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Abstract: Interest in developing techniques for acquiring and decoding biological signals is on the
rise in the research community. This interest spans various applications, with a particular focus on
prosthetic control and rehabilitation, where achieving precise hand gesture recognition using surface
electromyography signals is crucial due to the complexity and variability of surface electromyography
data. Advanced signal processing and data analysis techniques are required to effectively extract
meaningful information from these signals. In our study, we utilized three datasets: NinaPro Database
1, CapgMyo Database A, and CapgMyo Database B. These datasets were chosen for their open-source
availability and established role in evaluating surface electromyography classifiers. Hand gesture
recognition using surface electromyography signals draws inspiration from image classification
algorithms, leading to the introduction and development of the Novel Signal Transformer. We
systematically investigated two feature extraction techniques for surface electromyography signals:
the Fast Fourier Transform and wavelet-based feature extraction. Our study demonstrated significant
advancements in surface electromyography signal classification, particularly in the Ninapro database
1 and CapgMyo dataset A, surpassing existing results in the literature. The newly introduced Signal
Transformer outperformed traditional Convolutional Neural Networks by excelling in capturing
structural details and incorporating global information from image-like signals through robust basis
functions. Additionally, the inclusion of an attention mechanism within the Signal Transformer
highlighted the significance of electrode readings, improving classification accuracy. These findings
underscore the potential of the Signal Transformer as a powerful tool for precise and effective surface
electromyography signal classification, promising applications in prosthetic control and rehabilitation.

Keywords: surface electromyography; EMG; transformer; feature extraction; hand gesture recognition

1. Introduction

Surface electromyography (sEMG) signals play a pivotal role in the determination
of hand gestures. These signals are essentially the summation of motor action potentials
generated beneath the skin during muscle contractions. sEMG signals hold great promise
as an interface for discerning hand gestures and find various applications, particularly
in the field of rehabilitation [1–4]. Rehabilitation primarily targets individuals coping
with muscular, neurological, or osteoarticular disorders [5]. The monitoring and analysis
of a patient’s physiological information during the rehabilitation process are of utmost
importance, as this information encompasses both physical aspects, such as muscle force,
and psychological elements, such as the patient’s intentions [6]. The accurate decoding
of sEMG signals is essential to distinguish these aspects. Moreover, applications like sign
language recognition [7] and human–computer interaction [8] also rely on precise decoding
of sEMG signals [8].
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One of the significant challenges associated with sEMG signals is their susceptibility
to overfitting, especially when transitioning between different individuals. When classifiers
trained on data from one person are applied to a new user, their performance tends to be
only slightly better than random chance. Several factors contribute to the variability of
sEMG signals between individuals, including body fat percentage [9], age [10], fatigue [11],
sex, and external factors like power line interference [12] and electrode placement [13].
Consequently, effectively decoding sEMG signals necessitates the deployment of advanced
detection, filtering, processing, and classification algorithms [14].

Typically, the challenge posed by significant variations between individuals is tackled
as a classification problem. In this context, the classifier takes electrode data as inputs and
produces an output corresponding to one of the recognized hand gestures (classes) [15–17].
The underlying idea involves extracting multidimensional features from the signals, rather
than solely relying on amplitude, and employing data analysis and pattern recognition
techniques to predict the intended gesture. Machine learning techniques, such as Sup-
port Vector Machine (SVM) [18] and random forest [19], often serve as the foundation
for classification.

In this work, the power of Transformers is being utilized for the classification of
densely packed signals. Transformers, originally designed for natural language processing,
are being adapted for the task of signal classification by creating a novel method for
signal classification referred to as “Signal Transformer (ST)”. By utilizing their attention
mechanisms and deep neural network architecture, a robust and accurate classification
model is being developed to handle complex signal data. This innovative approach has the
potential to significantly improve the accuracy and efficiency of signal classification across
various applications.

Our study delves into the realm of feature extraction and its impact on classification
accuracy. To explore this, we investigate two distinct techniques for feature extraction
from sEMG signals prior to classification. These techniques encompass the utilization
of the Fast Fourier Transform (FFT) wavelet extraction for feature extraction. The FFT
is an algorithm that efficiently computes the discrete Fourier transform of a sequence,
significantly speeding up the process of analyzing frequencies within a signal [20].

In this research, the newly introduced preprocessing phase plays a pivotal role in
the effectiveness of the Signal Transformer model. A newly introduced preprocessing
pipeline specifically tailored for sEMG signals was developed, involving advanced noise
filtering, normalization techniques, and signal encoding processes. The Transformer model,
traditionally used in natural language processing, was innovatively adapted to tackle the
complex task of sEMG signal classification, leading to the creation of what is termed the
“Signal Transformer”. This adaptation marks a significant departure from conventional
Transformer applications, showcasing a unique approach. Key modifications included
the development of a signal-specific preprocessing protocol; the integration of enhanced
feature extraction layers designed for high-dimensional signal data; the adaptation of
the input layer, initially suitable for embedding words in natural language processing
tasks, to accept continuous signals generated from sEMG electrodes (bearing in mind that
the number of electrodes varies from case to case, necessitating a fixed number of input
parameters for the Transformer without data loss); the introduction of a signal embedding
layer; the optimization of the overall model architecture to suit the high-frequency nature
of bio-signals; and a tailored training approach addressing the stochastic characteristics of
sEMG data. Collectively, these modifications transform the traditional Transformer model
into a more robust and specialized framework for sEMG signal processing. The Signal
Transformer not only demonstrates the potential to extend the boundaries of deep learning
applications but also highlights the possibility of significant advancements in the field of
bio-signal analysis.



Sensors 2024, 24, 1259 3 of 21

2. Literature Review

Gesture recognition, including continuous gesture recognition and sign language
gesture recognition, represents a significant area in computational linguistics and human–
computer interaction. This field focuses on enabling machines to interpret human gestures
as a means of communication or interaction. Continuous gesture recognition involves
tracking and interpreting gestures in a fluid, uninterrupted manner, making it crucial for
real-time applications. Sign language gesture recognition, on the other hand, is dedicated
to translating sign language, used by the deaf and hard-of-hearing community, into text or
speech. This area is vital for creating inclusive technologies that bridge communication gaps.
Both tasks demand high accuracy and real-time processing capabilities to be effective [21].

The fundamental technique for capturing EMG signals involves either the insertion
of intermuscular electrodes (invasive method) or the attachment of surface electrodes
(non-invasive method) to the muscle under investigation, subsequently recording the
signal [22].

The EMG signal, depicted in Figure 1, exhibits a frequency range of 50–500 Hz [12]
and manifests in two states: a steady state and a transient state during muscle activation.
The steady-state EMG potential typically ranges around −80/−90 mV [12], whereas the
contraction potential spans from −5 to 5 mV [14,23].
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Figure 1. Raw EMG signals.

The term “decoding the sEMG” refers to a set of techniques and methodologies aimed
at extracting data from activated skeletal muscles through physiological neural activity.
This extracted information can be employed to control various devices, such as exoskeletons
or prosthetic hands.

EMG signals, by their nature, exhibit complex and highly variable information. Ex-
tracting meaningful insights from these signals necessitates the application of advanced
pattern recognition and data analysis techniques akin to those used in data analysis [24].
Recent studies on sEMG signal decoding revealed that these studies follow similar ap-
proaches, which can be summarized as follows: (1) signal acquisition, (2) preprocessing,
(3) feature extraction, and (4) classification and evaluation.

2.1. Signal Acquisition

Despite the nonstationary characteristics of sEMG signals, they can still be detected
using surface electrodes [25]. Electrodes are typically classified based on their type (gel-
filled or dry electrodes) and density (linear or 2D array) [24]. The sensor used for sEMG
acquisition should adhere to the Nyquist–Shannon theorem [26], ensuring a sampling
frequency that is at least twice the highest frequency of sEMG signals, necessitating a
sampling frequency greater than 1000 Hz.

2.2. Preprocessing

The challenge with raw sEMG data lies in the high noise captured during signal
acquisition, requiring extensive processing for accurate signal decoding. There are primarily
three types of noise in sEMG signals: (1) inherent noise from electronic components,
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(2) power frequency interference from the power system, and (3) noise originating from
the electrodes [25]. Preprocessing, a crucial step before applying Machine Learning (ML)
or deep learning (DL) techniques for sEMG decoding, significantly enhances subsequent
performance. Preprocessing encompasses several key steps, including filtering, rectification,
normalization, and segmentation.

2.2.1. Filtering

Filtering is essential to reduce artifacts in the sEMG signals. In some studies, both
a Band pass filter and notch filter were utilized to extract sEMG signals, while others
recommended a Butterworth filter with specific parameters [27,28].

2.2.2. Rectification

Given that sEMG signals fluctuate between −5 and 5 mV during muscle contrac-
tion [14,23], rectification is a critical preprocessing step, addressing the negative part of the
signal. Two common approaches are full-wave rectification and half-wave rectification,
with full-wave rectification typically being preferred due to its ability to represent the
neural activation signal [29,30].

2.2.3. Normalization

Since sEMG signals exhibit significant variability between individuals, amplitude
normalization is essential for comparing signals across different subjects. Normalization
involves dividing gathered sEMG signals by a reference sEMG value under identical condi-
tions, facilitating inter-subject comparisons and enhancing computational efficiency [6,31].

2.2.4. Segmentation

Segmentation divides the sampled data, post-preprocessing, into segments for subse-
quent feature extraction [32]. The size of the segments should be large enough to properly
extract features from each segment and have a higher classification accuracy [33], but the
length of these segments should also be small to avoid any computational delay in real-time
systems. This was the motive for many studies to investigate the optimum window size for
the sEMG signal [33,34]. The ideal controller delay for prosthetic controlling was found to
be 100–125 ms [32]. As demonstrated in a previous study [35], a window size of 320 ms for
prosthetic control was found to be imperceptible to users. Conversely, a recent investigation
proposed an optimal window size in the range of 100–250 ms [36]. Our literature review
leads to the conclusion that the ideal compromise between system delay and performance,
whether using smaller or larger window sizes, strongly depends on the specific application.

There are two prevalent methods for segmenting sEMG signals: the adjacent windows
method and the overlapping windows method. In the adjacent method, data are partitioned
into predefined, non-overlapping segments, and features are extracted from each segment.
However, this technique has the drawback of leaving the processor idle until the formation
of the next segment. On the other hand, the overlapping windows method involves
segments with overlap between each segment and its predecessor, facilitating the extraction
of additional features [37]. Research has shown that overlapping windows tend to yield
superior classification accuracy [33].

2.3. Feature Extraction

While classifiers can be trained using preprocessed raw signals, better accuracy is typi-
cally achieved by extracting features from these signals prior to model training [27,36,38].
Feature extraction not only enhances classifier performance but also reduces dimensionality,
simplifying subsequent processing and classification [39]. Features can be classified into
three categories: time domain features, frequency domain features, and time–frequency do-
main features [25], with classifiers often using a combination of features from these categories.
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2.3.1. Time Domain Features

Time domain features are evaluated based on signal amplitude variations over time,
eliminating the need for further transformations and benefiting from their simplicity and
low computational resource requirements [37]. A summary for the features is mentioned in
Table A1.

2.3.2. Frequency Domain Features

Frequency domain features, unlike time domain features, cannot be directly derived
from raw data and are obtained by applying the Fourier transform to the signal. These
features encompass the power spectrum density of the signal (PSD) [37]. A summary for
the features is mentioned in Table A2.

2.3.3. Time–Frequency Domain Features (TFD)

TFD combines time and frequency information, allowing the observation of different
frequency components at various time intervals [37]. TFD proves especially valuable in
capturing localized, transient, or intermittent components often overlooked by spectral-
only methods like the FFT [40]. Various methods, such as the continuous wavelet transform
(CWT) and discrete wavelet transform (DWT), are available for signal decomposition in
the time–frequency plane, each offering unique advantages [41]. An array of techniques is
available for signal decomposition in the time–frequency domain, each presenting distinct
advantages. These methods encompass the Choi–William’s distribution (CWD), short-time
Fourier transform (STFT), Wigner–Ville transform (WVT), and the CWT. Within the realm
of time–frequency domain features, one notably effective approach is the wavelet transform
(WT). According to [41], the WT predominantly comprises two distinct methods: the CWT
and the DWT. Unlike the STFT, the WT is not confined to sinusoidal functions alone; it
accommodates a wide array of waveforms, provided they meet predefined criteria. A
summary for the features is mentioned in Table A3.

2.4. Classification and Evaluation

Several Machine Learning and deep learning approaches were employed for decoding
sEMG signals, as summarized in Table 1.

Table 1. Summary of some recent work applying ML and DL for decoding sEMG signals.

Title Dataset Subject/
Sessions (Total)

Classes/
Channels Time Window Feature Classifier Accuracy (%)

[36] NinaPro Database
(DB) 5 10/6 18/8 260 ms CWT Transfer learning

(TL) + CNN 68.98

[40] Private 7/10 5/8 Not mentioned Raw CNN-LSTM 92.7

[42] NinaPro DB1 27/10 52/10 2500 ms Root Mean
Square (RMS) TCN 89.76/NA

[43] NinaPro
DB1-DB5-private 27/10-8/5-8/5 52/10-12/8-

12/8 150ms-na-na Non CNN 71.85-55.31-
78.98

[38] DB 2, 3 and 4 40-11-10/6 17/12-17/12-
12/12 200 ms 18 feature-Raw TL + MLP-TL +

CNN 67.00-68.00

[27] DB1 27/10 52/8 × 16 40 frames
centred Raw + AdaBN TL + ensemble

CNN 56.50-67.40-Na

[44] DB2 40/6 49/12 200 ms Time +
Frequency CViT 80.02

[45] CapgMyo Db A 18/8 8/128 100 ms CNN CNN + LSTM +
TL 94.57

3. Methods

After reviewing the previous work and analyzing their results, accordingly, our system
block was designed as shown in Figure 2. The proposed system is formed from six steps in
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the same order as the block diagram. The system was designed so it can be used in real-time
as the system is optimized for efficient operation on a microcontroller; this efficiency is
obtained from the optimized Transformer architecture used for classification [46].
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3.1. Data Acquisition

To procure our dataset, we opted for open-source resources that could fulfill our
requirements sufficiently. We selected three different datasets, which are NinaPro (Non-
Invasive Adaptive Prosthetics) Project’s NinaPro DB1, as made available through refer-
ences [47,48]. Ninapro datasets were built to benchmark the sEMG-based gesture recogni-
tion algorithms. The dataset includes most of the movements used in everyday life, and
rehabilitation exercises can be divided into three exercises: (1) basic finger movements;
(2) isometric, isotonic hand configurations and wrist movements; and (3) grasping and
functional movements.

Db-a and DB-b are sourced from CapgMyo [49]. These datasets encompass the surface
sEMG recordings associated with eight distinct hand gestures executed by 18 and 20 indi-
vidual subjects, respectively, with each gesture being captured in ten separate trials. The
sEMG signals were meticulously sampled at a rate of 1000 Hz, ensuring high temporal
resolution. The acquisition setup featured a set of sensors comprising eight electrode
arrays, each measuring 8 units in width and 2 units in height. These electrode arrays were
strategically affixed to the right forearm, forming an organized 8 × 16 grid configuration to
capture the nuanced muscle activity patterns.

When constructing the Ninapro DB1 dataset, participants were instructed to pause for
three seconds following each action. Consequently, the predominant class in the dataset
became the resting motion, causing the number of samples for class zero to be twice that
of any other class. This initial setup resulted in our experiment’s outcomes being overly
tailored to class 0, which was deemed overfitting. To address this concern, we implemented
a downsampling procedure aimed at reducing the number of instances in class zero (resting
movement). This was achieved by retaining only the resting periods following the initial
movement while removing subsequent rests after each movement.

3.2. Segmentation

Segmentation was executed by windowing the signals using a 320 ms window with a
100 ms overlap (equating to 32 samples per window with 10 overlapped samples). It was
observed that increasing the number of samples within each segment positively impacted
training accuracy. However, it is important to note that employing larger segments intro-
duces delays in real-time systems. Thus, there exists a trade-off between achieving higher
accuracy with larger window sizes and ensuring real-time performance in applications like
prosthetic control.
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3.3. Filtering the Data

Previous studies that utilized the same databases as our work have typically applied
a Butterworth low-pass filter during signal preprocessing. Consistent with these prior
approaches, we employed a similar filter for our data preprocessing [50–52].

3.4. Feature Extraction

A primary objective of our research is to explore and extract various features from the
signals and employ them as input for the classifier to assess their impact on classification
accuracy. Our approach involves extracting a single feature from each segment, followed
by aggregating the segment values into a single value, thereby reducing the signal’s sample
count. The features utilized in this work encompass (1) FFT and (2) wavelet transformation.
These two features were identified as highly accurate in deep learning-based classification,
as indicated by the findings in the existing literature [53–55]

3.4.1. Fast Fourier Transformation [51]

For digital signals, the FFT facilitates the transformation of signals into the frequency
domain, effectively determining the discrete Fourier transform of the input signal. The FFT
computation is performed using a reduced set of mathematical equations, as expressed by
the following formula:

F(KΩ) =
N−1

∑
n=0

fs(nT)e−j( 2πkn
N ) k = 0, 1, 2 . . . . . . N − 1

where

• F(KΩ) is the discrete signal;
• N is the size of the domain.

3.4.2. Wavelet Transformation [20]

When a wavelet transformation is applied to a signal, it undergoes decomposition
into multiple “wavelets”, each characterized by distinct scales and positions of the primary
function, known as the “mother wavelet”. Continuous wavelet transforms yield two coeffi-
cients: scale and frequency. The fundamental concept behind wavelet analysis involves
expressing a signal as a linear combination of functions, which are obtained by shifting and
dilating the mother wavelet. The continuous wavelet transformation of a continuous signal
f(t) is mathematically defined as

c(a, b) = a
∫

−∞ + ∞s(t)φ(t − ba)dt,

where

• a is the scaling parameter, and a and b are the time-shift parameter;
• φ(t − ba) is the mother wavelet function;
• c(a, b) represents the wavelet coefficients.

In this study, we will focus on the Morlet and Mexican hat (Mexh) wavelet functions,
which are among the most commonly employed wavelet transformations. These wavelet
functions are defined as follows:

Morlet:

ψ(t) = e−
t2
2 cos (5t)

Mexh:

ψ(t) =
2√

3 4
√

π
e
−t2

2

(
1 − t2

)
where
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• t is the time sequence.

3.5. Classification using ST

The initial step in our implementation process involves the creation of an image-
shaped matrix derived from the sEMG signals subsequent to the feature extraction and
normalization procedures. The formation of the image’s shape entails reshaping the 10 elec-
trode readings from a 1D vector at time t (resulting in a 10 × 1 array) into a 2 × 5 matrix.
To elaborate, the input signals to the classifier at time t are represented as

X(t) = [x1(t), x2(t), . . . . . . . . . ..x10(t)]

where

• X(t) is the input 1D vector to the classifier at time t;
• X1, X2 . . .. . . X10 are the output readings of each electrode at time t after the feature

extraction step.

The input to the classifier assumes the following format:

X(t) =
[

x1 x2 x3 x4 x5
x6 x7 x8 x9 x10

]
Following this, each resulting image adopts a final shape of (2 × 5). While several

methods were explored for creating multi-layer matrix rather than using a 1 dimension
matrix, such as retaining the electrode readings in the first channel and incorporating
different features in each layer, no significant differences were observed in the final training
accuracy. This matrix is aptly referred to as “Matrix signals”.

Subsequently, we performed data augmentation and normalization on the matrix
signals. These signals underwent normalization and resizing, with additional data augmen-
tations applied, including random flipping and rotation. Each matrix signal was resized to
72 × 72.

3.5.1. ST Architecture Overview

Taking a top-down approach, we delve into the architecture of the ST, commencing
with an overview of its structure and, subsequently, providing a detailed description of
each component. An overview of the architecture is visually depicted in Figure 3. The
architecture can be dissected into five key steps:

1. Split the matrix signals into patches;
2. Patch embeddings;
3. Position embeddings;
4. Transformer encoder;
5. Multilayer perceptron head.

Split the Matrix Signals into Patches

In order to adapt Transformers for processing 2D matrix signals, we first divide the
matrix signals into distinct patches. For a matrix signal with the shape

x ∈ RH×W×C

It shall be split into a sequence of 2D patches with shapes

xp ∈ RP2×C,

where

• (H, W) is the resolution of the original image (height and width);
• C is the number of channels of the matrix (1 in our case);
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• (P, P) is the resolution of the image patch.

The resulting number of patches will equal

N = HW/P2
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Patch Embeddings

The patches from the matrix signals, typically 16 × 16 in size, are then transformed
into a D-dimensional vector using an embedding matrix E. This transformation aims to
flatten the patches for compatibility with the Transformer, which only accepts a 1D input
sequence of token embeddings.

Position Embeddings

In this step, the ST introduces the patch-embedded matrix as a class token (CLS token),
instructing the model to classify the matrix signals. This forms an (N + 1) × D-dimensional
vector, z. At the final classification step, the classification head is exclusively connected to
the representation of the first token in the output of the final Transformer encoder head.
This initial token serves as the image representation.

Additionally, position encoding is incorporated to indicate the original positional
information of the patches within the original matrix signals. This enables differentiation
between patches derived from various locations within the matrix signals. Importantly,
the Transformer lacks inherent knowledge of the patch order, distinguishing it from Con-
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volutional Neural Networks (CNNs). The combination of these two steps is represented
as follows:

z0 =
[

xclass; x1
pE; x2

pE; . . . .; ; xN
p E

]
+ Epos, E ∈ R(P2.C)×D, Epos ∈ R(N+1)×D

where

• z0 signifies the input sequence of embeddings for the Transformer encoder;
• xclass is the prepended learnable class token;
• xn

p is the sequence of embedded patched;
• E is the embedding matrix;
• Epos is the position embedding.

Transformer Encoder

Our work employs the same Transformer encoder structure as utilized in [53], com-
prising alternating layers of multi-headed self-attention (MSA) and multi-layer perceptron
(MLP). The configuration of the Transformer layers is articulated as follows:

z′l = MSA(LN(zl−1)) + zl−1 1 = 1 . . . . . . . L

zl = MLP
(

LN
(
z′l
))

+ z′l 1 = 1 . . . . . . . L

where

• zl is the patch sequence representation output at layer l of the network;
• (LN) is the layer norm representation applied.

The patch sequence representation, denoted as zl , traverses the Transformer block
layers. In this process, it first undergoes layer normalization (LN), followed by multi-
headed self-attention (MSA). Subsequently, a residual connection is introduced from the
output representation of the preceding layer, zl−1. Layer normalization is applied once
more before feeding the sequence to the MLP. This multi−layer perceptron output is also
coupled with the residual connection from the intermediate representation z′l .

Multilayer Perceptron Head (Classification Head)

The fifth and final step revolves around classification. The current work utilizes the
first token, derived from the CLS token, from the output of the final Transformer layer (z0

l ).
This token is directed to a feed-forward neural network (MLP) for the classification task.
The construction of this step can be outlined as follows:

y = LN
(

z0
l

)
where

• y is the predicted class;
• z0

l is the first token of the Transformer’s final layer output.

3.6. Parameters Selection

Various parameters and hyperparameters required adjustment in our configuration
process. These included determining the appropriate learning rate, specifying the number
of Transformer heads for utilization, and opting for CWT as our method of choice. It
is important to highlight that CWT exhibits significant variability based on the mother
frequency employed; hence, we explored a range of mother frequencies to identify the
most effective one. Additionally, when selecting the CWT, it is crucial to consider the scale,
which, in the context of CWT, pertains to the measurement of how wavelets are stretched
or compressed concerning their frequency and time domains.
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Given our objective of establishing a single model applicable to all our datasets, we
adopted a systematic approach to parameter and hyperparameter selection. Specifically,
within the Ninapro DB-1 dataset, subjects 1, 7, and 22 were randomly chosen as representa-
tives for this process. In the case of datasets, CapgMyo DB-A subjects 1 and 7 were similarly
selected for parameter tuning, and a single subject 1 was chosen CapgMyo DB-B. Regarding
the choice of mother frequency for the wavelet transformation, we considered two options:
the Mexican hat and the Morlet Transform due to their established effectiveness and wide
applicability in signal analysis. In the exploration of scales, we investigated three distinct
ranges: scales ranging from 1 to 10, scales from 1 to 20, and scales spanning from 1 to 100.
These deliberate selections were made to ensure a robust and adaptable model for our
diverse datasets. The results are summarized in Tables 2–5.

Table 2. Learning rate variations and performance metrics for different datasets and subjects (highest
in bold).

Models Accuracy for Learning Rate
of 0.001

Accuracy for Learning Rate
of 0.0001

Accuracy for Learning Rate
of 0.00001

NinaPro DB1-subject 1 88.13 89.85 85.54

NinaPro DB1-subject 7 87.19 88.52 84.61

NinaPro DB1-subject 22 88.15 89.85 86.71

CapgMyo-A-subject 1 92.56 94.56 94.61

CapgMyo-A-subject 7 78.9 78.39 78.22

CapgMyo-B-subject 1 88.21 89.1 88.8

Average: 76.69 77.87 75.91

Table 3. Number of transformer heads variations and performance metrics for different datasets and
subjects (highest in bold).

Models Accuracy for 4 Transformer
Heads

Accuracy for 8 Transformer
Heads

Accuracy for 16 Transformer
Heads

Nina-subject 1 90.34 89.68 90.13

Nina-subject 7 87.56 87.6 87.8

Nina-subject 22 91.99 92.43 91.77

CapgMyo-A-subject 1 94.22 94.61 92.83

CapgMyo-A-subject 7 77.83 78.22 80.06

CapgMyo-B-subject 1 88.8 89.1 87.4

Average: 78.29 78.44 76.49

Table 4. Morlet wavelet parameters and performance metrics for different scales, datasets and subjects
(highest in bold).

Models Accuracy for Morl Scale 1–10 Accuracy for Morl Scale 1–20 Accuracy for Morl Scale 1–100

Nina-subject 1 89.09 89.22 89.18

Nina-subject 7 88.31 88.42 87.41

Nina-subject 22 91.99 92.39 91.95

CapgMyo- A-subject 1 94.17 94.11 94.28

CapgMyo- A-subject 7 78 78.67 78.94

CapgMyo- B-subject 1 88.28 88.11 87.94

Average 78.3 78.48 78.28
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Table 5. Mexican hat wavelet parameters and performance metrics for different scales, datasets and
subjects (highest in bold).

Models Accuracy for Mexh Scale 10 Accuracy for Mexh Scale 20 Accuracy for Mexh Scale 100

Nina-subject 1 89.38 88.64 88.64

Nina-subject 7 88.46 87.6 87.84

Nina-subject 22 91.84 92.02 91.99

CapgMyo-A-subject 1 73.17 74.83 75.33

CapgMyo-A-subject 7 81.00 77.72 79.00

CapgMyo-B-subject 1 89.78 80.11 89.56

Average 78.93 78.48 78.72

Hence, a learning rate of 0.0001 and 8 Transformer heads were selected, and the CWT
will employ the Mexican hat as the mother frequency, with scales ranging from 0 to 10. The
model’s hyperparameters are detailed in the following Table 6.

Table 6. Hyperparameters used for the training.

Batch
Size

Matrix
Signal Size

Num of
Epochs

Eval
Steps

Learning
Rate

Weight
Decay

Transformer
Layers

Input
Patch Size

MLP Head
Size

55 72 × 72 8 100 0.0001 0.0001 8 6 2048 × 1024

3.7. Evaluation

Based on the insights derived from our literature review, our research delves into
the evaluation of classifiers, with a particular focus on inter-subject classification. In this
context, we aim to assess the model’s performance using data from the different subjects
and across different sessions, where electrodes are intentionally removed and subsequently
reattached for each session.

To facilitate a meaningful comparison between our research and previous studies
utilizing the NinaPro DB1 dataset, we adopt a consistent evaluation approach as employed
in [50–52,56,57]. This evaluation method entails a 30–70 train–test split, albeit with spe-
cific criteria. Initially, a new model is initialized randomly for each subject, and training
ensues on seven repetitions (i.e., repetitions 1, 3, 4, 6, 8, 9, and 10), followed by testing on
three distinct repetitions (namely, repetitions 2, 5, and 7). The accuracy is computed for
each individual subject, and subsequently, an average is calculated to derive the overall
model accuracy.

For experiments conducted on the CapgMyo DB-a and DB-b datasets, we adhere to
a training strategy akin to that described in [50,56]. Specifically, our model is trained on
half of the available trials and subsequently tested on the remaining trials. This training
methodology aligns with the approach of utilizing odd-numbered trials for model training
and even-numbered trials for testing.

4. Results and Discussion

Three models were created for each dataset (in total, nine models). Table 7 summarizes
the data for these models.

Afterward, all the models were evaluated on all the subjects for each dataset; then, the
results were averaged to determine the final training accuracy, Macro F1 score, and Micro
F1 score.
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Table 7. Summary of the models that were training.

Model Number Data Set Feature Extracted Model Name

1 Ninapro DB1 Raw Data ST-Nina-RAW

2 Ninapro DB1 Fast Fourier Transform ST-Nina-FFT

3 Ninapro DB1 CWT—Mexican hat ST-Nina-MEXH

4 CapgMyo DB A Raw Data ST-Capg-A-RAW

5 CapgMyo DB A Fast Fourier Transform ST-Capg-A-FFT

6 CapgMyo DB A CWT—Mexican hat ST-Capg-A-MEXH

7 CapgMyo DB B Raw Data ST-Capg-B-RAW

8 CapgMyo DB B Fast Fourier Transform ST-Capg-B-FFT

9 CapgMyo DB B CWT—Mexican hat ST-Capg-B-MEXH

Accuracy and F1 (micro and macro) scores are chosen for model evaluation because
they provide a comprehensive assessment of a model’s performance, especially in imbal-
anced datasets. Accuracy measures the overall correctness of the model, while F1 scores
consider both precision and recall, which is crucial for models where false positives and neg-
atives carry different costs. Micro F1 calculates metrics globally by counting the total true
positives, false negatives, and false positives, ideal for balanced class distribution. Macro
F1 averages the metrics for each class without considering class imbalance, highlighting
performance in minority classes.

4.1. Training on NinaPro DB1

It was observed that training the model on the NinaPro DB1 suggests that the choice
of feature extraction method can have a noticeable impact on model performance. While
FFT showed a decrease in accuracy, CWT MEXH demonstrated a performance close to that
of raw data, highlighting its potential for capturing relevant information with very low F1
Micro and Macro Scores. Results summary are found in Table 8.

Table 8. Summary of the results of the three models for NinaPro DB1.

Model Name Accuracy (%) F1 Macro Score (%) F1 Micro Score (%)

ST-Nina-RAW 85.97 14.25 57.90

ST-Nina-FFT 85.30 13.27 61.74

ST-Nina-MEXH 85.92 14.14 58.88

4.2. Training on CapgMyo DB A

When training the model on the CapgMyo DB-A dataset, the FFT on the data slightly
improved the accuracy to 74.90%, with the F1 Macro Score maintaining a similar level at
31.30%, while the F1 Micro Score remained at 70.00%. Interestingly, when Continuous
Wavelet Transform with the Mexican hat wavelet applied as the feature extraction method,
the accuracy showed a slight decrease to 72.90%. However, both the F1 Macro Score and
F1 Micro Score experienced reductions, reaching 29.47% and 67.27%, respectively. Results
summary are found in Table 9.

Table 9. Summary of the results of the three models for CapgMyoDB A.

Model Name Accuracy (%) F1 Macro Score (%) F1 Micro Score (%)

ST-Capg-A-RAW 77.79 30.70 70.60

ST-Capg-A-FFT 79.90 31.30 70.00

ST-Capg-A-MEXH 77.90 29.47 67.27
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4.3. Training on CapgMyo DB B

Similarly, it can be observed that a marginal improvement in accuracy is achieved
when applying the FFT as the feature extraction method for the input data. This slight
increase in accuracy is accompanied by a modest rise in the F1 Macro score. However, it is
noteworthy that the F1 Micro and Macro scores for this dataset remained relatively low.
Results summary are found in Table 10.

Table 10. Summary of the results of the three models for CapgMyoDB B.

Model Name Accuracy (%) F1 Macro Score (%) F1 Micro Score (%)

ST-Capg-B-RAW 71.36 25.59 58.6

ST-Capg-B-FFT 72.92 27.00 61.96

ST-Capg-B-MEXH 71.57 25.94 58.36

Generally, the lower F1 Micro and Macro Scores can be attributed to several factors.
First, the complexity of the gesture recognition task and the variability in hand movements
across subjects may lead to challenges in achieving high precision and recall rates. Addition-
ally, the relatively small size of the training dataset and potential class imbalance can impact
the overall performance metrics. Furthermore, the choice of feature extraction method
and model architecture can influence the model’s ability to capture subtle variations in the
electromyographic signals associated with different hand gestures.

The notable disparity in accuracy between the FFT-based feature extraction method
when applied to the CapgMyo datasets (DB-A and DB-B) versus the NinaPro DB1 dataset
can be attributed to the sampling rate at which the EMG data was recorded. It was
discovered that the NinaPro DB1 dataset was captured at a significantly lower sampling
rate of 100 Hz. This sampling rate is considerably below the recommended frequency
range for sEMG signals, which typically falls within the range of 5–500 Hz, necessitating
a sampling frequency of 1000 Hz or higher for accurate signal representation. The use of
dry electrodes, known to be less accurate and susceptible to motion artifacts compared
to gel-based electrodes, further exacerbated the data quality issue in the NinaPro dataset.
Consequently, the inadequate sampling rate and potential information loss in capturing
EMG signals played a crucial role in the observed reduction in accuracy when applying FFT
to the NinaPro DB1 dataset. In contrast, the CapgMyo datasets were recorded at the optimal
sampling rate of 1000 Hz, resulting in more accurate and complete signal representation,
which likely contributed to the improved accuracy observed when using FFT for feature
extraction in these datasets.

4.4. Compared to Previous Work

For evaluating the model, various evaluation techniques were identified, including
inter-subject and inter-session assessments. The inter-subject evaluation focuses on the
performance of models across different subjects. This approach captures the variability
inherent among various subjects, making it ideal for assessing the generalizability of a
model. On the other hand, inter-session evaluation deals with the model’s performance
across multiple sessions for the same subject. It often results in higher accuracy due to
the consistency of the subject’s data but may lack generalizability [27]. The present work
will focus on inter-subject evaluation, this method is crucial for determining the model’s
generalizability, as it encompasses the variability inherent among different subjects. The
Table 11 show a comparison between previous works with different evaluation methods.
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Table 11. Summary of previous work that used the same DB (CapgMyo DB A) and same evalua-
tion method.

Reference Database Algorithm Accuracy Evaluation Method

[58] Ninapro DB1 Self-Learning 40.24 Inter-subject

[59] Ninapro DB1 SVM 75.2% Inter-subject

[57] Ninapro DB1 CNN 78.75% Inter-subject

[52] Ninapro DB1 Random Forest 75.32% Inter-subject

[52] Ninapro DB1 CNN 66.60% Inter-subject

[56] Ninapro DB1 CNN 78.90% Inter-subject

[51] Ninapro DB1 CNN 70.48% Inter-subject

[50] Ninapro DB1 CNN 85.00% Inter-subject

[60] Ninapro DB1 CNN 85.50% Inter-subject

[61] Ninapro DB1 CNN + Attention 86.00% Inter-Session

[62] Ninapro DB1 CNN 91.40% Inter-Session

[58] CapgMyo A Self-Learning 76.31% Inter-subject

[63] CapgMyo A Linear Regression 77.57% Inter-subject

[63] CapgMyo A Position weight 75.00% Inter-subject

[64] CapgMyo A MLP 90.50% Inter-Session

[58] CapgMyo B Self-Learning 79.86% Inter-subject

[59] CapgMyo B SVM 75.40% Inter-subject

[64] CapgMyo B MLP 90.30% Inter-Session

In the case of NinaPro DB1 and CapgMyo DB-A, a comparison with prior studies
reveals that the proposed approach excels over most models that adopted a similar strategy
(the models with higher accuracy are not evaluated in the same method). Notably, it
surpasses all other models that utilize the same strategy, except for one particular method.
This observation highlights the impressive performance of the signal Transformer in sEMG
signal classification tasks, even though the existing literature tends to emphasize the
high accuracy achieved by CNNs. However, it is worth noting that when comparing
results with CapgMyo DB-B [58], the previously mentioned method still outperforms the
proposed approach.

When analyzing the internal representations of the Signal Transformer, it could also be
applied to the presented matrix signals topology. The first layer of the Signal Transformer
performs a linear projection of flattened patches into a lower-dimensional space. The
learned embedding filters exhibit plausible basis functions for representing fine structures
within each patch. Position embeddings are then added to the patch representations,
encoding distance and capturing the row–column structure in the matrix signals. The
position embeddings effectively represent 2D matrix signal topology, explaining why
hand-crafted 2D-aware embedding variants do not yield improvements. The self-attention
mechanism allows the Signal Transformer to integrate information across the entire matrix
signal, even in the lower layers. Some attention heads attend to most of the image in the
early layers, demonstrating the model’s ability to integrate information globally. In other
terms, it gives insight for localizing the space of interest in the matrix signals (attention
distance), i.e., which electrode readings affect the classification more than the other electrode
readings. The attention distance increases with network depth, and the model attends to
semantically relevant image regions for classification.
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5. Conclusions

This study marks a significant advancement in the domain of sEMG signal recognition
by pioneering the use of Signal Transformers, diverging from the conventionally favored
convolutional neural networks (CNNs). By ingeniously converting sEMG signals into
image-shaped matrices, we capitalized on the robust capabilities of standard Transformer
encoders, predominantly used in natural language processing. This innovative approach
not only enhanced the recognition process but also introduced a versatile methodology
adaptable to various signal types.

Our findings compellingly demonstrate that the Novel Signal Transformer consistently
outperforms most existing CNN architectures in sEMG signal classification. This superior
performance is attributed to its ability to meticulously adapt to the matrix signals’ topology,
an aspect where traditional CNN architectures lag. The initial layer’s adept linear projection
captures the intricate structures within patches, while the strategic addition of position
embeddings intricately maps the 2D matrix signals topology. Notably, the simplicity of
this method outshone more complex, hand-crafted 2D-aware embedding variants, under-
scoring the elegance and effectiveness of the ST approach. A standout feature of the Signal
Transformer is its self-attention mechanism, which facilitates a comprehensive integration
of information across the spectrum, even in the initial layers. This mechanism is adept at
discerning and focusing on the most pertinent regions within the matrix signals, thereby
determining the influence of specific electrode readings on the classification outcome. As
the network delves deeper, the attention span broadens, ensuring that the model remains
attuned to semantically relevant regions for a more accurate and nuanced classification.

These findings not only challenge the prevailing biases favoring CNNs but also open
up a plethora of possibilities for sEMG signal analysis and other related applications.
They pave the way for further exploration and refinement of Transformer-based models
in signal processing. Looking ahead, we envision extending this innovative approach
to a wider array of signal types and classification tasks, potentially revolutionizing the
way we interpret complex biological signals and their applications in medical technology
and beyond.
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Appendix A

List of the time domain features:
There exists a collection of over 27 time domain features, and Table A1 provides a

concise overview of a subset of these features. The associated formulas are derived by
partitioning the signal x into windows of length L, where xi,k denotes the kth element
within the ith window.
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Table A1. Summary of the time domain features.

Feature Formula Explanation

Mean Absolute Value (MAV) [65] MAV (xi) = 1
L ∑L

k=1
∣∣xi,k

∣∣ The moving average of the signal.

Waveform length (WL) [66] WL (xi) = ∑L
k=1

∣∣xi,k − xi,k−1
∣∣ Offers a simple characterization of the

amplitude, duration, and frequency of
the signal.

Zero Crossing (ZC) [36]

{
xi,k > 0 and xi,k+1 < 0} or{
xi,k > 0 and xk+1 < 0} and

|xk − xk+1| ≥ ϵ

Counts the frequencies at which the signal
passes through zero (a threshold ∈> 0
is used to avoid noise).

Variance (VAR) [24] VAR = 1
L ∑L

k=1 x2
i,k An index to the power of the signal.

Root Mean Square (RMS) RMS(xi) =
√

1
L ∑L

k=1 x2
i,k

Also known as the quadratic mean.
Related to the standard deviation when
the mean of the signal = 0.

Average Amplitude Change (AAC) [36] AAC = 1
L

L
∑

k=1

∣∣xi,k+1 − xi,k
∣∣ Shows the mean value by which the

amplitude of the signal changes

Slope sign change (SSC)
[36]

ssc =
(x i,k − xi,k−1

)
∗(x i,k − xi,k+1

)
≥ ϵ

Measures the frequency at which the
signal changes the slope sign (derivative).

Skewness (SKEW)
[36]

SKEW =
∑L

k=1 (x i,k−xi)
3

L∗σ3

Where σ is the standard deviation

Measures the asymmetry of
the distribution.

Autoregressive coefficient (AR) [36]

xi,k =
P
∑

j=1
ρjxi,k−j + ϵt

Where p is the model order and ρj is
the jth coefficient of the model and ϵt is
the residual noise

Aims to predict the future values of the
signal based on the weighted average of
the previous data. It shows each sample
point as a linear combination of previous
samples and an error.

Integrated EMG (IEMG) IEMG(xi) =
L
∑

k=1

∣∣xi,k
∣∣ Returns the absolute sum of the segment.

Myopulse Percentage Rate (MYOP) MYOP = l
L

L
∑

K=1
i f (|xi| > threshold)

Shows the mean absolute value of the
segment of the windows that is larger
than an amplitude threshold value.

Temporal Moment (TM) TM =

∣∣∣∣ 1
L

L
∑

K=1
xorder

i,k

∣∣∣∣
The 1st order is the MAV, and the 2nd
order is the variance; thus, it usually
starts from the 3rd order. It is a statistical
analysis technique that can also be used
as a feature.

V-order (VO) [67] VO =

(
1
L

L
∑

K=1
xorder

i

) 1
order According to [6] it gives an insight into

the force of muscle contraction.

Mean Absolute Derivative (MAD) MAD = 1
L

L
∑

k=1

∣∣xi,k − xi
∣∣ Shows the distance between each sample

of the window and the mean.

where xi: Represents the signal or a specific sample (i) in the signal; L: Denotes the length of the signal or the
number of samples in the signal; K: Indicating the index of the current sample in the signal; ρ: Standard deviation
of the signal.

List of the frequency domain features:
The following table provides a condensed summary sourced from [67] of several of

these features. The formulas are computed by segmenting the signal x into windows of
length L, with xi,j representing the jth element within the ith window. These calculations
involve the signal’s frequency f and power spectrum p.
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Table A2. Summary of the frequency domain features.

Feature Formula Explanation

Mean frequency (MNF) MNF =
∑M

j=1 fi,j Pi,j

∑L
k=1|xi,j|

The average frequency.

Median frequency (MDF) MDF
∑

j=1
Pi,j =

M
∑

j=MDF
Pi,j =

1
2

M
∑

j=1
Pi,j

The frequency divides the spectrum into two
regions that are equal in amplitude.

Mean power frequency (MNP) MNP =
∑M

j=1 Pi,j

M
The average power of the power spectrum.

Peak frequency (PF) PKF = max
(

Pi,j )
where j = 1, 2 . . . . . . .M.

The frequency corresponds to the highest power.

Total power (TTP) TTP =
M
∑

j=1
Pi,j

A summation of the sEMG power spectrum.

Frequency ratio (FR)

FR =
∑ULC

j=LLC Pi,j

∑UHC
j=LHC Pi,j

where ULC and LLC are the upper- and
lower-cutoff frequency of the
low-frequency band, and UHC and LHC
are the upper- and lower-cutoff frequency
of the high-frequency band, respectively.

The ratio between the highest and lowest
frequency components of the sEMG signals used
to distinguish between the contraction and
relaxation of the muscles.

Power spectrum ratio (PSR)
PSR = P0

P =
∑

fo+n
j= fo−n

Pi,j

∑∞
j=−∞ Pi,j

Where f0 is a feature value of the FPK,
and n is the limit for integration

The ratio between the energy (nearly the
maximum value of the sEMG power spectrum)
and the energy P, which is the whole energy of
the sEMG power spectrum.

List of the time–frequency domain features [20]:
A selection of time–frequency features is presented in the table below.

Table A3. Summary of the time–frequency domain features.

Feature Formula Explanation

Continuous Wavelet transform (CWT)

CWT(a, b) = 1√
a

∫ +∞
−∞ x(t)ψ∗

(
t−b

a

)
dt

where ψ (t) is the mother wavelet, a is a
scale parameter and b is a
translation parameter

Uses every possible wavelet in a range of
locations and scales through the changing
parameters and b.

Discrete Wavelet Transformation (DWT)

DWT(n, m) =
∫ +∞
−∞ x(t)ψn,m(t)dt

and
ψn,m(t) = 1√

am
0

ψ
(

t−nb0am
0

am
0

)
where m is the dilation parameter, n is the
translation parameter, and a0 is the
step parameter

Uses defined wavelets in a range of
locations and scales.
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