
Citation: Liu, S.; Yin, C.; Zhang, H.

CESA-MCFormer: An Efficient

Transformer Network for

Hyperspectral Image Classification by

Eliminating Redundant Information.

Sensors 2024, 24, 1187. https://

doi.org/10.3390/s24041187

Academic Editor: Robert Knuteson

Received: 3 December 2023

Revised: 5 February 2024

Accepted: 7 February 2024

Published: 11 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

CESA-MCFormer: An Efficient Transformer Network for
Hyperspectral Image Classification by Eliminating
Redundant Information
Shukai Liu , Changqing Yin * and Huijuan Zhang

School of Software, Tongji University, Shanghai 201800, China; 2131505@tongji.edu.cn (S.L.);
mszhj@tongji.edu.cn (H.Z.)
* Correspondence: yinchangqing@tongji.edu.cn

Abstract: Hyperspectral image (HSI) classification is a highly challenging task, particularly in fields
like crop yield prediction and agricultural infrastructure detection. These applications often involve
complex image types, such as soil, vegetation, water bodies, and urban structures, encompassing a
variety of surface features. In HSI, the strong correlation between adjacent bands leads to redundancy
in spectral information, while using image patches as the basic unit of classification causes redundancy
in spatial information. To more effectively extract key information from this massive redundancy for
classification, we innovatively proposed the CESA-MCFormer model, building upon the transformer
architecture with the introduction of the Center Enhanced Spatial Attention (CESA) module and
Morphological Convolution (MC). The CESA module combines hard coding and soft coding to
provide the model with prior spatial information before the mixing of spatial features, introducing
comprehensive spatial information. MC employs a series of learnable pooling operations, not only
extracting key details in both spatial and spectral dimensions but also effectively merging this
information. By integrating the CESA module and MC, the CESA-MCFormer model employs a
“Selection–Extraction” feature processing strategy, enabling it to achieve precise classification with
minimal samples, without relying on dimension reduction techniques such as PCA. To thoroughly
evaluate our method, we conducted extensive experiments on the IP, UP, and Chikusei datasets,
comparing our method with the latest advanced approaches. The experimental results demonstrate
that the CESA-MCFormer achieved outstanding performance on all three test datasets, with Kappa
coefficients of 96.38%, 98.24%, and 99.53%, respectively.

Keywords: hyperspectral image classification; transformer; spatial attention; morphological convolution

1. Introduction

With the continuous advancement of spectral imaging technology, hyperspectral data
have achieved significant improvements in both spatial and spectral resolution. Compared
to multispectral and RGB images, hyperspectral images (HSI) possess narrower bandwidths
and a greater number of bands, allowing them to provide more detailed and continuous
spectral information [1–3]. As a result, HSI have demonstrated tremendous potential in
various earth observation fields [4] such as precision agriculture [5,6], urban planning [7,8],
environmental management [9–11], and target detection [12–15]. Consequently, research
on HSI classification has rapidly progressed.

While traditional HSI classification methods, such as nearest neighbor [16], Bayesian
estimation [17], multinomial logistic regression [18,19], and Support Vector Machine
(SVM) [20–23], have their merits in certain scenarios, these methods often have limitations
in data representation and fitting capability, struggling to produce satisfactory classification
results on more complex datasets. In contrast, in recent years, methods underpinned by
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deep learning, thanks to their outstanding feature extraction capabilities, have gradually
become the focus of research in HSI classification.

Convolutional Neural Networks (CNNs) dominate the field of deep learning and are
capable of accumulating in-depth spatial features through layered convolution. As such,
CNNs have been extensively applied to and researched in the classification of HSI [24,25].
Notably, Roy and colleagues [26] introduced a model named HybridSN. This model initially
employs a 3D-CNN to extract spatial–spectral features from spectral bands that have
undergone PCA dimensionality reduction. Subsequently, it uses a 2D-CNN to delve deeper
into more abstract spatial feature hierarchies. Compared to a 3D-CNN, this hybrid approach
simplifies the model architecture while effectively merging spatial and spectral information.
Building on this, subsequent researchers have incorporated one-dimensional convolution
based on central pixels to compensate for spectral information that might be lost after
PCA reduction. Examples of this approach include the Cubic-CNN model proposed by J.
Wang et al. [27] and the JigsawHSI model introduced by Moraga and others [28].

The Vision Transformer (ViT) model [29], which evolved from the natural language
processing (NLP) domain, has also increasingly become a focal point in the field of deep
learning. The ViT model segments images into fixed-size patches and leverages embedding
techniques to obtain a broader receptive field. Furthermore, with the help of multi-head
attention mechanisms, it adeptly captures the dependencies between different patches,
thereby achieving higher processing efficiency and remarkable image recognition perfor-
mance. Consequently, numerous studies have been dedicated to exploring the application
of this model in HSI classification. For instance, a research team proposed the Spatial–
Spectral Transformer (SST) model in [30]. They utilized VGGNet [31], from which several
convolutional layers were removed, as a feature extractor to capture spatial character-
istics from hyperspectral images. Subsequently, they employed the DenseTransformer
to discern relationships between spectral sequences and used a multi-layer perceptron
for the final classification task. Qing et al. introduced SATNet in [32], which effectively
captures spectral continuity by adding position encoding vectors and learnable embedding
vectors. Meanwhile, Hong and colleagues presented the SpectralFormer (SF) model in [33].
This model adopts the Group-wise Spectral Embedding (GSE) module to encode adjacent
spectra, ensuring spectral information continuity, and utilizes the Cross-layer Adaptive
Fusion (CAF) technique to minimize information loss during hierarchical transmission.
X. He and their team introduced the SSFTT network in [34]. This model significantly
simplifies the SST structure and incorporates Gaussian-weighted feature tagging for feature
transformation, thus reducing computational complexity while enhancing classification
performance.In recent studies, researchers have continued to explore more lightweight and
effective methods for feature fusion and extraction based on the transformer architecture.
For instance, Xuming Zhang and others proposed the CLMSA and PLMSA modules [35],
while Shichao Zhang and colleagues introduced the ELS2T [36].

Due to the high correlation between adjacent bands in HSI, there is a significant
amount of redundant information within HSI. Commonly, to mitigate the impact of this
redundancy, the methods mentioned above [26,30,31] preprocess HSI using Principal
Component Analysis (PCA). However, not using PCA leads to a significant decrease in
model prediction accuracy, highlighting the model’s deficiency in extracting key spectral
information. As an unlearnable dimensionality reduction technique, PCA’s process is often
irreversible and can lead to information loss, such as the loss of spectral continuity [37].
Models reliant on PCA may thus produce suboptimal results. In transfer learning or few-
shot image classification tasks, HSI are required to feed a large number of channels into the
model to preserve as much original information as possible. This input of extensive channel
data elevates the demands on feature extractors, necessitating their capability to efficiently
process and extract key information from these numerous channels. Moreover, different
datasets might require dimensionality reduction to different extents, making the selection
of appropriate dimensions for each dataset a time-consuming operation. Therefore, we
propose the CESA-MCFormer, which effectively extracts key information from HSI under
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conditions of limited samples and numerous channels, achieving higher classification
accuracy in downstream tasks without relying on PCA for dimension reduction. To achieve
this, we have incorporated attention mechanisms and mathematical morphology.

Attention mechanisms have been extensively applied in various domains of machine
learning and artificial intelligence. Hu et al. [38] introduced a “channel attention module” in
their SE network structure to capture inter-channel dependencies. Woo et al. [39] proposed
CBAM, which combines channel and spatial attention, adaptively learning weights in
both dimensions to enhance the network’s expressive power and robustness. Meanwhile,
Zhong et al. [40] presented a deep convolutional neural network model, integrating both a
“global attention mechanism” and a “local attention mechanism” in sequence to capture both
global and local contextual information. Inspired by these advancements, researchers began
incorporating spatial attention into HSI classification. Several studies [41–44] combine
spectral and spatial attention mechanisms, enabling adaptive selection of key features
within HSI. However, in HSI classification, a common practice is to segment the HSI into
small patches and classify each patch based on its center pixel. Yet, these methods do
not sufficiently consider the importance of the center pixel. This approach makes the
information provided by the center pixel crucial. Recent studies have recognized this,
such as those cited in [45,46], which employed the Central Attention Module (CAM). This
module determines feature weights by analyzing the correlation of each pixel with the
center pixel. However, considering the phenomena of same material, different spectra and
different materials, same spectra in HSI, relying solely on similarity to the center pixel for
weight allocation might overlook important spatial information provided by other pixels.
Therefore, effectively weighting the center pixel while taking global spatial information
into account remains a challenge.

Mathematical Morphology (MM) primarily focuses on studying the characteristics of
object morphology, processing and describing object shapes and structures using mathe-
matical tools such as set theory, topology, and functional analysis [47]. In previous HSI
classification tasks, researchers often utilized attribute profiles (APs) and extended mor-
phological profiles (EPs) to extract spatial features more effectively [48–51]. However, this
approach typically requires many structuring elements (SEs), which are non-trainable and
thus unable to effectively capture dynamic feature changes. To overcome these limitations,
Roy et al. proposed the Morphological Transformer (morphFormer) in [52], combining
trainable MM operations with transformers, thereby enhancing the interaction between
HSI features and the CLS token through learnable pooling operations. However, this
method involves simultaneous dilation and erosion of spatio-spectral features, where each
SE introduces a significant number of parameters. This not only risks losing fine-grained
feature information during feature selection but also leads to model overfitting and reduced
robustness, especially in scenarios with limited data. Hence, there is substantial room for
improvement in the application of MM in HSI classification.

The core contributions of this study are as follows:

• We designed a flexible and efficient Center Enhanced Spatial Attention (CESA) module
specifically for hyperspectral image feature extraction. This module can be easily
integrated into various models, enhancing focus on areas around the center pixel
while considering global spatial information;

• We introduced Morphological Convolution (MC) to replace the traditional linear
layer feature extraction mechanism in the transformer encoder. MC selects fine-
grained features through a strategy of separating and then integrating spatial and
spectral features, significantly reducing the number of parameters and enhancing the
model’s robustness;

• Utilizing these modules, we developed the CESA-MCFormer feature extractor, capable
of effectively extracting key features from a multitude of channels, supporting various
downstream classification tasks. We conducted in-depth ablation experiments to
provide practical and theoretical insights for researchers exploring and applying
similar modules.
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The rest of the paper is organized as follows: In Section 2, we provide an overview
of the CESA-MCFormer’s overall framework and detail our proposed CESA and MC
modules. Section 3 describes the experimental datasets, results under various parameter
settings, and an analysis of the model parameters. Finally, Section 4 concludes with our
research findings.

2. Methodology

The architecture of CESA-MCFormer is illustrated in Figure 1. For an HSI patch of size
c × h × w, the spectral continuity information is initially extracted through a 3D–2D Conv
Block [52], and the dimensionality is transformed to 64. Subsequently, the HSI feature of
size 64× h×w is fed into the Emb Block for mixing spatial and spectral features, generating
a 64 × 64 feature matrix. Then, a learnable CLS token, initialized to zero, is introduced
for feature aggregation, along with a learnable matrix of size 65 × 64, also initialized to
zero, for spatial–spectral position encoding. After combining the feature map with the
position encoding, it is passed through multiple iterations of the Transformer Encoder for
deep feature extraction, and the extracted features are then input into the Classifier Head
for downstream classification tasks. Next, we will provide a detailed introduction to the
Emb Block and Transformer Encoder.

Figure 1. Overall architecture of CESA-MCFormer.

2.1. Emb Block

Given that the HSI patches input into the model are generally small (with a spatial
size of 11 × 11 adopted in this study), we introduce the Emb Block to directly mix and
encode global spatial features. This approach equips the model with a global receptive field
before deep feature extraction, as illustrated in Figure 2. Since the information provided
by the central pixel of the HSI patch is crucial, CESA is first used to weight information
at different positions, aiding the model in actively eliminating redundant information.
Then, we introduce a learnable weight matrix Wa ∈ R64×64 initialized using Xavier normal
initialization, composed of 64 scoring vectors. By calculating the dot product between
HSI features and each scoring vector, we score the features of each pixel. The scores are
then transformed into mixing weights using the softmax function. Another learnable
weight matrix Wb ∈ R64×64, initialized in the same manner, is introduced to remap the HSI
features of each pixel point through matrix multiplication. Finally, by multiplying the two
matrices, we mix the spatial features based on the mixing weights to obtain the final feature
encoding matrix.
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Figure 2. Overall architecture of EMB Block.The symbol “T” represents the transpose of a matrix.
The symbol “·” represents element-wise multiplication of matrices, and the symbol ”x” denotes
matrix multiplication.

The overall architecture of CESA is illustrated in Figure 3. To comprehensively consider
both global information and the importance of the central pixel, we meticulously designed
two modules: Soft CESA and Hard CESA. Hard CESA, a non-learnable module, statically
assigns higher weights to pixels closer to the center. Soft CESA, conversely, is a learnable
module that uses global information as a reference, enabling the model to adaptively select
more important spatial information. This design aims to effectively integrate both global
and local information, enhancing the overall performance of the model.

Specifically, CESA takes an HSI or its feature map (Fin) as input. Both Hard CESA
and Soft CESA calculate and output the hard probabilistic diversity map (Mh) and the soft
probabilistic diversity map (Ms), respectively. The Mh and Ms maps are added together
and then expanded along the channel dimension to match the size of Fin before being
element-wise multiplied with Fin. Finally, an optional simple convolutional module is used
to adjust the dimensions of the output feature (Fout). The implementation details of both
Hard CESA and Soft CESA are presented in the following sections.

Figure 3. Overall architecture of CESA.

2.1.1. Hard CESA

The output Mh of Hard CESA depends only on the size of Fin and the hyperparameter
K. For a pixel q in Fin, its position coordinates are defined as (x, y), and its spectral features
are denoted by p = [p1, p2, ..., pc] ∈ R1×c. We define qc as the center pixel of the patch,
and its coordinates in the image are defined as (xc, yc). The distance d between qc and q is
defined by the following Equation (1):

d = max(|x − xc|, |y − yc|) (1)
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qw for pixel q is defined as follows in Equation (2):

qw = K − d
h
× (2K − 1) (2)

where h is the length of the Fin. The hyperparameter K (K ∈ [0.5, 1)) controls the importance
gap between the center and edge pixels. As K becomes larger, the weight of the center
pixels becomes larger and the weight of the edge pixels becomes smaller. When K = 0.5, all
pixels in the patch have equal weights, and therefore Hard CESA will not have any effect.

2.1.2. Soft CESA

As shown in Figure 4, Soft CESA processes Fin into three feature maps, F1, F2, and F3.
F1 and F2 are used to represent the overall features of Fin, while F3 is used to introduce the
feature of the center pixel.

Specifically, for a pixel q in Fin, its position coordinates are defined as (x, y), and its
spectral features are denoted by p = [p1, p2, ..., pc] ∈ R1×c. The value of F1 at position (x,
y), denoted as m1(x, y), can be calculated as follows:

m1(x, y) = max(p1, p2, . . . , pc) (3)

The value of F2 at position (x, y), denoted as m2(x, y), can be calculated as follows:

m2(x, y) =
1
c

c

∑
i=1

pi (4)

Figure 4. Overall architecture of Soft CESA.

To effectively extract the center overall feature in Soft CESA, we introduce a central
weight vector r = [r1, r2, ..., rc] ∈ Rc to weight Fin. Therefore, the value of F3 at position
(x, y) can be represented as follows:

m3(x, y) =
1
c

c

∑
i=1

piri (5)

We extract the spectral features of the central pixel and its eight neighboring pixels,
flatten them into a one-dimensional vector, and use this as the central feature vector
vc ∈ R9c. We introduce a matrix Ab ∈ Rc×(9c)composed of c learnable spectral feature
encoding vectors and a vector lb ∈ Rc comprised of c bias terms to weight and sum the
spectral bands at each position. The specific formula for calculating the corresponding r is
as follows:

r = so f tmax(Abvc + lb) (6)
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Finally, we concatenate F1, F2, and F3 along the channel dimension to form the final
feature matrix F. After passing through a convolutional layer with a kernel size of 3 × 3,
a softmax activation function is applied to produce the final soft probabilistic diversity
map Ms:

Ms = sigmoid(conv(F)) (7)

It can be observed that the entire CESA model uses only c × (9c + 1) + (9 × 3 + 1)
learnable parameters, and the parameter c can be flexibly adjusted through the preceding
conv Block. This means that the computational cost of CESA is very low, allowing it to be
easily embedded into other models without significantly increasing the complexity of the
original model.

2.2. Transformer Encoder

The primary function of the Transformer Encoder module is to extract deep spatial–
spectral features through multiple iterations. As shown in Figure 5, in each iteration, HSI
features are first processed through Spectral Morph and Spatial Morph for feature selection
and extraction, followed by an interaction with the CLS token through Cross Attention,
aggregating the spatial–spectral features into the CLS token.

Figure 5. Overall architecture of Transformer Encoder.

To capture multi-dimensional features, we employ a multi-head attention mechanism
in Cross Attention [29]. The input CLS token and HSI features are uniformly divided
into eight parts along the spectral feature dimension, each with a feature length of eight.
For each segmented feature, the CLS token serves as the query q ∈ R1×8, and the matrix
formed by concatenating the CLS token and HSI features is used as the key and value
k, v ∈ R65×8. The calculation method for Cross Attention is as follows:

Xattn = dropout

(
so f tmax

(
(q × wq)× (k × wk)

T
√

l

))
× (v × wv) (8)

In this process, wq, wk, and wv ∈ R8×8are all learnable parameters, while l is the
feature length, set to eight in this study. After obtaining all eight groups of Xattn, they are
reassembled along the spectral feature dimension. Then, they are processed through a
linear layer followed by a dropout layer, resulting in the updated CLS tokenn∗ ∈ R1×64.
This is then added to the input CLS tokenn to produce the final CLS tokenn+1.

Inspired by morphFormer [52], we have also incorporated a Spectral Morph Block and
a Spatial Morph Block into our model. The overall architecture of these two modules is
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identical, as shown in Figure 6. Both modules process HSI features through erosion and
dilation modules. After processing, the Spectral Morph block utilizes a 1 × 1 convolution
layer (corresponding to the blue Conv block in Figure 6) to extract deeper channel infor-
mation, while the Spatial Morph block uses a 3 × 3 convolution layer to aggregate more
channel information. The Morphological Convolution (MC) we propose is represented
by the erosion and dilation modules in Figure 6. Next, we will elaborate on how MC
is implemented.

Figure 6. Overall architecture of the Spectral Morph Block and Spatial Morph Block.

MC’s primary function is to eliminate redundant data during the feature extraction
process, ensuring that as the depth of the encoder increases, the HSI feature retains only piv-
otal information.To accomplish this, we apply multiple learnable Structuring Elements (SEs)
to the HS feature for morphological convolution. Through dilation, we select maximum
values from adjacent features, emphasizing boundary details. In contrast, erosion allows us
to identify the minimum values, effectively attenuating minor details. Additionally, directly
employing SEs might inflate the parameter count, posing overfitting risks. To mitigate this,
we separate the spectral and spatial SEs, significantly reducing parameters and thereby
boosting the model’s resilience.

Specifically, when using SEs with a spatial size of k × k, to maintain the consistency
of input and output dimensions of the module, we first reshape the spatial dimension of
the HS feature into two dimensions and then pad its boundaries, resulting in the feature
matrix H ∈ R(8+(k−1))×(8+(k−1))×64. Next, by adopting a sliding window with a stride of 1,
we segment H into 64 sub-blocks of size k × k × 64, referred to as Xpatch. Subsequently,
we further decompose Xpatch in both spatial and spectral directions. Spatially, Xpatch is
divided into k × k vectors of dimension 64, denoted as {Xa1, Xa2, . . . , Xak×k}. Spectrally,
Xpatch is parsed into 64 vectors of dimension k × k, represented as {Xb1, Xb2, . . . , Xb64}.
We then introduce multiple SEs groups, where each group consists of a spatial vector of
length k × k and a spectral vector of length 64. For simplicity, we name one group of SEs
W, with its spectral vector labeled Wa and the spatial vector Wb. For any given Xpatch and
W, the dilation operation of the morphological convolution is shown in Figure 7.

First, we add each segmented feature vector to the corresponding Wa and Wb at their
respective positions, then take the maximum value to obtain hdil ∈ R1:

hdil(Xai, Wa) = max
j∈{1,2,...,64}

(Xai(j) + Wa(j)) (9)

hdil(Xbj, Wb) = max
i∈{1,2,...,k×k}

(Xbj(i) + Wb(i)) (10)

Then, we introduce two learnable vectors ha ∈ R(k×k) and hb ∈ R64, along with two
learnable bias terms βa and βb. We concatenate the results from the previous step into
two one-dimensional vectors, which are then dot-multiplied with ha and hb, respectively,
and added to βa and βb, resulting in gdil ∈ R1:

gdil(Xa, Wa) = concat(hdil(Xa1, Wa), hdil(Xa2, Wa), . . . , hdil(Xak×k, Wa))× ha + βa (11)
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gdil(Xb, Wb) = concat(hdil(Xb1, Wb), hdil(Xb2, Wb), . . . , hdil(Xb64, Wb))× hb + βb (12)

Figure 7. Overall architecture of dilation block.

Finally, we concatenate the two obtained feature values to form the convolution result
of that Xpatch under the specified Wa and Wb, referred to as fdil ∈ R2:

fdil(Xpatch, W) = concat(gdil(Xa, Wa), gdil(Xb, Wb)) (13)

In actual experiments, 16 groups of W were used in the erosion block. Therefore,
after computing all the W with Xpatch, the final HSI feature size obtained through the
dilation module is 32× 64. Similarly, for any Xpatch and W, the following formula describes
the erosion operation fero(Xpatch, W) in the morphological convolution:

fero(Xpatch, W) = concat(gero(Xa, Wa), gero(Xb, Wb)) (14)

gero(Xa, Wa) = concat(hero(Xa1, Wa), hero(Xa2, Wa), . . . , hero(Xak×k, Wa))× ha + βa (15)

gero(Xb, Wb) = concat(hero(Xb1, Wb), hero(Xb2, Wb), . . . , hero(Xb64, Wb))× hb + βb (16)

hero(Xai, Wa) = min
j∈{1,2,...,64}

(Xai(j)− Wa(j)) (17)

hero(Xbj, Wb) = min
i∈{1,2,...,k×k}

(Xbj(i)− Wb(i)) (18)

Overall, we process the 64 Xpatch using 32 sets of SEs. Specifically, 16 sets are responsi-
ble for the dilation operation, while the other 16 sets handle the erosion operation. This
results in two 32 × 64 feature matrices. After spatial–spectral separation, the required pa-
rameter count for the SEs is reduced from 2× 32× k× k× 64 to 2× 2× 16× (k× k+ 64+ 1).
Additionally, MC operates similarly to traditional convolutional layers, allowing it to di-
rectly replace convolutional layers in models. This attribute endows MC with significant
versatility and adaptability.

3. Results and Discussion
3.1. Dataset Description

To validate the effectiveness of the CESA-MCFormer feature extractor, we tested its
performance in two types of classification tasks. Specifically, for the semantic segmentation
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task, we used the Indian Pines dataset (IP), Pavia University dataset (UP), and Chikusei
dataset; while, for the few-shot learning (FSL) task, the datasets included the IP, UP,
Chikusei dataset, Botswana dataset, KSC dataset, and Salinas Valley dataset. The detailed
information about these datasets is presented in Table 1.

Table 1. Dataset Information.

Dataset Image Size Number of Classes Number of Bands

IP 145 × 145 16 220
UP 610 × 340 9 103

Chikusei 2517 × 2335 19 128
Botswana 1476 × 256 14 145

KSC 512 × 614 13 176
Salinas Valley 512 × 217 16 224

3.1.1. Semantic Segmentation Task

In the semantic segmentation task, we randomly selected 1% of the pixels from the UP
and Chikusei datasets as the training set, with the remaining pixels as the test set. Given
that the Oats class in the IP dataset has only 20 pixels, we randomly extracted 5% of the
pixels from the IP dataset as the training set and the rest as the test set. In constructing the
training set, we did not employ any augmentation methods nor use any dimensionality
reduction techniques on the datasets. The specific number of samples for each category in
each dataset is shown in Tables 2–4.

Table 2. Detailed information on the training and testing data samples for each class in the IP dataset.

Class No. Class Name Training Testing

1 Alfalfa 3 43
2 Corn-notill 72 1356
3 Corn-mintill 42 788
4 Corn 12 225
5 Grass-pasture 25 458
6 Grass-trees 37 693
7 Grass-pasture-mowed 2 26
8 Hay-windrowed 24 454
9 Oats 1 19
10 Soybean-notill 49 923
11 Soybean-mintill 123 2332
12 Soybean-clean 30 563
13 Wheat 11 194
14 Woods 64 1201
15 Buildings-Grass-Trees-Drives 20 366
16 Stone-Steel-Towers 5 88

Total 520 9729

Table 3. Detailed information on the training and testing data samples for each class in the UP dataset.

Class No. Class Name Training Testing

1 Asphalt 67 6564
2 Meadows 187 18,462
3 Gravel 21 2078
4 Trees 31 3033
5 Painted metal sheets 14 1331
6 Bare Soil 51 4978
7 Bitumen 14 1316
8 Self-Blocking Bricks 37 3645
9 Shadows 10 937

Total 432 42,344
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Table 4. Detailed information on the training and testing data samples for each class in the Chiku-
sei dataset.

Class No. Class Name Training Testing

1 Water 29 2816
2 Bare soil (school) 29 2830
3 Bare soil (park) 3 283
4 Bare soil (farmland) 49 4830
5 Natural plants 43 4254
6 Weeds in farmland 12 1096
7 Forest 206 20,310
8 Grass 66 6449
9 Rice field (grown) 134 13,235
10 Rice field (first stage) 13 1255
11 Row crops 60 5901
12 Plastic house 22 2171
13 Manmade (non-dark) 13 1207
14 Manmade (dark) 77 7587
15 Manmade (blue) 5 426
16 Manmade (red) 3 219
17 Manmade grass 11 1029
18 Asphalt 9 792
19 Paved ground 2 143

Total 786 76,806

3.1.2. Few-Shot Learning Task

Given the extensive category requirements for few-shot learning (FSL) training, our
study utilized six datasets, with the Chikusei, Botswana, KSC, and Salinas Valley used for
model pretraining, and the IP and UP datasets for testing. To ensure consistency in input
data sizes across all datasets in the FSL experiments, we standardized the dimensions of
each dataset to 100 using BS-Nets [53].

For the datasets involved in pretraining, we selected classes with over 250 samples,
randomly allocating 50 samples to the support set and 200 to the query set for each class.
Specifically, Chikusei contributed 17 classes, Botswana 8, KSC 9, and Salinas Valley 16,
totaling 50 distinct training classes. After pretraining, we randomly selected 10 samples
from each class in the IP and UP datasets for model fine-tuning and testing.

In our study, during the pretraining on the IP dataset, each task randomly selected 16
out of 50 available classes, following a 16-way, 10-shot method. For the UP dataset, each
training iteration randomly chose nine classes, also using a 10-shot approach. For each
class, the support set consisted of 10 randomly selected samples out of 50, while the query
set used all 200 samples. Moreover, no form of data augmentation was used to expand the
datasets, neither in the pretraining nor in the fine-tuning stages.

3.2. Training Details and Evaluation Indicators
3.2.1. Configuration

All experiments were designed and conducted using PyTorch on a Ubuntu 18.04 x64
machine with 13th Gen Intel(R) Core(TM) i5-13600KF CPU, 32GB RAM, and an NVIDIA
Geforce RTX 4080 16GB GPU.

3.2.2. Training Details

In our semantic segmentation task, we directly classify using the cls token connected
to a fully connected layer, as depicted in the Classifier Head block in Figure 1. The Adam
optimizer is used with a learning rate of 0.001, and CrossEntropy Loss functions as the loss
criterion. For models such as HybridSN [26], Vit [29], SF [33], and SSFTT [34], we maintain
a batch size of 64. For morphFormer [52] and our developed CESA-MCFormer, the batch
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size is set at 32. Table 5 displays the floating point operations (FLOPS) and the number of
parameters for various models.

For the FSL task, we incorporate two sets of trainable weights, summing HSI features
weighted along spatial and spectral directions to create two feature vectors of length 64 each.
These are concatenated with the cls token, forming a final vector of length 192. We average
features of 10 samples from each class in the support set to represent class prototypes,
with classification based on distances between query set features and these prototypes.
For the convolutional network (HybridSN), we alter the final linear layer’s output to a
192-length feature vector for uniformity in feature output length across models. The SGD
optimizer is employed, setting the learning rate at 0.00001 and weight decay at 0.0005.

3.2.3. Evaluation Indicators

We used four quantitative evaluation metrics including overall accuracy (OA), av-
erage accuracy (AA), kappa coefficient (κ), and class-specific accuracy to quantitatively
analyze the effectiveness of CESA. The higher the values of these metrics, the better the
classification performance.

3.3. Semantic Segmentation Task Experimental Results
3.3.1. Classification Results

To verify the advanced nature of our CESA-MCFormer model, we conducted compar-
ative experiments with several recently proposed models. These include HybridSN [26],
Vit [29], SF [33], and SSFTT [34], which originally required PCA for dimensionality re-
duction in their respective papers. Conversely, morphFormer [52] does not require such
reduction. In our experiments, we used a patch size of 11 × 11 as the input for all models,
with K set to 0.8 in Hard CESA.

Tables 6–8 display the classification results of various models without using PCA
dimensionality reduction, while Figures 8 and 9 present the visualization results on the
IP and UP datasets. The experimental data demonstrate that CESA-MCFormer exhibits
superior performance across all datasets, highlighting its exceptional feature extraction
capability in the presence of abundant redundant information. Moreover, as observed
from Figures 8 and 9, the combination of EMB Block and MC to eliminate redundancy
has notably enhanced the model’s accuracy in classifying complex pixels, especially in
edge areas and categories with limited samples. This further underscores the outstanding
performance of CESA-MCFormer.

Tables 9 and 10 present the classification results of HybridSN, SpectralFormer, and SS-
FTT on the IP and UP datasets after applying PCA dimensionality reduction. Specifically,
the dimensionality of the IP dataset was reduced to 30, while that of the UP dataset was
reduced to 15. The results indicate that the performance of HybridSN, SpectralFormer,
and SSFTT improved significantly after PCA reduction. However, their accuracy still falls
short of our CESA-MCFormer model.

Table 5. The floating point operations (FLOPS) and the number of parameters for various models.
“CESA-MCFormer *” refers to the CESA-MCFormer model without the inclusion of the CESA.

Class No HybridSN Vit SF SSFTT morphFormer CESA-MCFormer CESA-MCFormer *

FLOPs (M) 44.80 75.34 24.91 29.88 41.78 32.24 27.67

Params (M) 1.12 0.61 0.11 0.51 0.25 0.36 0.25
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Table 6. Classification accuracy of various models on the IP dataset (without PCA).

Class No HybridSN Vit SF SSFTT morphFormer CESA-MCFormer

1 62.79 39.53 83.72 58.14 97.67 93.02
2 73.45 74.78 64.16 91.81 92.92 96.61
3 70.05 69.29 50.25 94.54 88.07 95.81
4 67.56 57.33 53.78 77.78 91.11 90.22
5 76.86 46.51 57.42 79.91 89.74 95.85
6 94.95 86.29 81.53 98.70 99.42 100.00
7 46.15 42.31 76.92 100.00 100.00 100.00
8 96.70 95.15 92.51 100.00 99.34 99.34
9 63.16 26.32 73.68 89.47 31.58 84.21
10 76.60 73.67 76.71 87.22 95.56 95.12
11 81.86 84.95 83.40 97.51 97.13 97.64
12 44.76 51.33 45.83 82.77 88.28 95.38
13 100.00 100.00 98.97 100.00 97.94 100.00
14 98.17 96.92 99.25 98.83 99.75 99.17
15 59.84 73.50 84.43 85.79 91.53 87.98
16 55.68 95.45 51.14 97.73 100.00 100.00

OA (%) 79.24 78.38 75.59 93.15 94.96 96.82
AA (%) 73.04 69.58 73.36 90.01 91.25 95.65

κ (%) 76.28 75.17 71.96 92.17 94.26 96.38

(a) Training (b) Testing (c) HybridSN (d) Vit

(e) SF (f) SSFTT (g) morphFormer (h) CESA-MCFormer

Figure 8. Visualization results on the IP dataset.
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(a) Training (b) Testing (c) HybridSN (d) Vit

(e) SF (f) SSFTT (g) morphFormer (h) CESA-MCFormer

Figure 9. Visualization results on the UP dataset.
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Table 7. Classification accuracy of various models on the UP dataset (without PCA).

Class No HybridSN Vit SF SSFTT morphFormer CESA-MCFormer

1 89.98 91.97 83.32 94.70 98.00 98.35
2 95.54 93.90 95.38 99.70 99.69 99.92
3 75.07 47.50 59.58 87.73 87.05 89.56
4 94.16 92.81 89.48 96.24 96.74 95.12
5 96.39 99.85 89.41 99.92 93.09 100.00
6 84.39 84.23 85.01 99.38 99.08 100.00
7 82.14 62.54 63.91 90.20 97.04 98.33
8 92.76 91.39 87.46 95.80 95.69 99.18
9 98.40 99.79 99.89 98.51 97.87 97.55

OA (%) 91.70 89.23 88.36 97.40 97.85 98.67
AA (%) 89.87 84.89 83.72 95.80 96.27 97.56

κ (%) 89.00 85.75 84.59 96.56 97.15 98.24

Table 8. Classification accuracy of various models on the Chikusei dataset (without PCA).

Class No HybridSN Vit SF SSFTT morphFormer CESA-MCFormer

1 97.41 94.74 91.58 99.61 99.96 99.15
2 95.23 94.03 99.01 95.30 99.82 99.72
3 0.00 18.37 23.67 46.64 22.61 85.16
4 99.79 97.67 98.44 97.48 98.69 99.88
5 99.79 96.94 97.32 99.98 100.00 99.98
6 97.90 97.26 93.89 91.88 98.54 91.79
7 100.00 100.00 100.00 100.00 100.00 100.00
8 99.74 98.71 99.18 100.00 100.00 99.94
9 99.81 99.89 99.99 100.00 99.77 100.00
10 97.37 99.20 95.30 100.00 100.00 100.00
11 100.00 99.75 100.00 99.83 99.76 100.00
12 96.96 93.74 98.11 96.32 97.14 96.78
13 95.53 95.53 94.86 95.53 95.53 95.53
14 99.79 98.87 99.00 99.97 99.91 100.00
15 99.06 93.19 95.54 100.00 99.30 99.53
16 100.00 98.17 99.54 93.61 100.00 100.00
17 99.03 86.10 97.57 100.00 100.00 100.00
18 79.80 91.41 88.76 90.03 97.85 99.37
19 16.78 31.47 42.66 88.11 88.11 95.10

OA (%) 98.65 97.97 98.38 99.01 99.34 99.59
AA (%) 88.10 88.69 90.23 94.44 94.58 98.00

κ (%) 98.44 97.65 98.13 98.85 99.24 99.53

Table 9. Classification accuracy of various models on the IP dataset (with PCA). “CESA-MCFormer *”
refers to the CESA-MCFormer model without PCA.

Class No HybridSN SF SSFTT CESA-MCFormer CESA-MCFormer *

1 72.09 51.16 100.00 76.74 93.02
2 92.99 78.17 94.91 96.02 96.61
3 98.98 73.86 98.35 95.18 95.81
4 94.67 61.78 100.00 88.89 90.22
5 90.83 84.50 98.69 90.17 95.85
6 99.86 93.94 99.13 99.42 100.00
7 57.69 11.54 73.08 100.00 100.00
8 94.49 100.00 99.56 100.00 99.34
9 68.42 10.53 52.63 100.00 84.21
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Table 9. Cont.

Class No HybridSN SF SSFTT CESA-MCFormer CESA-MCFormer *

10 91.12 85.59 97.29 94.58 95.12
11 96.57 87.78 97.60 98.37 97.64
12 86.50 69.45 84.37 88.28 95.38
13 97.94 98.45 100.00 100.00 100.00
14 98.92 90.67 99.67 99.92 99.17
15 96.45 62.02 93.44 90.16 87.98
16 48.86 81.82 95.45 100.00 100.00

OA (%) 94.60 83.33 96.78 96.23 96.82
AA (%) 86.65 71.33 92.76 94.86 95.65

κ (%) 93.84 80.97 96.33 95.70 96.38

Table 10. Classification accuracy of various models on the UP dataset (with PCA). “CESA-MCFormer
*” refers to the CESA-MCFormer model without PCA.

Class No HybridSN SF SSFTT CESA-MCFormer CESA-MCFormer *

1 98.86 88.82 98.28 98.49 98.35
2 99.96 96.59 99.97 99.87 99.92
3 85.51 71.80 90.38 91.77 89.56
4 92.91 91.16 97.36 95.19 95.12
5 100.00 95.87 100.00 100.00 100.00
6 99.76 79.23 98.49 99.16 100.00
7 97.04 75.08 98.94 98.02 98.33
8 92.76 84.94 91.44 98.30 99.18
9 93.17 92.32 93.06 95.73 97.55

OA (%) 97.69 89.95 97.96 98.56 98.67
AA (%) 95.55 86.20 96.44 97.39 97.56

κ (%) 96.93 86.58 97.29 98.09 98.24

3.3.2. Ablation Experiment

To better understand the roles of CESA and MC within the model, we conducted
several ablation studies on the IP dataset. In these experiments, we continued to adopt the
hyperparameter settings from the previous section. Given the similar overall architecture
of CESA-MCFormer and morphFormer, and the outstanding performance of morphFormer
when compared to other models, we chose morphFormer as our baseline and built upon it
by adding modules.

Table 11 demonstrates the influence of MC and CESA on the final classification per-
formance of the model. It is evident from the table that both modules have significantly
enhanced the OA. Furthermore, when both modules are used in conjunction, there is an
additional improvement in accuracy. However, in contrast to the pronounced improvement
in AA brought about by CESA, the contribution of MC is relatively limited. This can be
primarily attributed to the lower classification accuracy for classes with fewer samples.
In scenarios with limited sample sizes, prior information becomes particularly crucial.
Without the spatial prior information provided by CESA, relying solely on MC to process
hyperspectral features that encapsulate comprehensive spatial information proves to be
more challenging.

To further validate the superiority of CESA, we replaced it with the traditional Spatial
Attention block (SA) and CAM in the CESA-MCFormer model and conducted comparative
experiments. The results, presented in Table 12, demonstrate that CESA achieved the
highest classification accuracy. This is attributed to CESA’s combination of Hard and Soft
components, which not only incorporate prior information but also ensure the learnability
of the entire module. Thus, CESA effectively amalgamates the advantages of SA and CAM,
leading to improved performance.
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Table 11. Ablation study results for CESA and MC. “CESA” stands for replacing the Emb Block,
and “MC” stands for replacing the Transformer Encoder.

CESA MC+ OA (%) AA (%) κ (%)

94.96 91.25 94.26
√ 95.86 93.06 95.27

√ 95.80 91.50 95.21
√ √ 96.82 95.65 96.38

Table 12. Comparative experiments of the traditional Spatial Attention block (SA), CAM, and CESA.

OA (%) AA (%) κ (%)

SA 95.79 91.76 95.19

CAM 95.94 93.17 95.37

CESA 96.82 95.65 96.38

3.4. Few-Shot Learning Task Experimental Results

To assess the generality and effectiveness of CESA-MCFormer with extremely limited
samples, we conducted FSL experiments on the IP and UP datasets, using only 10 samples
per class. The experimental results, as shown in Tables 13 and 14, indicate that CESA-
MCFormer achieved optimal performance on both datasets.

Table 13. Classification accuracy of various models on the IP dataset.

HybridSN SSFTT morphForm CESA-MCFormer

OA (%) 68.90 69.56 71.26 73.29
AA (%) 81.10 81.87 82.97 84.61

κ (%) 65.17 65.85 67.82 70.05

Table 14. Classification accuracy of various models on the UP dataset.

HybridSN SSFTT morphForm CESA-MCFormer

OA (%) 70.81 74.43 74.03 77.54
AA (%) 77.90 79.39 78.90 83.55

κ (%) 63.44 67.17 66.71 71.46

4. Conclusions

This paper presents the CESA-MCFormer feature extractor, which boosts the model’s
feature extraction capabilities with a “selection–extraction” strategy, enabling effective
image feature extraction without reliance on PCA. CESA enables the model to incorporate
spatial prior knowledge guided by an attention mechanism while maintaining the learnabil-
ity of the module. The MC module introduces learnable pooling operations that effectively
filter key information during deep feature extraction. Additionally, CESA-MCFormer
adapts to various classification tasks by modifying the classifier head, and both CESA and
MC modules can be flexibly integrated into other models to improve their feature extraction
performance. Comparisons with other models in semantic segmentation and FSL tasks
confirm the versatility and effectiveness of CESA-MCFormer, and ablation studies of CESA
and MC attest to the efficacy of these two components.

The CESA-MCFormer has demonstrated exceptional versatility in surface object clas-
sification tasks. In future research, we intend to further explore the model’s application
to subsurface exploration tasks (such as soil composition analysis) and are committed to
further optimizing its performance.
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