec: 76%

[21] 2020 Cough
Detection

Private-26
healthy

participants
Smartphone K-NN, DT,

RF, SVM

Feature
Extraction

and Selection
F1 Score: 88%

[22] 2019 Cough
Detection

Private-20
min of cough

sounds
N/A

Hidden
Markov
Models

Single and
Multiple

Energy Band
AUC: 0.844

[23] 2020 Cough
Detection

Private-94
adults Smartphone CNN Mel

spectrograms

Accuracies:
Cough

Detection:
99.7% Sex
Classifica-

tion:
74.8%

[24] 2018

Cough
Detection,

Disease Iden-
tification:

Croup

Private-56
croup and

424
non-croup

subjects

Smartphone SVM and LR Feature
Extraction

Sens 92.31%
Spec: 85.29%

Croup
classification
Acc: 86.09%

[25] 2020 Cough
Detection N/A N/A SVM and

K-NN
Feature

Extraction

Accuracies:
K-NN:

94.51%, SVM:
81.22%

[26] 2020

Symptom
Identifica-
tion: Wet

Cough, Dry
Cough

Private-5971
coughs

(5242 dry
and 729 wet)

Smartphone RF

Feature
Extraction

(Custom and
OpenSmile)

Acc: 88%

[27] 2021

Disease Iden-
tification:

Heart-failure,
COVID-19,

Healthy

Private-732
patients (241
COVID-19,

244
Heart-failure,
247 Normal.

Smartphone K-NN

DNA Pattern
Feature

Generator,
mRMR
Feature
Selector

Acc: 99.5%
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Table 1. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[28] 2020

Cough
Detection,

Disease Iden-
tification:
Pertussis,

Bronchitis,
Bronchiolitis

ESC-50,
Audioset-

Cohort
n.s.

Various
Microphones CNN Mel-

spectrograms

Accuracies:
Disease Iden-

tification:
89.60%,
Cough

Detection:
88.05%

[29] 2019

Cough
Detection,
Symptom
Identifica-

tion:
Productive

Cough, Non-
productive

Cough

Private-810
events:

229 non-
productive

cough,
74 productive

cough, and
507 other
sounds

Various
Microphones DLN FFT and PCA Acc: 98.45%

[30] 2017
Disease Iden-

tification:
Croup

Private-364
patients

(43 Croup,
321

non-croup

Smartphone LR and SVM MFCCs and
CIFs Acc: 98.33%

[4] 2020
Disease Iden-

tification:
Asthma

Private-997
asthmatic,

1032 healthy
sounds

Smartphone GMM - UBM MFCCs and
CQSSs Acc: 95.3%

[31] 2021
Disease Iden-

tification:
COVID-19

Coswara-
Cohort

n.s.
Smartphone ResNet50 Feature

Extraction Acc: 97.6%

[32] 2022
Disease Iden-

tification:
COVID-19

Coswara,
Virufy,

Cambridge
and private-

Cohort
n.s.

Various
Microphones

Most popular
supervised

models

Feature
selection and

extraction

Best Acc:
Random
Forest:
83.67%

[33] 2022
Disease Iden-

tification:
Tuberculosis

Private-16 TB
and 35
non-TB
patients

Various
Microphones

LR, SVM,
K-NN, MLP,

CNN

Feature
Extraction

Best Acc: LR:
84.54%

[34] 2021
Disease Iden-

tification:
COVID-19

Virufy,
NoCoCoDa-

Cohort
n.s.

Various
Microphones

SVM, LDA,
K-NN

Feature
Extraction
and SFS
feature

selection

Best Acc:
K-NN:
98.33%

[7] 2021 Cough
Detection

ESC-50-50
cough

recordings

Various
Microphones CNN

Mel
spectrograms

and Data
Augmenta-

tion

Acc: 98%
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Table 1. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[35] 2021
Disease Iden-

tification:
COVID-19

Coswara,
COVID-19

Sounds-
Cohort

n.s.

Various
Microphones

Contrastive
Learning

Contrastive
Pre-training:

Feature
Encoder w/

Random
Masking

Acc: 83.74%

[36] 2019

Disease Iden-
tification:
Asthma,
Healthy

Private-89
children for
each cohort,
1992 healthy

and 1140
asthmatic

cough
sounds

Smartphone
Gaussian
mixture
model

Downsampling
and multidi-
mensional

Feature
Extraction

(MFCCs and
CQCCs)

Sens: 82.81%,
Spec: 84.76%,
AROC: 0.91

Note. ML models: SVM = Support Vector Machine; K-NN = K-Nearest Neighbors; DT = Decision Trees;
RF = Random Forest; NN = Neural Network; CNN = Convolutional Neural Network; RNN = Recurrent Neural
Network; DLN = Deep Learning Networks; MLP = Multilayer Perceptron; LSTM = Long Short-Term Mem-
ory; GB classifier = Gradient Boosting classifier; HGBoost = Hyperoptimized Gradient Boosting; LR = Linear
Regression; GMM = Gaussian Mixture Model; UBM = Universal Background Models; LDA = Linear Dis-
criminant Analysis. Data Processing Methods: MFFCs = Mel-Frequency Cepstral Coefficient; mRMR = mini-
mum Redundancy − Maximum Relevance; FFT = Fast Fourier Transform; PCA = Principal Component Anal-
ysis; CIF = Cochleagram Image Features; CQCC = Constant-Q Cepstral Coefficients. Metrics: Acc = Accu-
racy; Sens = Sensitivity; Spec = Specificity; AUC = Area Under Curve; IoU = Intersection over Union; ROC
Curve = Receiver Operating Characteristic Curve; AROC = Area under the ROC curve.

3.1. Data Acquisition

The automated detection and classification of cough sounds is a well-researched do-
main within the scientific community, particularly gaining significant research attention
during the recent period of COVID-19 pandemic exacerbation. The discernibility of cough
sound events enables their capture using commonly available equipment, such as smart-
phone and web camera microphones, without the requirement for specialized or high-end
recording devices.

In response to the growing demand for cough sound datasets, several open-source
repositories have emerged, especially during the pandemic, offering valuable resources
for research and development. Notable examples include the Virufy [37], the COVID-19
Sounds [38], the Coswara [39], the Corp [40], and the NoCoCoDa [41] dataset. These
datasets encompass a diverse range of cough sounds captured from individuals with
various underlying respiratory diseases, primarily focusing on COVID-19 cases, as well as
from healthy volunteers. For the datasets’ proper creation, it was also deemed necessary for
the participants to possess different demographic information. The recordings are obtained
through smartphones, web applications, and high-end recording devices. Furthermore,
the immediate availability of these well-documented and representative real-world data
has served as a catalyst, spawning numerous in-depth studies within the field of cough
detection and classification, such as [7,10,12,14,16–19,28,31,32,34,35], which have achieved
notable results.

In greater detail, the Virufy dataset, which is openly accessible, contains cough
sounds that were acquired through two distinct approaches: (a) the collection of cough
sounds in a hospital setting, overseen by medical professionals, and (b) the aggregation
of crowd-sourced cough sounds obtained via smartphones and web camera microphones
from diverse geographic regions. This dataset has been used in several studies such
as [12,19,32,34].

The COVID-19 Sounds, a large-scale open-source (upon request) audio dataset, com-
prises recordings of coughs, breathing, and voices. Each sample within this dataset is
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accompanied by metadata files that provide crucial information about individual record-
ings, including relevant descriptors and the respiratory health status of the respective
volunteer. For their research purposes, the authors of [19,35] have utilized this dataset.

Furthermore, the Corp dataset stands as a thoroughly designed, collected, and anno-
tated open-source audio dataset. This dataset consists of 168 h of cough sound recordings
obtained from 42 patients diagnosed with various respiratory diseases. Its comprehensive
nature provides researchers with a valuable resource for studying cough classification and
detection, enabling insights into diverse respiratory conditions.

Lastly, the NoCoCoDa dataset, a publicly accessible cough sound database, comprises
a collection of 73 distinct cough events. This dataset has been utilized in studies such
as [19,34].

It should be noted that several studies, such as [4–6,8,9,11,15,20–27,29,30,33,36], have
developed their own proprietary datasets explicitly tailored to their respective research
objectives. In more detail, the authors of [4,8,21,23,24,26,27,30,36] employed smartphones to
record cough sounds from their participant cohorts. On the other hand, high-end recording
devices were utilized for cough sound data acquisition in studies such as [8,20,29,33].
Figure 7 visually represents the distribution of studies based on the recording devices used
for data acquisition. The Figure illustrates an ongoing trend in the utilization of readily
available hardware, such as smartphone microphones, for capturing cough sounds in the
research on this subject.

Figure 7. Distribution of cough-related studies with respect to the device used for data acquisition.

3.2. Objectives in Cough Sound Analysis Studies

There are primarily two categories of research papers focused on the utilization of cough
sounds. The first category pertains to the detection of cough sounds, involving the identification
of a sound signal as a cough. Within this category, various authors [7,14,17,18,21–25,28,29]
have achieved detection accuracies as high as 99.64%.

The second category concerns the classification of cough sounds with respect to the
underlying respiratory disease of the patient, as well as the identification of cough types
such as wet or dry coughs [20,26]. Coughing is a common symptom of many respiratory
diseases, and variations in cough sounds can provide insights into the health status and
specific respiratory conditions of individuals. For instance, in [8] the authors collected
cough sound samples from patients with asthma, COPD, Interstitial lung disease (ILD),
bronchitis, and pneumonia and achieved a cough classification accuracy of 93%. COPD
was the disease of interest for the authors of [5] as well, in which a 0.89 ROC curve in
correctly identifying coughs produced by patients with the disease was demonstrated. Sim-
ilarly, in [26] an 88% accuracy in classifying cough sounds related to COPD was achieved.
COVID-19, pertussis, and bronchitis cough sounds were classified with an accuracy of
92.64% in [14] while [15] achieved an impressive accuracy of 95.04% encompassing asthma,
bronchitis, and COVID-19 cough sounds. Asthma was also a prominent disease of inter-
est for the authors of [4,26,36] as well. Finally, the authors of [30] focused on Croup as
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their main disease of interest, reaching an accuracy of 86.09%, while in [33] the authors
achieved an accuracy of 84.54% in identifying cough sounds produced by patients with
Tuberculosis (TB).

COVID-19 stands out as the most extensively studied disease in a significant portion
of the literature. The abundance of COVID-19-related datasets, the need for the acceler-
ation of testing purposes for disease prevention, and the monitoring of the severity of
the disease have collectively contributed to the proliferation of relative studies. Several
authors [6,9–12,14,27,31,34,35] have proposed novel algorithmic methods for COVID-19
identification through cough sounds, achieving highly satisfactory results. The reported
accuracy across these studies ranges from 70% to an impressive 99%.

In conclusion, Figure 8 illustrates the distribution of the studies related to cough
sounds, categorized based on their research topics, as they were described above.

Figure 8. Distribution of studies with respect to their research topic in the cough area.

3.3. Implementation Approach

The algorithmic approaches employed in the aforementioned studies exhibit signif-
icant variations and are heavily reliant on the training data utilized. Cough detection
inherently involves the classification of audio segments into either cough or non-cough
events, making it a form of cough classification. Consequently, the algorithms utilized
for these objectives often share common attributes. Similar to other time-series-related
ML problems, a well-defined framework needs to be followed to achieve desirable results.
This framework typically consists of three sequential stages: (a) the data preparation stage,
which is aimed at manipulating the raw signal by filtering, denoising, splitting the input
into equal segments, windowing, and other similar techniques; (b) the Feature Extraction
phase, in which a set of features that are providing descriptive information about the
cough event is extracted from the input signal; and (c) the classification stage, where the
classification of the input signal occurs. These stages are followed by most of the studies
presented. Deep Learning-based solutions slightly deviate from this framework, as the
Feature Extraction stage is performed automatically with the classification stage by the
neural networks mitigating that way the need for explicitly defining features.

During the data preparation stage, a challenge that most studies attempt to tackle is the
isolation of cough events from the raw signal. Studies suggest a variety of methods for labeling
the raw signals such as utilizing a moving window signal deviation as a function of time [8]
and splitting the signal based on the silence segments [15], manual labeling, by using soft-
ware such as PRAAT [17] and others [31], or even empirically [4,7,10,16,18,20,23,26,28–30,36].
Among other methods are classifiers that are able to distinguish the energy levels
among different segments of a signal [12] and finally, Empirical Mode Decomposition
(EMD) [11]. Additionally, a variety of prepossessing steps such as filtering [15,23,26],
downsampling [4,11,15,16,25,26,36], and normalizing [26,31] are being incorporated by
the authors before Feature Extraction.

According to the data engineering phase, in the domain of sound analysis and recogni-
tion, it is customary to transform the raw input signals into a feature representation before
utilizing them in a model. One of the most widely adopted techniques in audio processing
and pattern recognition is the extraction of Mel Frequencies Cepstral Coefficients (MFCCs).
Interestingly, among the 32 studies examined, 25 of them employed the MFCCs method for
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extracting cepstral features and utilized them as inputs to a classifier, often in combination
with other features. MFCCs can be employed in two distinct categories to represent a signal.
Firstly, they can be manually engineered as features, where a feature matrix is created
based on the extracted MFCCs. Alternatively, the signal can be transformed directly into an
MFCCs representation, circumventing the need for explicit feature engineering. Specifically,
in [8,12,15,16,19–21,24,25,30,31,33,34] the authors extract MFCCs features along with other
common features for audio processing such as Zero-Crossing Rate (ZCR), spectral centroid,
spectral bandwidth, spectral roll-off, spectral flux, entropy, kurtosis, and log-filterbank
energies. In these studies, the MFCCs are hand-engineered. Studies such as [9–11,17,35]
use the full MFCCs representations of the signals as input to their learning models in
combination with other features and representations.

In Refs. [18,26], popular software (e.g., openSMILE [42]) is utilized to extract a diverse
set of features, which are subsequently subjected to feature selection techniques to retain
only the most significant ones for the final feature matrix. Conversely [29], primarily
employs Fast Fourier Transform (FFT) to extract features from the cough signals. Then,
the authors apply Principal Component Analysis (PCA) to reduce the dimensionality
of the resulting feature vectors. However, several other studies [7,14,23,28] opt to use
Mel-Spectrograms as inputs to their model architectures. Additionally [27], proposes an
innovative approach to Feature Extraction by utilizing a DNA pattern feature generator,
while [15] introduces a novel method for representing signals using embeddings.

In the classification stage, the choice of model architecture varies among studies,
as it is highly dependent on the authors’ objectives. Studies can be divided into two
main categories based on the selected models. The first category utilizes ML models
which are based on the statistical learning theory such as Support Vector Machines
(SVM) [12,21,24,25,30,31,34], K-NN [19,21,25,27,31,34], LRM [19,24,30,33], Random Forest
(RF) [8,12,21,26], XGboost [6,8,19], and others. The second category utilizes Artificial Neu-
ral Networks (ANNs) like 2D-Convolutional Neural Networks (CNNs) [7,10,11,14,17,23,28],
and LSTM (RNN) architectures [13]. Refs. [9,10,31] follow a very interesting approach,
where the authors utilize state-of-the-art architectures such as a 3 ResNet-50 placed in
parallel architecture, a VGG-16, and a ResNet-50, respectively. ANNs are used in [29] while
in [16,31,33] both ML models that are related to statistical learning theory and ANNs are
tested during experimentation.

It is also worth mentioning that several research studies focused on cough classification
explore multi-modal approaches, typically consisting of two stages. The first stage involves
cough identification, where algorithms are designed to detect and isolate cough instances
within the audio signals. The second stage takes the identified cough segments and
performs classification to assign them to the corresponding respiratory disease. Such
approaches are presented in [11,12,14]. A notable example is [32] where the YaMNet model
is employed to identify the cough segments within the audio signals. Subsequently, a set of
time-frequency features are extracted from these cough segments and used as inputs to
ML models for the final classification of the cough sounds, enabling the identification of
the underlying respiratory disease. Finally, certain works deviate from the aforementioned
framework and adopt alternative approaches such as Hidden Markov Models (HMMs) [22].

4. Lung and Breath Sounds Analysis of Lower Respiratory Symptoms

The same structure of review analysis is also followed in this Section, which outlines,
in detail, our findings regarding the studies that are related to using lung sounds to analyze
symptoms, which correspond to lower respiratory diseases, to properly and automatically
recognize them by following the AI principles, as well as to identify the disease they are
correlated with. Table 2 presents a summary of the studies that are presented in this Section.
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Table 2. Respiratory sounds analysis related papers.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[43] 2018

Symptom
Identifica-

tion:
Wheeze

Private-255
breathing

cycles,
50 patients

Smartphone SVM
Bag-of-

Words To
Features

Acc: 75.21%

[44] 2020

Disease Iden-
tification:

Bronchitis,
Pneumonia

Private-739
recordings

Various
Microphones K-NN

EMD,
MFCCs,
GTCC

Acc: 99%

[45] 2021

Disease Iden-
tification:
Bronchial
Asthma

Private-952
recordings

High-end
Microphones NN, RF

Spectral
Bandwidth,

Spectral
Centroid,

ZCR,
Spectral
Roll-Off,

Chromacity

Sens: 89.3%
Spec: 86%
Acc: 88%
Youden’s

Index: 0.753

[46] 2019
Disease Iden-

tification:
COPD

Private-55
recordings Stethoscope

Fine
Gaussian

SVM

Statistical
Features,
MFCCs

Acc: 100%

[47] 2018

Disease Iden-
tification:
Asthma,
COPD

Private-80
normal,

80 COPD,
and

80 asthma
recordings

Stethoscope ANN

PSD
Extracted
Features,
Feature

Selection
(ANOVA)

Acc: 60%
Spec: 54.2%

[48] 2022
Disease Iden-

tification:
COVID-19

Coswara-120
recordings

from
COVID-19
patients,

120 recordings
from Healthy

patients

Various
Microphones

Neural
Network

Statistical
and CNN-
BiLSTM

Extracted
Features

Acc: 100%
(shallow

recordings),
88.89% (deep
recordings)

[49] 2021
Disease Iden-

tification:
COVID-19

COVID-19
Sounds-141
recordings

High-end
Microphones VGGish

Spectral
Centroid,
MFCCs,
Roll-off

Frequency,
ZCR

ROC-AUC:
80% Prec:

69% Recall:
69%

[50] 2022

Symptom
Identifica-

tion: Wheeze,
Crackle

Respiratory
Sounds

Database
(RSDB) and
private-943
recordings

Various
Microphones ResNet

Padding,
STFT,

Spectrum
Correlation,

Log-Mel
Spectro-
grams,

Normaliza-
tion

Sens: 76.33%
Spec: 78.86%

[51] 2021

Symptom
Identifica-

tion: Wheeze,
Crackle

RSDB-920
recordings

Various
Microphones

ANN, SVM,
RF

Time
Statistics and

Frequency
features

Acc: NN:
73%, RF: 73%,
SVM: 78.3%
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Table 2. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[52] 2019

Symptom
Identifica-

tion: Wheeze,
Crackle

Private-21
normal

samples,
12 wheezes,

and
35 crackles

Stethoscope SVM

CWT,
Gaussian

Filter,
Average
Power,

Stacked
Autoencoder

Acc: 86.51%

[53] 2019

Symptom
Identifica-

tion: Wheeze,
Crackle

RDSB’s
stethoscope
recordings-

834
recordings

Stethoscope ResNet Optimized
S-transform

Sens: 96.27%
Spec: 100%
Acc: 98.79%

[54] 2022

Symptom
Identifica-

tion: Wheeze,
Crackle

RDSB-920
recordings

Various
Microphones VGG-16

Fluid-Solid
Modeling,
Recording
Simulation,
Downsam-

pling,
Feature

Extraction

Sens: 28%,
Spec: 81%

[55] 2020

Disease Iden-
tification:

Bronchiecta-
sis,

Bronchiolitis,
COPD,

Pneumonia,
URTI,

Healthy

RDSB-920
recordings

Various
Microphones RF

Resampling,
Windows,
Filtering,

EMD,
Features

Acc: 88%,
Prec: 91%,

Recall: 87%,
Spec: 97%

[47] 2020

Symptom
Identifica-

tion: Wheeze,
Crackle

Private-705
lung sounds
(240 crackle,
260 rhonchi,

and
205 normal)

Stethoscope

SVM, NN,
K-Nearest
Neighbors

(K-NN)

CWT
Acc: 90.71%,
Sens: 91.19%,
Spec: 95.20%

[56] 2021

Symptom
Identifica-

tion: Crackle,
Normal,
Stridor,
Wheeze

Private-600
recordings Stethoscope SVM, K-NN

Filtering, Am-
plification,

Dimensional-
ity Reduction,

MFCCs,
NLM Filter

Acc: SVM:
92%, K-NN:

97%

[57] 2021

Symptom
Identifica-

tion: Wheeze,
Crackle

RSDB-920
recordings

Various
Microphones 2D CNN

RMS Norm,
Peak Norm,
EBU Norm,
Data Aug-
mentation

Acc: 88%

[58] 2019

Symptom
Identifica-

tion: Wheeze,
Crackle

Private-384
recordings Stethoscope VGGish-

BiGRU Spectrograms Acc: 87.41%
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Table 2. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[59] 2017

Symptom
Identifica-

tion: Wheeze,
Crackle

Private-60
recordings Stethoscope

Gaussian
Mixture
Model

MFCCs Acc: 98.4%

[60] 2017

Symptom
Identifica-

tion: Wheeze,
Crackle

Private-
recordings
containing
11 crackles,
3 wheezes,
4 stridors,
2 squawks,
2 rhonchi,

and
29 normal

sounds

Digital
stethoscope MLP

EMD, IMF,
Spectrum,

Feature
Extraction

Acc: Crackles
92.16%,

Wheeze 95%,
Stridor
95.77%,
Squawk
99.14%,
Normal

88.36%, AVG
94.82%

[61] 2021

Symptom
Identifica-

tion: Wheeze,
Crackle

RSDB-920
recordings

Various
Microphones VGG-16

Resampling,
Windows,

Filtering, Mel
spectrogram

(Mel,
Harmonic,
Percussive,
Derivative)

Acc: Wheeze
89.00%,
Rhonchi
68.00%,

Crackles
90.00%

[62] 2020

Symptom
Identifica-

tion: Wheeze,
Crackle

RSDB-920
recordings

Various
Microphones ResNet

Resampling,
Windows,
Filtering,

Data Aug-
mentation,

Mel-
spectrogram,

Device
Specific
Features

80/40 Split
4 class (per

device): Spec:
83.3%, Sens:
53.7%, Score:

68.5%

[63] 2021

Symptom
Identifica-

tion: Crackle,
Wheeze –

Disease Iden-
tification:
Asthma,
Cystic

Fibrosis

Private-
Recordings

from 95
patients

Various
Microphones N/A N/A

85%
agreement
(k = 0.35
(95% CI

0.26-0.44))
between

conventional
and

smartphone
auscultation

Features

[64] 2021

Symptom
Identifica-

tion: Wheeze,
Crackle,
Other

RSDB-920
recordings

Various
Microphones

LDA, SVM
with Radial

Basis
Function
(SVMrbf),

Random Un-
dersampling
Boosted trees
(RUSBoost),

CNNs.

Spectrogram,
Mel-

spectrogram,
Scalogram,

Feature
Extraction

Acc: 99.6%
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Table 2. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[65] 2022

Symptom
Identifica-

tion: Wheeze,
Crackle,
Normal

RSDB-920
recordings

Various
Microphones

Hybrid
CNN-LSTM

Feature
Extraction

Sens: 52.78%
Spec: 84.26%
F1: 68.52%

Acc: 76.39%

Note. ML models: SVM = Support Vector Machine; K-NN = K-Nearest Neighbors; RF = Random For-
est; ANN = Artificial Neural Network; NN = Neural Network; CNN = Convolutional Neural Network;
MLP = Multilayer Perceptron; RUSBoost = Random Undersampling Boosted trees; LSTM = Long Short-Term
Memory; LDA = Linear Discriminant Analysis. Data Processing Methods: EMD = Empirical Mode Decom-
position; MFFC = Mel-Frequency Cepstral Coefficient; GTCC = Gamatone Cepstral Coefficient; ZCR = Zero-
Crossing Rate; PSD = Power Spectral Density; STFT = Short Time Fourier Transform; CWT = Continous Wavelet
Transform; S-Tranform = Stockwell Transform; NLM = Non-Local Means; RMS = Root Mean Square. Metrics:
Acc = Accuracy; Sens = Sensitivity; Spec = Specificity AUC = Area Under Curve; IoU = Intersection over Union;
ROC Curve = Receiver Operating Characteristic Curve; AROC = Area under the ROC curve.

4.1. Data Acquisition

The identification of respiratory sounds or/and diseases is heavily connected with the
device utilized for the data acquisition procedure. The employed device should be able to
capture adventitious sounds, which are prominent in low frequencies. Moreover, the data
acquisition device should be as sensitive as possible, since the thorax and the larynx act like
a low-pass filter for different lung sounds, thus minimizing the audio signal’s amplitude
and making it harder to capture.

Another important aspect of the data collection stage is the placement of the recording
device on the patient’s body and the type of the device. The most common approach is
placing the device on the chest area, like a typical auscultation device. This type of data
acquisition can be conducted by digital stethoscopes, and the authors in [47,52,53,56,58–63,66]
utilized data which were derived from this kind of data retrieval methodology. Most of
the studies mention that they did not execute the data acquisition phase themselves, but
they exploited open-source or proprietary datasets. However, there are also a few studies
that did construct their own datasets. It is also common to combine digital stethoscopes
and high-impedance microphones as the devices employed for the data collection, in order
to provide variability in the quality of the recordings. This results in an increase in the
models’ generalization capability, while also expanding the field of application where
the trained algorithm can be used. Data constructed by this methodology are employed
in [44,51,54,55,57,61,62,67,68]. On the other hand, only a limited number of studies have
employed smartphone recordings as a means of data collection, with one notable example
being [63], which utilized various smartphones to record lung sounds. Some studies,
such as [49], created a custom device in order to capture the recordings. Such devices
are external microphones capable of connecting with smartphones. Figure 9 presents a
categorical analysis of the devices used for data acquisition in the aforementioned studies.
The figure demonstrates that the majority of studies utilized stethoscopes, while high-end
microphones and smartphone microphones were less frequently used for data collection in
the reviewed literature.

It is worth noting that, as observed in recent studies, recording the patient’s breath
can also yield promising results for identifying respiratory sounds. Typical methods for
acquiring breath recordings are either by smartphone or high-quality microphone. The
authors of [43,48,49] used breath sound recordings deriving from such devices in order to
classify lung sounds or diseases.

The procedure of data collection foreshadows the application and utilization of the
developed algorithm or model. Until now there is a limited number of available datasets
that can be exploited for the identification of respiratory diseases and respiratory sounds.
Specifically, there are three available datasets, and they are used by most of the community
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for research in the domain of respiratory diagnosis. These datasets are the Respiratory
Sound Database dataset [69], the Coswara dataset [39], and the R.A.L.E [70] dataset.

Figure 9. Distribution of respiratory sounds related studies with respect to the device used for
data acquisition.

The Respiratory Sound Database, in particular, was created by two research teams
in Portugal and Greece. It includes 5.5 h of data with 920 annotated recordings. These
recordings were acquired from 126 patients. Regarding the respiratory sounds, it contains
1864 crackles, 886 wheezes, and 506 both crackles and wheezes. The data include both
clean respiratory sounds as well as noisy recordings that simulate real-life conditions. The
patients span all age groups—children, adults, and the elderly. The devices used for the
data collection are both a digital stethoscope and a microphone.

The Coswara dataset is based on the Coswara project by the Indian Institute of Science
(IISc), Bangalore, in an attempt to build a diagnostic tool for COVID-19 detection using
audio recordings, such as the breathing, coughing, and speech sounds of an individual.
The data collection stage was conducted through crowdsourcing and the devices used are
either smartphones or webcam microphones.

Finally, the R.A.L.E operates as a computer-aided instruction program on chest aus-
cultation originated at the Respiratory Acoustics Laboratory (Prof. H. Pasterkamp, MD,
FRCPC), Dept. of Pediatrics and Child Health, University of Manitoba, in Winnipeg,
Canada. This dataset was created for teaching purposes, but there are several studies that
utilize it. The data in this dataset were acquired by digital stethoscopes. It is important to
mention that this dataset is not open-source but it can be purchased.

4.2. Domain Focus of Sound Analysis Studies for the Lower Respiratory Symptoms

The main goal of studies related to respiratory diagnosis using artificial intelligence
may be categorized into two major branches: (a) disease classification, and (b) the classifi-
cation of the respiratory sound (crackles, wheezes, etc.).

Regarding the identification of diseases, the focal points are COPD, asthma, COVID-19,
bronchitis, Lower Respiratory Tract Infections (LRTI), Upper Respiratory Tract Infections
(URTI), and pneumonia. Due to the existing limitations on dataset availability and the
difficulties in creating new datasets, studies that cover most diseases are rare. However, it
has been observed that research conducted in this domain may focus on multiple diseases
at the same time if they have similar attributes. Specifically, the authors of [43,45] focus on
asthma detection through the identification of wheezes and achieve an accuracy of 75.21%
and 88%, respectively, whereas [47] includes asthma alongside other diseases for disease
classification and achieve an accuracy of 60% and 95.67%. One of the most studied diseases
for identification or classification is COPD, and [46,47] introduced ML algorithms for COPD
identification, while [46] developed a methodology that reached 100% accuracy. Moreover,
with the rise of COVID-19, more and more research groups (see e.g., [48,49]) have focused
on the diagnosis of COVID-19 from breathing recordings from a smartphone device. The
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pipeline followed in [49] achieved 69% regarding the precision metric and 0.8 with respect
to the AUC metric, while [48] achieved a 100% classification accuracy. Other diseases have
also been studied in [44], such as pneumonia, bronchitis, LRTI, and URTI, achieving an
identification accuracy of up to 99%. Nevertheless, most studies are focused on respiratory
sounds, since they can be correlated with almost all diseases or at least provide useful
information for a preliminary diagnosis. The studies [47,51–62,64,65] provide different
techniques and methodologies for the identification of respiratory sounds, like crackles
and wheezes, with promising results. The accuracy achieved in these studies is between
73% and 98%. Figure 10 provides an overview of the distribution of studies with respect
to the respective research topics for each study. The literature primarily focuses on the
identification of respiratory sounds and symptoms, while respiratory disease identification
receives relatively less attention. Among respiratory diseases, asthma, and COPD are the
most studied subjects in the reviewed literature.

Figure 10. Distribution of studies with respect to their research topic in the area of respiratory sounds.

4.3. Implementation Approach

The techniques employed in each study depend on the objective and the data used. The
data engineering methodologies fall into two major categories, namely feature-based process-
ing, and transformation-based processing. The first one corresponds to Feature Extraction,
and the output is subsequently fed into an ML algorithm for training, whereas the second
one corresponds to transforming the raw audio data, using filtering, Mel spectrograms, and
more. One important aspect of the methodology is the learning algorithms employed, which
can be divided into statistical learning models and Artificial Neural Networks.

Delving into the data processing field that is followed for implementation, the
studies [43,45–49,51,54,55,60–62] perform Feature Extraction on the data; however, the
Feature Extraction comes after several preprocessing steps, namely filtering, upsampling or
downsampling, or other transformations. The studies [45,46,49] extract several statistical
and spectral features, such as spectral bandwidth, zero-crossing rate, spectral roll-off, etc.
ML algorithms that exploit different statistical and spectral features can see a significant
improvement in their prediction capabilities by utilizing feature selection techniques. Ad-
ditionally, the authors in [47] compute features from the power spectral density of the
audio data, and the Analysis of Variance (ANOVA) feature selection method is utilized, so
only the most important features are utilized in the training phase. Moreover, in [48], both
statistical features and feature maps, extracted from a Convolutional Bidirectional LSTM
Network, are combined in order to provide more descriptive features of the audio data.
Some interesting approaches are utilized by [54,55]. The first study proposed a method
of feature-band attention by analyzing the fluid-solid coupling simulation of a bronchial
model. As an alternative, the second study performs multiple preprocessing steps in order
to extract features; the processing pipeline is constructed by downsampling the audio data,
slicing it to windows, filtering, and performing decomposition using the Empirical Mode
Decomposition (EMD) method. Afterward, features are extracted to train the algorithm.
Lastly, the authors of [60] exploited spectral features originating from the decomposed
signal after performing the Empirical Mode Decomposition technique.

As mentioned above, data engineering consists of feature-based methodologies and
transformation-based methodologies. The studies [44,47,52,53,56–59,64,65] follow various
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transformation methodologies, in order to convert the audio signal to a more manageable
form, surfacing as much helpful information as possible. It is a common procedure to
transform vector-shaped data into an image-like form by performing time–frequency
domain analysis. The authors of [58] converted the lung sound data to Mel spectrograms.
In Ref. [64], the researchers tested various ways of representing lung sounds over time
and frequency to create spectrogram features which were combined with different spectral,
melodic, and MFCCs features to identify respiratory disease symptoms. Another relevant
study [65], transformed respiratory cycles from auscultation recordings into Short-Time
Fourier Transform (STFT) spectrograms. Moreover, a common approach is to perform a
Continuous Wavelet Transform (CWT), as [47,52] proposed, by using a mother wavelet to
extract the desired signal. In addition, the authors of [52] applied additional processing
methodologies after the transformation, such as the application of a Gaussian filter and
Stacked Autoencoder, in order to filter and alternate the representation of the input signal.
An alternative way to represent an audio signal is by extracting the MFCCs instead of the
Mel spectrogram.

The studies [44,59] utilize this type of conversion. The first study extracts the MFCCs
after performing data augmentation, in order to provide variability to the training data. The
second study employs a combination of the MFCCs with the coefficients of an autoregres-
sive model (AR model) as the training data. The latter one, prior to the MFCCs calculation,
decomposes the signal utilizing the EMD technique, which is a preferred methodology
for the decomposition of respiratory sound recordings. A remarkable data processing
methodology is noted in [53], in which the authors proposed a novel transformation by
optimizing the S-transform technique for processes regarding respiratory sounds, espe-
cially crackles and wheezes audio recordings. The optimization provides a more detailed
depiction of the frequency ranges in which the sounds of interest operate. Lastly [57],
recommend an approach based on spectrogram extraction after applying various normal-
ization methods, such as Root Mean Square (RMS) normalization [50], peak normalization,
and loudness normalization.

It is widely known that deep neural networks require a large amount of data to achieve
good generalization, yet usable data are limited in this field. Consequently, researchers have
turned to data augmentation techniques to generate additional usable artificial data from
existing instances, thereby improving model performance [57,62]. Notably [62] employs
standard augmentation techniques, such as noise addition, speed variation, random shift-
ing, and pitch shift, as well as a novel concatenation-based augmentation technique. This
technique involves randomly sampling two samples of the same class and concatenating
them to create a new sample for that class.

The other most important aspect of the implementation methodology is the ML algo-
rithm utilized. Some studies employ statistical models, especially those using feature-based
data processing. Other studies use ANNs or state-of-the-art neural network topologies.
The studies [43,46,47,51,52,56] use SVM and variations of SVM as the model of choice.
Alternatively, the authors of [46] utilize fine Gaussian SVM. Moreover, it is a common
technique to utilize the available data by training more than one model in order to pro-
vide perspective on how the data behaves with different models. The authors in [51] also
train an ANN, and both [51] and [56] train a Random Forest Classifier (RF), whereas [47]
employ a Neural Network, and unsupervised learning by using the K-Nearest Neighbors
(K-NN) algorithm. Refs. [45,55] also exploit the RF model, and [44,56] utilizes the K-NN
algorithm too. In Ref. [64], classifiers such as Linear Discriminant Analysis (LDA), Support
Vector Machine with Radial Basis Function (SVMrbf), Random Undersampling Boosted
Trees (RUSBoost), and Convolutional Neural Networks (CNNs) were tested and used to
accurately identify respiratory disease symptoms in lung sound recordings. The study also
investigated the impact of using different durations of lung sound segments, revealing that
the classifiers might implicitly learn to recognize the durations of events. Furthermore,
the study [45] proposes a Neural Network in order to detect asthma through extracted
features. Other studies that employ ANNs with features as inputs to perform the train-
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ing procedure are [47,48,60]. The studies [49,53,54,58,65] use some of the state-of-the-art
models. In Ref. [65], a hybrid model combining CNN-LSTM architectures was used to
classify lung disease symptoms from lung sound recordings. The CNN module extracted
crucial features used by the LSTM module to classify symptoms of lung diseases, achieving
a maximum classification accuracy of 76.39%. The studies [53,54] use the ResNet model
architecture, whereas [49,58] use the VGG-16, VGGish, and VGGish-BiGRU topologies,
respectively. The last study, particularly, utilizes a custom GRU-based NN architecture.
Finally, a Gaussian mixture model and a custom 2D Neural Network are proposed in the
studies [57,59], correspondingly.

5. Voice/Speech-Based Analysis for Respiratory Diseases Identification

Adopting the procedure that was followed in Sections 3 and 4 for our review, in this
Section, the third category of sound analysis is conducted, which is related to the human
voice or speech sounds and their correlation with respiratory diseases’ symptoms. Again,
the table, in this case Table 3 summarizes the studies that were included.

Table 3. Voice analysis related papers.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[71] 2020
Disease Iden-

tification:
COVID-19

Private—116
subjects (76

8 weeks post
COVID-19,
40 Healthy

Smartphone,
Various

Microphones
VGG19 Log-mel

spectrogram

Acc: 0.85%,
Sens: 0.89%,
Spec: 0.77%

[72] 2021
Disease Iden-

tification:
COVID-19

Coswara—
166 subjects

(83 COVID-19
positive,

83 Healthy)

Various
Microphones

NB, Bayes
Net, SGD,

SVM, K-NN,
Adaboost
algorithm

(model com-
bination), DT,

OneR, J48,
RF, Bagging,

Decision
table, LWL

Fundamental
Frequency

(F0),
Shimmer,
Jitter and

Harmonic to
Noise Ratio,

MFCC or
Spectral

Centroid or
Roll-Off

Best overall
results for

vowels a, e, o:
Random

Forest: Acc:
82.35%, Sens:
94.12%, Spec:

70.59%

[73] 2021
Disease Iden-

tification:
COVID-19

Coswara—
1027 subjects

(77
COVID-19

positive
(54M, 23F),
950 Healthy

(721M, 229F))

Various
Microphones

SVM, SGD,
K-NN, LWL,

Adaboost
and Bagging,

OneR,
Decision
Table, DT,
REPTree

ComParE_2016,
FF, Jitter and

Shimmer,
Harmonic to
Noise Ratio,

MFCCs,
MFCC ∆ and

∆∆, Spec.
Centroid,

Spec. Roll-off

Best overall
results for

vowels a, e, o:
SVM: Acc:
97.07%, F1:

82.35%, Spec:
97.37%

[74] 2021
Disease Iden-

tification:
COVID-19

Private—196
subjects

(69 COVID-
19,

130 Healthy)

Mobile App,
Web App–

Smartphone,
Various

Microphones

SVM,
RBF, RF

1024
embedding

feature vector
from D-CNN

Best model:
RF: Acc: 73%,

F1: 81%
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Table 3. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[75] 2022
Disease Iden-

tification:
COPD

Corpus
Gesproken

Nederlands—
Cohort

n.s.

Various
Microphones SVM

Mean
intensity (db),

Mean
frequency
(Hz), Pitch
variability
(Hz), Mean

center (Hz) of
gravity

Formants,
Speaking

rate,
Syllables per
breath group,

Jitter, Jitter
ppq5,

Shimmer,
Shimmer

apq3,
Shimmer

apq5, HNR,
Com-

ParE_2016

Acc: 75.12%,
Sens: 85%

[76] 2021
Disease Iden-

tification:
COPD

Private—49
subjects

(11 COPD
exacerbation,

9 Stable
COPD,

29 Healthy)

Smartphone LDA, SVM

Duration, the
four

formants,
mean gravity
center, some
measures of

pitch and
intensity,

openSMILE,
eGeMAPS, #

of words
read out loud,

duration
of file

p < 0.01

[77] 2021
Disease Iden-

tification:
COVID-19

Coswara—
Dataset 1:

1040 subjects
(965

non-COVID),
Dataset 2:

990 subjects
(930

non-COVID)

Smartphone LR, MLP, RF

39-
dimensional
MFCCs + ∆

and ∆∆ coeff.,
window size

of 1024
samples,

window hop
size = 441
samples

Dataset 1 -
RF: Average

AUC: 70.69%,
Dataset 2 -

RF: Average
AUC: 70.17%
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Table 3. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[78] 2020
Disease Iden-

tification:
COVID-19

Israeli
COVID-19
collection—
88 subjects

(29 positive,
59 negative)

Smartphone Transformer,
SVM

Mel
spectrum

transforma-
tion

/z/: F1: 81%,
Prec: 82%,

counting: F1:
80%, Prec:
80%, /z/,
/ah/: F1:
79%, Prec:
80%, /ah/:

F1: 74%, Prec:
83%, cough:
58%, Prec:

72%

[79] 2021

Disease Iden-
tification:

COVID-19,
Asthma

COVID-19
sounds—

1541
Respiratory

Sounds

Mobile App,
Web App–

Smartphone,
Various

Microphones

light-weight
CNN

MMFCC,
EGFCC and

Data
De-noising

Auto encoder

COVID-
19/non-

COVID-19 +
breath +

cough: Acc:
89%,

Asthma/non-
asthma +
breath +

voice Acc:
84%

[80] 2022
Disease Iden-

tification:
Asthma

Private—8
subjects

(100 normal,
321 Wheezing,

98 Striding,
73 Rattling

sounds)

N/A

DQNN,
Hybrid

machine
learning

IWO, Signal
Selection:

EHS
algorithm

Spec: 99.8%,
Sens: 99.2%,
Acc: 100%

[81] 2022
Disease Iden-

tification:
Asthma

18 patients—
300

respiratory
sounds,

10 types of
breathing

N/A DENN

IWO
Algorithm
for Asthma
Detection &
Forecasting

Spec: 99.8%,
Sens: 99.2%,
Acc: 99.91%

[82] 2020
Disease Iden-

tification:
Asthma

Private—95
subjects

(47 asthmatic,
48 healthy)

Various
Microphones SVM

ISCB using
openSMILE,
SET A: 5900
features, SET

B: 6373
features,
MFCC

/oU/ All
feature

groups: Acc:
74%

[13] 2020
Disease Iden-

tification:
COVID-19

Private–240
acoustic
data—

60 normal,
20 COVID-19

subjects

Smartphone LSTM (RNN)

Spec.
Centroid,

Spec. roll-off,
ZCS, MFCC

(+ ∆∆)

Cough: F1:
97.9% acc:

97%,
breathing: F1:

98.8% acc:
98.2%, voices:
F1: 92.5% acc:

88.2%
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Table 3. Cont.

Reference Year Topic Data and
Cohort

Recording
Device

ML Models
Used

Data
Processing
Methods

KPIs

[83] 2020
Disease Iden-

tification:
Asthma

88 recordings:
1957

segments
(65 Severe

resp. distress,
216 Asthma,

673 Mild resp.
distress)

Smartphone LIBSVM

Acoustic
features:

Interspeed
2010 Paralin-

guistic
Challenge, 38
LLDs and 21
functionals

Acoustic
Features:

Acc: 86.3%,
Sens: 85.9%,
Spec: 86.9%

[84] 2021
Disease Iden-

tification:
Asthma

Private—30
subjects N/A RDNN

Discrete
Ripplet-II
Transform

Proposed
EAP-DL: Acc:
86.3%, Sens:
85.9%, Spec:

86.9%

[85] 2022

Symptom
Identifica-
tion: Voice
Alteration

OPJHRC
Fortis

hospital in
Raigarh—

Cohort, not
specified

Various
Microphones

K-NN, SVM,
LDA, LR,

Linear SVM,
etc.

Formant
Frequencies,

Pitch,
Intensity,

Jitter,
Shimmer,

Mean Auto-
correlation,

Harmonic to
Noise ratio,

Noice to
Harmonic

ration,
MFCC, LPC

Decision Tree
K-fold: Acc:

90% Sen: 90%
Spec: 90%

[86] 2019

Symptom
Identifica-
tion: Voice
Alteration

Private—
Cohort

n.s.

Various
Microphones

Pretrained
from Intel

OpenVIVO
and

TensorFlow

Not specified,
however

models are
vision based

N/A

[87] 2021
Disease Iden-

tification:
COVID-19

Coswara,
Cambridge
DB-2—4352

Web App
users,

2261 Android
App users

Smartphone SVM MFCC Acc: 85.7%,
F2: 85.1%

Note. ML models: SVM = Support Vector Machine; K-NN = K-Nearest Neighbors; DT = Decision Trees; RF = Random Forest;
NN = Neural Network; D-CNN = Deep Convolutional Neural Network; MLP = Multilayer Perceptron; NB = Naive Bayes; IWO
= Improved Weed Optimization; DENN = Differential Evolutionary Neural Network; RBF model = Radial Basis Function model;
LR = Linear Regression; LWL = Locally Weighted Regression (or Lowess); LDA = Linear Discriminant Analysis. Data Processing
Methods: MFCCs = Mel-Frequency Cepstral Coefficients; CIF = Cochleagram Image Features; EGFCC = Enhanced-Gamma-tone
Frequency Cepstral Coefficients; MMFCC = Modified Mel-frequency Cepstral Coefficients; IWO = Improved Weed Optimization;
EHS = Effective Hand Strength; ISCB = Improved Standard Capon Beamforming; LPC = Linear Predictive Coding; FF = Funda-
mental Frequency; ZCS = Zero Crossing Rate. Metrics: Acc = Accuracy; Sens = Sensitivity; Spec = Specificity; Prec = precision;
AUC = Area Under Curve.

5.1. Data Acquisition

One key aspect that holds significant importance in research involving sound datasets,
specifically in the context of the human voice, is the process of data acquisition. The quality
of the device employed for data collection, particularly the microphone, can considerably
impact the properties of the acquired data. In fact, different types of microphones, such
as professional-grade or mobile device-compatible microphones, can yield varying results
in terms of the captured sound. Moreover, certain devices may exhibit a bias towards
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specific sounds while suppressing others. For instance, smartphone microphones are often
engineered to disregard ambient noise and prioritize the preservation of human voices.

Regarding the microphone devices that were employed in the data collection pro-
cess and the creation of the proper datasets, smartphones’ microphones were used in
refs. [13,76,78,83,86], plug-in microphones in [71], specialized microphones in [75,82] (one
of the specialized microphones used is the ZOOM H6 recorder which records up to a
24-bit depth and 96 kHz), while in other studies, either the source was not specified, or
existing benchmark datasets were used. Concerning the latter case, the Coswara dataset
was exploited in [72,73,77,87], Crowdsourced Respiratory Sound in [79,87], and Corpus
Gesproken Nederlands (The Corpus Gesproken Netherlands dataset, published in March 2004,
was the result of the Corpus Gesproken Netherlands project, which started in 1998 and ended in
2004. The language used is modern Dutch, as spoken by adult speakers in the Netherlands and
Flanders. The preparation of this project took place in Ghent and Nijmegen, with the aim of creating a
1000-h spoken corpus. Some recordings were made in-house while others were made in collaboration
with external partners.) in [75]. Figure 11 illustrates the number of studies per device used
for data acquisition. Smartphone microphone-related studies are more prevalent compared
to those using high-end microphones and specialized recording devices.

Figure 11. Distribution of studies with respect to the device used for data acquisition.

Finally, it is worth noting that the sound recorded by microphones is directly affected
by the relative position of the microphone with respect to the sound source, which in the
case of voice/speech-based respiratory diseases classification, is the mouth of the patient.
For that purpose, it is important in all experiments that the microphone is consistently
placed in the same spot, as for example in [78,86], where the recording devices were
smartphones which were placed on a table 20 cm from each patient’s mouth.

5.2. Domain Focus of Voice/Speech Sound Analysis Studies

The primary objective of relevant studies in the existing literature is to classify respira-
tory diseases using various voice recordings. Typically, these studies concentrate on the
classification of a single disease, implying a binary classification scenario.

Consequently, the studies can be categorized based on two criteria: (a) the specific
disease under research, and (b) the type of voice recording data utilized. In relation to dis-
ease identification, for COVID-19, several studies [13,71–74,77,78,87] have been conducted
with accuracy rates ranging from 73% to 97% [73]. Similarly, studies have also focused on
asthma [80–84], achieving accuracy scores ranging from 74% to 100% [80], and COPD [75],
with an accuracy of 75% [76]. Notably, one study [76] suggests the potential to achieve a
Matthews Correlation Coefficient of 1, indicating a correct classification rate of 100%.

Regarding the type of voice recording data, studies have utilized vowel sounds such as
/a/, /e/, and /o/ [72,73,82], speech recordings including counting numbers and reading
sentences [13,75,76,83–85], and in some cases, cough recordings [78,79]. Notably, several
studies [71,74,77,80,81,86,87] have utilized multiple types of voice recording data.
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It is evident that a significant focus has been placed on COVID-19, which is under-
standable given the recent pandemic, as well as on asthma, which is a prevalent respiratory
disease. Figure 12 visually illustrates the distribution of studies based on their respective
research topics, and we can observe that most of the research literature emphasizes COVID-
19, followed by asthma, and then COPD as the top three primary research topics within
this domain.

Figure 12. Distribution of studies with respect to their research topic in the area of voice analysis for
disease identification.

5.3. Implementation Approach

The selection of preprocessing techniques and models employed varies across different
studies. The categorization of relevant studies can be based on the type of implemented
model, classifying them into either the neural networks category, such as CNNs and
Recurrent Neural Networks (RNNs), or the statistical learning-related category, such as
SVM and Logistic Regression.

In terms of the data processing methodology, a common practice in the signal processing
domain involves statistical audio Feature Extraction, which means generating features from
the signal data. In a specific study [79], a Data De-noising Auto Encoder (DDAE) was utilized
to extract in-depth acoustic sound signal features. In several studies [13,71–73,77–80,84,85], re-
searchers have employed various computational techniques to compute significant features
for analyzing audio signals related to COVID-19 and other applications. These features in-
clude MFCCs, which capture the spectral characteristics of the sound, shimmer (measuring
amplitude variability), jitter (measuring temporal variability), Spectral centroid (indicating
the “brightness” of the audio signal), and others. For instance, in study [71], voice samples
consisting of 5 s “ah” sounds, a Thai polysyllabic sentence, and cough sounds were divided
into 100 ms sub-samples. The log-mel spectrogram was computed for each sub-sample,
resulting in a 2D representation. To make it more suitable for downstream learning, the
2D subsamples were subsequently converted into a 3D representation. In Ref. [72], the au-
thors extracted features such as fundamental frequency, shimmer, jitter, harmonic-to-noise
ratio, MFCCs, spectral centroid, and spectral roll-off. These features were then used as
inputs to their respective models. Moreover, in the DiCOVA challenge [77], the authors
extracted 3D MFCCs features along with the ∆ and ∆∆ coefficients. They used a window
size of 1024 samples and a hop size of 441 samples. Additionally [78], employed a two-step
preprocessing approach. First, they generated the mel-spectrum representation from the
recordings using 25 ms frames and 10 ms overlaps. Each frame consisted of 80 mel-scaled
frequencies and their corresponding 80 first derivatives. Subsequently, a transformer model
based on the Mockingjay system [88] was applied. The authors of [79] studied five data
augmentation methods, including time-stretching, pitch-shifting, compression-of-range,
and the addition of background noise, to enhance the audio data. In another study [80], the
authors exploited the Improved Weed Optimization (IWO) algorithm for Feature Extraction
and the Enhanced Hunting Search algorithm for signal selection. Asthma prediction [84]
involved producing the feature vector through the Ripplet-2 transform, which likely cap-
tured relevant information for the task. Lastly, in [85] multiple features were extracted,
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including formant frequencies, intensity, pitch, shimmer, jitter, mean harmonics-to-noise
ratio (HNR), mean autocorrelation, mean noise-to-harmonics ratio (NHR), mean power,
mean amplitude, total energy, standard deviation, MFCCs, and linear prediction coeffi-
cients. These various Feature Extraction techniques aimed to capture different aspects of
the audio signals, providing valuable inputs for subsequent analysis and modeling in the
respective studies.

Alternatively, several researchers employ more sophisticated features extracted from
specialized software like openSMILE [42], PRAAT [89], and the Computational Paralinguis-
tics Challenge (ComParE) [90] datasets from Interspeech 2010, 2013, and 2016. In particular,
openSMILE is extensively employed for audio and speech processing, enabling the genera-
tion of a wide array of features, including low-level descriptors (e.g., spectral and prosodic
features), higher-level descriptors (e.g., emotion and speaker characteristics), and audio
events (e.g., music, laughter, and speech). PRAAT on the other hand, is an open-source
software, which is employed for speech analysis, synthesis, and manipulation. Moreover,
the ComParE software competition focused on computational approaches to paralinguistic
tasks, which involve non-verbal aspects of communication, such as vocal effects, prosody,
and intonation. Specifically, the studies [74–76,82,83,86] utilize the aforementioned software
tools and methods of computational approaches (openSMILE, PRAAT, and ComParE). The
number of features extracted and used with the employment of this software can reach
the order of thousands. For example, openSMILE includes features based on emotion
and intonation beyond common statistical features. In Refs. [75,82,86] 6373 features were
extracted through ComPare2016 and ComPare2013, respectively, in [76] 103 features were
extracted through PRAAT and openSMILE, and in [83] 1582 features in total were extracted
and then normalized with the standard mean and variance normalization. Moreover,
in [74] a data cleansing phase took place, where voice recordings shorter than 500 ms and
cough recordings shorter than 100 ms were discarded while 5% of the /a/ vowel sounds
were trimmed to avoid inhale and exhale effects on the recording. Additionally, three sets
of features were extracted, 6373 features from the ComParE software, 65 features from
PRAAT and Librosa [91], and a 1024 embedding feature vector from a D-CNN (Deep CNN)
model which was trained on the ESC-50 dataset. Lastly, in [13], the researchers processed
the data samples using the PRAAT software. Specifically, they extracted features such as
spectral centroid and roll-off, zero-crossing rate, MFCCs, and the first and second-order
time derivatives of MFCCs.

Regarding the types of models utilized for voice analysis in the cited studies, we can
observe two distinct groups of methodologies. The first group focuses on employing neural
networks for the classification of respiratory diseases, while the second group relies on ML
models that are related to statistical learning theory, such as SVM and RF.

In the studies [13,71,79,84], the first group utilizes neural networks for voice analysis.
Specifically, in [71] the researchers employed a pre-trained state-of-the-art CNN known
as VGG-19. Subsequently, transfer learning techniques were applied to adapt the model’s
weights to the corresponding audio dataset. Notably, the model’s architecture was slightly
modified, wherein the output layer was replaced with a new one featuring a sigmoid
activation function and a single unit. Additionally, two dense layers, each containing
64 and 32 fully connected units, respectively, were introduced. The Adam optimizer
was utilized for training, and the model’s performance was evaluated using the 3-fold
cross-validation technique. In a similar vein [79], also employed a 1D-CNN architecture
while incorporating a data de-noising auto encoder (DDAE) to facilitate automated feature
learning. In particular, the model consists of six 1D CNN layers, average pooling layers, and
fully connected layers with the ReLU activation function, while in the last layer, the Softmax
activation function is used for classification. In Ref. [13], the researchers have developed
a hybrid model that combines the architectural elements of a Long Short-Term Memory
(LSTM/RNN) model. The LSTM component comprises 512 LSTM units and is augmented
with a dropout layer featuring a dropout rate of 0.5, a dense layer, and a Flatten layer.
During training, the Adam optimizer was employed to optimize the model’s parameters,
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and the Rectified Linear Unit (ReLU) activation function was used to introduce non-linearity
to the model. In the context of [84], accordingly, the authors have utilized a Recurrent
Deep Neural Network (RDNN) as a classifier. The RDNN architecture is composed of a
Don-Sigmoid layer and a Record-Sigmoid layer, which are essential components for its
functioning as a classifier in the given context.

Conversely, the studies [72–76,80,82,83,85–87] fall into the second group, employing
models that are based on the statistical learning theory, like SVM and RF, for voice analysis.
It is worth highlighting that SVM is the most commonly used ML model for respiratory
disease classification due to its effectiveness on small and complex datasets. However,
researchers also frequently utilize the Random Forest and K-Nearest Neighbors algorithms
for this purpose.

6. Publicly Available Datasets

Since the COVID-19 pandemic erupted, many scientific research groups have been
involved in providing state-of-the-art respiratory disease detection solutions. Due to this,
several datasets have emerged to help researchers design and evaluate their innovative
solutions experimentally. These datasets focus on respiratory disease classification, cough
detection, respiratory sounds classification, or a combination of them. This section, in
particular, contains the datasets that are publicly available, and which could be utilized by
the community without license concerns. Moreover, because of the nature of the research
in this section, it is worth mentioning that we excluded our policy for filtering the studies
regarding our systematic review. Table 4 presents an overview of the datasets that were
analyzed in this study.

Table 4. Open source Datasets.

Reference Title Description Provider

Suitable for
Respiratory

Disease
Classification

Suitable for
Cough Detection

[92] COUGHVID

Over 25,000
crowdsourced

audio recordings:
Cough—a wide

range of
participant ages,

genders,
geographic

locations, and
COVID-19 statuses

Embedded
Systems

Laboratory (ESL),
EPFL, Lausanne,

Switzerland

X X

[49] COVID-19 Sounds

53,449 audio
recordings, over

552 h in total:
3 Cough,

3–5 Breathing,
3 Speech of users
reading a specific

sentence

University of
Cambridge X X

[39] Coswara

2747 audio
recordings:
Breathing,
Coughing,
Talking—

Crowdsourced
dataset (not

clinically
validated)

Indian Institute of
Science (IISc),

Bangalore
X X
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Table 4. Cont.

Reference Title Description Provider

Suitable for
Respiratory

Disease
Classification

Suitable for
Cough Detection

[69] Respiratory Sound
Database (RSDB)

920 audio
recordings:

Crackles or/and
Wheezes - Digital
stethoscopes and

microphones, each
recording is

expertly annotated

Department of
Informatics
Engineering,
University of

Coimbra, Portugal
and School of

Medicine, Aristotle
University of
Thessaloniki,

Greece

X X

[40] Corp

168 h of 9969 audio
recordings:
Cough—42

different patients
with respiratory

diseases

MARI Lab, Tongji
university X X

[37] Virufy

Combination of
Coswara &

COUGHVID audio
recordings:

Cough—COVID-
19

positive/negative

The Covid
Detection

Foundation
(California
nonprofit

corporation)

X X

[93]
COVID-19 and

Pulmonary
Abnormalities

1734 COVID-19
spectrogram

images of
respiratory sounds:

795 Crackles,
322 Wheezes,
1143 Normal.

Indian Institute of
Science, PES

University, M S
Ramaiah Institute

of Technology,
Concordia
University

X X

[94] Tos-COVID Audio recordings:
Cough

Gov. of Buenos
Aires city X X

[95]

SPRSound:
Open-Source SJTU

Paediatric
Respiratory Sound

Database

2683 audio
recordings and

9089 audio events:
Respiratory Symp-

toms/Sounds
—292 participants.

Shanghai Jiao Tong
University and

Shanghai
Children’s Medical

Center (SCMC)

X X

[96] HF_Lung

Audio recordings:
Lung

Sounds/Symptoms
—Used for
developing
automated
inhalation,

exhalation, and
adventitious sound

detection
algorithms

Taiwan Smart
Emergency and

Critical Care
(TSECC) and

Taiwan Society of
Emergency and

Critical Care
Medicine

(TSECCM)

X X



Sensors 2024, 24, 1173 30 of 37

Table 4. Cont.

Reference Title Description Provider

Suitable for
Respiratory

Disease
Classification

Suitable for
Cough Detection

[97] ESC-50

2000 audio
recordings:

Environmental,
Various,

Cough—Labeled
collection suitable
for benchmarking
methods of sound

classification

Warsaw University
of Technology,

Warsaw, Poland
∼ X

[98] AudioSet

2,084,320 10-s
audio recordings:
Environmental,
Various, Cough,

Respiratory
Symptoms—
Expanding
ontology,

632 human-labeled
audio event classes,

drawn from
YouTube videos

Sound and Video
Understanding

teams, Google LLC
∼ X

To begin with, the COUGHVID [92] dataset is an open-source dataset, which includes
25,000 crowdsourced instances of coughs obtained from both COVID-19-infected and
healthy patients. Another dataset is the COVID-19 Sounds [38] dataset, developed by the
University of Cambridge, which includes recordings of coughs as well as breath and speech
samples. Additionally, the Coswara [39] and the Respiratory Sound Database [69] datasets
are among the most prominent resources. In particular, the Coswara is a crowdsourced
dataset originating from the Indian Institute of Science, specifically designed for COVID-19
research. It contains instances of coughs, speech, and breathing from 2747 users, making it
suitable for various COVID-19 detection applications. Respectively, the Respiratory Sound
Database dataset has gained popularity as it was utilized in the 2017 ICBHI Challenge. It
consists of auscultation recordings that were retrieved using three digital stethoscopes and
a high-quality microphone, involving 920 patients. The audio instances are annotated for
a number of diseases, such as asthma, COPD, LRTI, and URTI. Notably, each respiratory
cycle within the recordings is also annotated based on the existence of crackles, wheezes,
both crackles and wheezes, or the absence of these adventitious sounds, making it ideal for
disease or lower respiratory disease symptom sound classification tasks. Another dataset
for respiratory sound classification is the SPRSound dataset [95], which was created within
the context of IEEE BioCAS 2022 Respiratory challenge [99]. It consists of 2683 records and
9089 respiratory sound events from 292 participants. The authors employed 11 experienced
paediatric physicians to annotate it, using a custom-made software. “HF_Lung” [96]
database stands as the last identified database for lung sound analysis. This database
originally had lung sounds recorded from 18 patients between August 2018 and October
2019. Then, in 2020 the database was updated with data acquired from 261 patients.

Other datasets that focus on cough instances are the Corp [40], which comprises cough
recordings from patients with various respiratory diseases, and the Virufy dataset [37],
which combines cough recordings from the COUGHVID and Coswara’s cough recordings.
Furthermore, the Tos-COVID-19 [94] should be mentioned since it contains cough record-
ings; however, it should be noted that the metadata in this dataset is in Spanish. In terms
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of datasets focused on respiratory sounds the COVID-19 + Pulmonary Abnormalities [93]
dataset stands out, as it is the only dataset containing images, specifically spectrograms,
from COVID-19 patients. It is important to mention that most of the images are generated
and not extracted from real patient recordings. Finally, the ESC-50 [97] and the Audioset [98]
large-scale datasets deserve a mention, as although their primary focus does not align
with the subject covered in this systematic review (even though they contain a number of
instances related to respiratory disease symptoms recordings), they can provide valuable
data and recordings for evaluating the robustness of AI models. Moreover, they can be
exploited to pre-train the neural network models in order to understand the formation of
sound recordings, and then, post-train these models with the data that correspond to the
actual problem.

7. Discussion

In this review, a total of seventy-five (75) studies focusing on the utilization of audio
biomarkers for respiratory symptom and disease identification were shortlisted and cat-
egorized into three domains with respect to the chosen audio biomarker: cough sounds,
lower respiratory symptom (lung/breath) sounds, and voice/speech sounds, chosen for
their research purposes. It is worth noting that, although the number of studies related to
the cough audio biomarker is larger compared to studies related to the other two domains,
the selected studies collectively represent the latest state-of-the-art trends across all three
domains. In summary, the most relevant studies were chosen for each domain, resulting
in an equal distribution of studies per topic. To the best of our knowledge, the included
studies depict the state-of-the-art in this domain.

A remarkable note is the significant rise in the number of studies regarding the
identification and diagnosis of COVID-19, which seems to align temporally with the
outburst of the pandemic. A large proportion of the included studies were published
during the duration of the pandemic, mainly in 2020, 2021, and 2022, and are dedicated
to this topic instead of focusing on a broader range of respiratory diseases. In particular,
COVID-19 affected all three focus areas of this review; among the 33 studies examining
cough sounds, 15 focus their research on COVID-19, whereas; among the 24 on respiratory
sounds classification and symptom identification, 2 studies specifically address COVID-19.
Furthermore, out of the 18 studies on voice/speech analysis, 9 focus on COVID-19. By
combining all three focus areas, these studies constitute approximately one-third of the
total presented.

It is observed that 17 out of the 24 studies examining respiratory sounds primarily
focus on identifying symptoms such as wheezes and crackles, without further examining
the underlying diseases. Additionally, as far as cough-related studies are concerned, one-
third of them mainly focus on recognizing and identifying cough sounds instead of disease
identification. Finally, regarding voice/speech analysis, most of the reviewed literature
focuses on disease identification, with the majority of the studies emphasizing COVID-19.

7.1. Challenges

Elaborating on the aforementioned observations, the current state-of-the-art is capable
of extracting meaningful outcomes through the analysis of audio biomarkers regarding
the successful identification of an existing respiratory disease or creating dependable
patient health monitoring systems. In terms of evaluation, most studies present notable
results and validate the basis of their approaches. Even though there is a large number
of relevant studies, we only identified a few studies that are close to delivering or have
already delivered a final product. This could be attributed to several factors such as the
difficulty in acquiring trustworthy and real-world representing data and data labeling.
Thus, these tasks, which are highly dependent on the data show that it is difficult to create
production-ready software that can be released for public usage.
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7.2. Opportunities

Despite the challenges, many different opportunities arise in the domain of respiratory
disease diagnosis using audio sounds and artificial intelligence. For instance, high-end
devices used to identify intricate respiratory sounds are starting to be accommodated by
smartphones as well. In our view, a breakthrough could emerge from the integration of new
technologies and methodologies. The constant evolution of mobile devices with respect
to processing power and the constant improvement of the modules they integrate (e.g.,
better, more sensitive microphones) can enable a more reliable data collection procedure
and non-invasive health monitoring. Additionally, remote diagnosis systems could be
incorporated into such devices, especially through the advancements occurring in the field
of edge computation. An important observation is that studies until now explore one audio
biomarker. The analysis of more than one sound, simultaneously, may result in improved
(but more complex) systems and models that can provide a more complete representation
of the patient’s health status and the monitoring of disease severity, or even act as reliable
diagnosis-assistive tools for physicians. Additionally, remarkable research could take
place by combining respiratory sound features with other vital signals, bio-parameters, or
bio-imaging features, which could improve the automatic smart diagnosis both for upper
and lower respiratory abnormalities, even in a non-invasive manner. For instance, such
biomarker data could be retrieved from smart IoT (Internet of Things) devices.

Moreover, it is worth noting that the research on collecting more reliable data related
to respiratory symptoms is significant, as the AI problems are data-driven, which can yield
better, robust, and trustworthy solutions regarding the identification of the relevant diseases
or symptoms. Even though our research took place until the 30th of November 2022, several
efforts have arisen lately regarding the creation of benchmark datasets. For instance, the
authors of [100] created a multi-source database that includes respiratory sounds from ICU
COVID-19 patients, along with X-rays, heart sounds, LUS, and ICU parameters.

Finally, AI and audio analysis could be promising for the automatic identification
of comorbidities, which are a significant topic that should be discussed as a short- and
long-term need. Such issues are related to the topic of neurodegenerative diseases linked
with voice features or in automatic intelligent analysis of Premature Atrial Contractions
(PACs) where comorbidities are a key factor.

8. Conclusions

It is nearly impossible to find an individual who has not encountered a respiratory
disease at some point in their life. Traditionally, the assessment of respiratory diseases
involves the expertise of medical professionals skilled in the on-site examination of the
respiratory system through the analysis of respiratory sounds, such as coughing and upper
and lower respiratory tract sounds, as well as vocalizations. However, recent advancements
in the field of ML significantly contributed to the proliferation of research in automating the
diagnosis of these diseases by leveraging the aforementioned respiratory sounds. In this
study, we presented how these advancements in technology enable the intelligent analysis
of respiratory disease.

This comprehensive review, specifically, examined seventy-five (75) studies, catego-
rizing them into three domains: cough sounds, lower respiratory symptom (lung/breath)
sounds, and voice/speech sounds. Although the majority of studies focused on cough
sounds, the selected studies collectively represented the latest state-of-the-art trends across
all three domains. A notable observation was the significant rise in studies dedicated to
identifying and diagnosing COVID-19, coinciding with the pandemic outbreak. This surge
impacted all domains, with a substantial number of publications focused on COVID-19
during this period. Regarding respiratory symptoms’ detection, while it predominantly
relies on specialized external digital stethoscope devices, there’s a burgeoning trend and
notable promise in developing mobile apps for similar purposes.

This rapidly advancing domain shows significant potential in transforming healthcare
practices, both in institutional settings and home environments. Finally, it is worth noting
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that the advancements in edge computing, hardware, and multi-biomarker analysis also of-
fer promising avenues for transcending current limitations and revolutionizing respiratory
healthcare, enabling a more comprehensive understanding of a patient’s health status and
providing valuable diagnostic tools for medical practitioners.
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