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Abstract: An autonomous surface vehicle is indispensable for sensing of marine environments
owing to its challenging and dynamic conditions. To accomplish this task, the vehicle has to navigate
through a desired trajectory. However, due to the complexity and dynamic nature of a marine environ-
ment affected by factors such as ocean currents, waves, and wind, a robust controller is of paramount
importance for maintaining the vehicle along the desired trajectory by minimizing the trajectory error.
To this end, in this study, we propose a robust discrete-time super-twisting second-order sliding
mode controller (DSTA). Besides, this control method effectively suppresses the chattering effect.
To start with, the vehicle’s model is discretized using an integral approximation with nonlinear
terms including environmental disturbances treated as perturbation terms. Then, the perturbation is
estimated using a time delay estimator (TDE), which further enhances the robustness of the proposed
method and allows us to choose smaller controller gains. Moreover, we employ a genetic algorithm
(GA) to tune the controller gains based on a quadratic cost function that considers the tracking error
and control energy. The stability of the proposed sliding mode controller (SMC) is rigorously demon-
strated using a Lyapunov approach. The controller is implemented using the Simulink® software.
Finally, a conventional discrete-time SMC based on the reaching law (DSMR) and a heuristically
tuned DSTA controller are used as benchmarks to compare the tracking accuracy and chattering
attenuation capability of the proposed GA based DSTA (GA-DSTA). Simulation results are presented
both with or without external disturbances. The simulation results demonstrate that the proposed
controller drives the vehicle along the desired trajectory successfully and outperforms the other
two controllers.

Keywords: sensing; marine; vehicle; sliding mode control; trajectory following; estimation; Lyapunov
stability; genetic algorithm; chattering

1. Introduction

Marine environment sensing, monitoring, and management are essential to protect
the ocean. In this regard, autonomous surface vehicles (ASVs) or unmanned surface ve-
hicles (USVs) (hereafter, ASVs or USVs can be used interchangeably) play a crucial role
in sensing and monitoring the ocean, providing essential information [1–4]. The ocean
covers two-thirds of the Earth’s surface and has a substantial impact on weather patterns,
marine ecosystems, coastal regions, and the dynamics of climate change [1]. It is a source
of energy, food, and materials; moreover, it is used for transportation and recreational
purposes [5]. Marine ecosystem degradation, ocean temperature rise, plastic waste con-
tamination, and pollution, etc are posing a threat to mankind [1]. To address this problem,
surface vehicles equipped with sensors can be applied to collect data. For autonomous,
efficient, and accurate sensing of marine environments, following a desired sensing trajec-
tory is essential. Moreover, autonomous trajectory following of USVs has been utilized
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in various application areas, including military operations, transportation, surveillance,
and offshore infrastructure [6–9]. This paper focuses on the trajectory following control
of USVs.

Different types of USVs are used depending on the application area; however, all USVs
share some basic components, such as the hull, data collection equipment, communication
systems, guidance, navigation and control (GNC), and propulsion and power systems [10].
The GNC system plays a significant role in a vehicle’s capability of accomplishing a given
mission. One of the main challenges to develop USVs is the lack of a reliable and automated
GNC that can operate in sophisticated and hazardous operating conditions, and overcome
the possible failures in sensors, actuators, and communication [10,11]. The general block
diagram of GNC is shown in Figure 1. In the navigation system, different onboard sensors,
such as global positioning system (GPS), inertial measurement unit (IMU), compass, sonars,
and cameras can be incorporated to measure the states of the vehicle, that is, position,
orientation, velocity, and acceleration, as well as to gather data regarding the environment
for scientific research. Additionally, state estimator or observer can be used to estimate
the states of the vehicle if there are no adequate sensors or to estimate the unmeasurable
states of the system.

The guidance system generates a continuous and smooth trajectory to the control
system based on the information provided by the navigation system, desired mission, and
environmental conditions. In this study, we focus on developing the control system as part
of the GNC, assuming that the navigation system provides the necessary states, which are
the vehicle’s position, orientation, velocity, and acceleration. The control system operates
to drive the vehicle to follow the command velocity provided by the guidance module,
utilizing information provided by the navigation systems and minimizing the position
trajectory error [10]. Therefore, the tracking error in the research indicates the difference
between the controlled velocity and the commanded velocity. The tracking error in the po-
sition is considered by the guidance system.
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Figure 1. Guidance, navigation and control (GNC) block diagram.

Trajectory following for surface vehicles is challenging, owing to the complexity and
nonlinearity of vehicle models and various environmental disturbances such as wind,
waves, and currents [12]. To this end, researchers have employed various control strategies.
One of the most widely used controllers is the proportional, integral, and derivative
(PID) controller [13–16], but it lacks robustness and is highly dependent on the accuracy
of the system dynamics [17]. Model predictive control (MPC) was applied in [18,19], which
is sufficient for handling system constraints; but it is computationally intensive when
the prediction horizon increases, making practical implementation difficult [12]. Other
control methods that have been applied include linear quadratic regulator (LQR) [20–22],
feedback linearization [21,23], backstepping control [24,25], fuzzy logic and its variants [26],
neural networks [27], adaptive control [28] and other well-known control algorithm com-
monly used for trajectory-following applications is sliding mode controller [24].

Sliding mode control (SMC) is a robust control strategy that ensures insensitivity
to matched uncertainties in line with the control input. This allows the straightforward
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implementation of a robust controller, provided the uncertainties are bounded [29,30].
The fundamental principle of the SMC is to select a sliding surface within the state space
in which the system has the desired characteristics. Subsequently, a controller can be
designed to force the system trajectories from any initial condition within the state space
to the sliding surface within finite time. Additionally, the trajectories can be maintained on
the surface afterwards. In essence, SMC comprises two parts: equivalent control responsible
for bringing the state trajectories from any initial condition to the sliding manifold, and
discontinuous control that keeps the trajectories on the surface after they are brought to the
manifold. Thus, the system is insensitive to model uncertainty and bounded exogenous
disturbances [29].

However, SMC does not preserve the theoretical sliding motion formulation; rather,
it switches to an infinitely high frequency for the sliding manifold. This high-frequency
switching is not practically feasible due to the limitations of the actuator bandwidth.
Hence, an ideal sliding mode cannot be achieved. Additionally, high-frequency switching
of the control signal results in a phenomenon known as the chattering effect.
Chattering can result in wear and tear of mechanical actuators as well as high energy
consumption. The possible reasons for chattering, according to [30,31], are: (i) even though
high-frequency switching is achievable, the existence of “parasitic dynamics“, that is, un-
modeled actuator and sensor dynamics, in series with the system could result in a small
oscillation around the sliding manifold, and (ii) non-ideal sliding motion causes a high-
frequency oscillation.

Continuous-time second-order SMCs have been proposed to alleviate the chattering
problem [32,33]. However, when continuous-time SMCs are discretized using a sample
and held for digital implementation, they may lose their robustness, leading to instability.
To address this limitation of continuous-time sliding mode controllers, researchers intro-
duced discrete-time sliding mode controllers (DSMC). Moreover, implementing a DSMC
is more straightforward owing to the advancement and widespread availability of com-
puters and microcontrollers. However, the robustness of DSMC is undermined owing
to the finite sampling time. In DSMC, the state trajectories converge to a bounded region
near the sliding surface called the ultimate band. They exhibit a zigzag motion, termed
quasi-sliding mode (QSM). Furthermore, unlike continuous-time SMC, the width of the ul-
timate band of a DSMC can be determined, which indicates the robustness of the controller.
As noted in [34], given the desired ultimate band, the desired controller parameters can be
determined; however, the limitations of the controller must be considered. Hence, by ma-
nipulating this band, the insensitivity of DSMC to uncertainties can be varied. To increase
the robustness and mitigate the chattering effect of conventional DSMC, a second-order
DSMC was proposed in [35,36]; however, the controller gains are not optimal.

Although there are a number of research works on DSMC, particularly based on
the reaching law [37], its application to USVs has received less attention. This could be
because of the difficulty in finding a discretized model of the vehicle [38]. In Ref. [39], a cas-
caded conventional DSMC and PI-based gain-scheduling controller were used for a straight
line following ASV. Different numerical tests were conducted with and without ocean
current disturbances. Although the results were satisfactory, the rudder experienced signif-
icant chattering.

Therefore, in this study, we propose a discrete-time super-twisting sliding mode con-
troller [35], which is a robust second-order SMC, to address chattering. To the best of our
knowledge, DSTA has not been applied to trajectory following for USVs.
Additionally, owing to the complexity of obtaining an exact discrete-time model of the vehi-
cle, we assumed certain hydrodynamic parameters and external disturbances, such as ocean
currents, waves, and wind, as unknown perturbation. Hence, we applied a time delay
estimator (TDE) to estimate the unknown system dynamics.

The TDE estimates the unknown system dynamics based on the past states of the sys-
tem and control input. It was first introduced by [40] to estimate disturbances in robotic
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manipulators, and was later applied to underwater control [41,42]. Then, based on this
estimation, the controller cancels the uncertainties.

In many previous studies, the effectiveness of the time delay estimator has been experi-
mentally verified in the presence of model uncertainties and external disturbances [36,41,42].
The purpose of the time delay estimator is to assess perturbation by utilizing data from a suf-
ficiently short time ago, aiming to enhance control performance in terms of robustness and
control energy. As will be detailed by using equations, the time delay estimator operates
under the assumption that the perturbation does not change drastically within one sam-
pling period, even though it dynamically evolves. In our research, the sampling period is
0.01 s, and the derivative of the perturbation remains fairly constant for this duration. This
assumption is reflected in the TDE formulation, which can be regarded as the first-order
approximation of the Taylor series expansion of the disturbance.

If the time delay estimator is not utilized, higher bounds on uncertainties should be
assumed for robust control, leading to an increased control signal. A higher control signal,
in turn, indicates higher control energy. Moreover, if the perturbation is not estimated,
the controller becomes computationally intensive due to the need to adapt a large number
of uncertain parameters. This restricts the real-time use of the control algorithm due
to the limited onboard computational resources [43]. These limitations can be addressed
using a time delay estimator, which provides information about perturbation to improve
the robustness and reduce the control signal [36,41].

Furthermore, the TDE minimizes the time delay, which affects the performance
of the sliding mode controller [31]. Finally, we apply a genetic algorithm (GA) to de-
termine the optimal gains of the proposed controller. A quadratic cost function, which
is the sum of the tracking error and control energy, was selected. The block diagram
of the proposed method is shown in Figure 2. The main contributions of this study are
summarized as follows.

1. A robust DSTA has been applied for trajectory following of an ASV. Moreover, a TDE
algorithm has been used to estimate the unknown dynamics of the system, which
in turn, improves the robustness of the proposed controller.

2. A GA is used to tune the controller parameters based on a quadratic objective function,
which is the sum of the tracking error and control energy.

3. A linear matrix inequality (LMI) based Lyapunov approach was employed to validate
the stability of the closed-loop system.

4. Finally, simulation results are presented for two scenarios, with and without the pres-
ence of exogenous disturbance. Moreover, the performance of the proposed GA based
DSTA is compared with that of DSTA and a reaching law based DSMC.

The remainder of this paper is structured as follows. Section 2 describes the mathe-
matical model of the vehicle from which the discretized model is drived using the integral
approximation method. Section 3 describes the design of the proposed DSTA controller and
the stability of the closed-loop system. Tuning of the parameters of the proposed controller
using the GA is presented in Section 4. In Section 5, numerical results and discussions are
presented, and finally, Section 6 presents the conclusions.
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Figure 2. Block diagram of the proposed control method.

2. Mathematical Model
2.1. Continuous-Time Vehicle Model

Generally, the motion of ASVs is described using two coordinate frames of refer-
ence [11]: the earth-fixed or inertial frame denoted by {On} = {xn, yn, zn}, and the body-
fixed frame represented by {Ob} = {xb, yb, zb}, as shown in Figure 3. Here, only the planar
motion of the vehicle was considered. It was assumed that the vehicle had a homogeneous
mass distribution and xy-plane symmetry.

Figure 3. Illustration of body-fixed and earth-fixed reference frames of a surface vehicle.

The motion of the vehicle in the inertial frame of reference is expressed using posi-
tion and orientation vector η = [x, y, ψ]T , whereas its body-fixed velocity is represented
by the velocity vector ν = [u, v, r]T . Here, x(m) and y(m) are the positions along xn and
yn, respectively; ψ(rad) is the yaw angle. Additionally, u(m/s), v(m/s) are the surge
and sway velocities along xb and yb, respectively, r(rad/s) is the yaw rate about zb.
Therefore, the kinematic model of the vehicle is given by:

η̇ = J(ψ)ν, (1)

where J(ψ) ∈ R3×3 is the transformation matrix between the body-fixed frame and earth-
fixed frame, which is:

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

, (2)
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and its dynamic model is given by:

Mν̇ + C(ν)ν + D(ν)ν = τ + τext, (3)

where M = (MRB + MA) ∈ R3×3 denotes the sum of the rigid body mass and hydrody-
namic added mass; C(ν) = (CRB + CA) ∈ R3×3 is a Coriolis-centripetal matrix due to rigid
body and added mass; D(ν) = (DL + DNL) ∈ R3×3 is the sum of linear and nonlinear
damping matrices given as follows:

M =

m11 0 0
0 m22 m23
0 m32 m33

, (4a)

C(ν) =

 0 0 c13
0 0 c23

c31 c32 0

, (4b)

D(ν) =

d11 0 0
0 d22 d23
0 d32 d33

, (4c)

where m11 = m − Xu̇, m22 = m − Yv̇, m23 = mxg − Yṙ, m32 = mxg − Nv̇, m33 = Iz − Nṙ;
c13 = −c31 = Yv̇v, c32 = −c23 = Xu̇; d11 = −Xu − X|u|u, d22 = −Yv − Y|v|v,
d23 = −Yr − Y|r|r, d31 = −Nv − N|v|v, d33 = −Nr − N|r|r. Here, m is the mass of the
vehicle, Iz is the moment of inertia about zb, and xg is the center of gravity. Xu̇, Yv̇, Yṙ,
Nv̇, and Nṙ are the hydrodynamic added-mass coefficients. Xu, Yv, Yr, Nv, and Nr are con-
stant linear damping coefficients; and, X|u|u, Y|v|v, Y|r|r, N|v|v, and N|r|r are constant
nonlinear damping coefficients. We assume fore-aft symmetry such that Yṙ ≈ Nv̇. Addi-
tionally, for low-speed applications, Nv = Yr. τ = [X, Y, N]T ∈ R3 denotes the forces and
moments generated by the port thruster, starboard thruster, and bow thruster, respectively.
τext ∈ R3 denote forces and moments due to external disturbances [44]. The response
of the thrusters is assumed to be faster than the dynamics of the vehicle; therefore, the dy-
namics of the thrusters is neglected.

2.2. Discrete-Time Vehicle Model

A discrete-time controller can be obtained either by discretizing a continuous-time con-
troller designed using a continuous-time system model or by directly designing a discrete-
time controller from the discretized system model. In this study, we followed the latter
design approach.

Assumption 1. Assume that only the rigid body mass (RRB) and linear damping (DL) of the ve-
hicle are known. The other parameters are unknown, and will be estimated using the TDE.
This assumption also helps to decouple the sway and yaw dynamics.

Thus, based on Assumption 1 the dynamic model of the vehicle given by Equation (1)
can be rewritten as follows:

MRBν̇(t) + DL(ν(t))ν(t) + f (t) = τ(t), (5)

where f (t) = MAν̇(t) + C(ν(t))ν(t) + DNL(ν(t))ν(t)− τext(t) is unknown or perturba-
tion term to be estimated.

Assumption 2. The state variables and control input are assumed to be constant during the sam-
pling time period T, that is, v(t) and τ(t) remain constant [45].
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Using Assumption 2, we compute a discrete-time model of the vehicle. By integrating
Equation (5) over the sampling interval kT into (k + 1)T, we obtain:

∫ (k+1)T

kT
MRBν̇(t) dt +

∫ (k+1)T

kT
DL(ν(t))ν(t) dt +

∫ (k+1)T

kT
f (t) dt =

∫ (k+1)T

kT
τ(t) dt,

MRB

(
ν((k + 1)T) − ν(kT))

)
+ TDLν(kT) +

∫ (k+1)T

kT
f (t) dt = Tτ(kT). (6)

In Equation (6), f (t) contains the terms that cannot be integrated. After rearranging
Equation (6), the following discretized expression is obtained:

ν(k + 1) = Aν(k) + Bτ(k) + Γ(k), (7)

where ν(k) = [u(k), v(k), r(k)]T ; τ(k) = [Xk, Yk, Nk]
T ; the system matrix A = I − TMRBDL;

an input matrix B = TM−1
RB ; Γ(k) = M−1

RB

∫ (k+1)T
kT f (t) dt. Γ(k) denotes, as explained

in Assumption 1, hydrodynamics and parameter uncertainties and the external disturbance.
I denotes the identity matrix of appropriate dimension.

Assumption 3. The perturbation term Γ(k) ∈ R3 satisfies the Lipschitz continuity condition

∥Γ(k)− Γ(k − 1)∥ ≤ TLγ,

where Lγ > 0 is a Lipschitz constant and T is the sampling time [46].

3. Controller Design and Stability Analysis

In this section, the proposed DSTA controller design and stability analysis using
the Lyapunov approach are discussed.

3.1. Controller Design

The control problem involves designing a robust controller such that the vehicle
follows a reference or desired trajectory while addressing the tracking error and chattering
effect. In this study, the desired trajectories were defined in a body-fixed reference frame,
that is, a body-fixed velocity trajectory following.

To design a SMC, the first step is to select the sliding surface to which the sys-
tem trajectories are forced to converge. Hence, let the desired trajectories be νd(k) =
[ud(k), vd(k), rd(k)]T . The desired trajectories are generated by the guidance system.
Also, let the actual trajectories be ν(k) = [u(k), v(k), r(k)]T provided by the navigation
system. Thus, the trajectory error is the difference between the desired and the actual
trajectories, that is, e(k) = νd(k)− ν(k). The sliding surface was selected as follows:

s(k) = Kpe(k), (8)

where s(k) ∈ R3; Kp ∈ R3×3 is positive scalar diagonal matrix.
For the trajectories to converge to the sliding surface, the sliding function must satisfy

s(k + 1) = s(k) = 0 after some time instant k; however, this does not occur in the real
world, instead, the system trajectories are confined to a band near the sliding manifold,
that is, QSM. For convergence of the system trajectories, the sliding function must satisfy
∥s(k + 1)∥ < ∥s(k)∥. We compute s(k + 1) from Equation (8) as follows:

s(k + 1) = Kpe(k + 1)

= Kp{νd(k + 1)− ν(k + 1)}
(9)



Sensors 2024, 24, 1262 8 of 26

Now, by substituting Equation (7) into Equation (9), we obtain

s(k + 1) = Kp{νd(k + 1)− Aν(k)− Bτ(k)− Γ(k)}. (10)

The DSTA is given by [35]

s(k + 1) = K1s(k)− TΩ1|s(k)|1/2sgn(s(k)) + Tς(k)

ς(k + 1) = K2ς(k)− TΩ2sgn(s(k)),
(11)

where Ki ∈ R3×3, 0 < (diagonal elements of Ki) < 1, and Ωi ∈ R3×3 for i = 1, 2 are
diagonal matrices to be designed to ensure the convergence of DSTA. T is the sampling
time period, and sgn(s(k)) is a signum function defined as

sgn(γ) =

{
0, for γ = 0
γ
|γ| , for γ ̸= 0.

where γ ∈ R. By equating Equation (10) with Equation (11), the control law becomes:

τ(k) = (KpB)−1
{

Kpνd(k + 1)− Kp Aν(k)− KpΓ(k)+

− K1s(k) + TΩ1|s(k)|1/2sgn(s(k))− Tς(k)
}

,
(12)

where (KpB)−1 must exist. The control law given by Equation (12) cannot be realized,
because the perturbation term Γ(k) is unknown. From Assumption 3, the perturbation
term is bounded. Hence, we employ the TDE method to estimate the perturbation term
such that Γ̂(k) is used instead of Γ(k). The control law can be rewritten as follows:

τ(k) = (KpB)−1
{

Kpνd(k + 1)− Kp Aν(k)− KpΓ̂(k)− K1s(k)

+ TΩ1|s(k)|1/2sgn(s(k))− Tς(k)
}

.
(13)

The perturbation term is estimated based on the values of the past state variables
of the system and past control inputs, that is, the past dynamics of the system. Mathemati-
cally, this can be expressed as Γ(k) = Γ̂(k) = Γ(k − 1). The estimation of the perturbation
term Γ̂(k) can be obtained from Equation (7) as follows:

Γ̂(k) = Γ(k − 1) = ν(k)− Aν(k − 1)− Bτ(k − 1). (14)

The estimation in Equation (14) is based on the assumption that the perturbation
term does not vary significantly during the sampling time. However, if the perturba-
tion term changes rapidly during sampling time, the estimation error may be large [45].
Hence, the estimation can be further improved if the delayed perturbation term Γ(k − 1)
and differential of Γ(k − 1), which is ∆Γ(k − 1), are used to estimate the perturbation term.
Now, we get:

Γ̂(k) = Γ(k − 1) + ∆Γ(k − 1)

= 2Γ(k − 1)− Γ(k − 2).
(15)

After substituting Equation (14) into Equation (15), the estimated perturbation term becomes

Γ̂(k) = 2ν(k)− ν(k − 1)− 2Aν(k − 1) + Aν(k − 2)

− 2Bτ(k − 1) + Bτ(k − 2).
(16)

Therefore, by substituting the perturbation term Equation (16) into Equation (13), we
obtain the following control law:
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τ(k) = (KpB)−1
{

Kpνd(k + 1)− Kp Aν(k)− 2Kpν(k) + Kpν(k − 1) + 2Kp Aν(k − 1)

− Kp Aν(k − 2)− K1s(k) + TΩ1|s(k)|1/2sgn(s(k))− Tς(k)
}
+ 2τ(k − 1)

− τ(k − 2).

(17)

The control law given by Equation (17) can be implemented easily because the pertur-
bation term is known. The delayed state and control input of the system can be retrieved
from computer memory.

3.2. Stability Analysis

The stability of a closed-loop system is provided as follows [35,36,47]:

Theorem 1. Consider the dynamics of the surface vehicle given by Equation (2). If there exists
a positive definite solution L = LT > 0 to an LMI ΨT [L + LΛ1L + LΛ2L]Ψ − (1 − r)L ≤ −Ψ,
the conditions Ω1i < 0, and Ω2i > 0 are met. Therefore, the proposed DSTA controller given
by Equation (17) ensures asymptotic convergence of the system trajectories to a ball Br (that is,
Br = {s : ∥s∥2 < rb}) centered at the origin. The ball has a radius of convergence.

rb =
σ

1 − r
,

where 0 < r < 1 is the ball radius, s is the sliding surface, and

σ =
ϱ̄1

2

4ζ1
+ ζ2ϵ2

i + ϱ̄2,

ϱ̄1 = ϱ1 + ϱ2 = T2Ω2
1i f11 + 2T3 f12Ω1iΩ2i,

ϱ̄2 = ϱ2 + ϱ3 = T2Ω2
1i f11 + T4 f22Ω2i,

ζ1 = λmin(Ψ),

ζ2 = λmax(H).

Proof of Theorem 1. The closed-loop system dynamics can be obtained by substituting
Equation (17) into Equation (10), and we obtain

s(k + 1) = K1s(k)− TΩ1|s(k)|1/2sgn(s(k)) + Tς(k) + ∆Γ(k)

ς(k + 1) = K2ς(k)− TΩ2sgn(s(k)),
(18)

where ∆Γ(k) = Γ̂(k) − Γ(k) denotes the estimation error. As shown in Equation (18),
the estimation error affects the closed-loop dynamics of the system. In the following section,
we verify the robustness of the proposed controller by assuming that the perturbation
term satisfies the Lipschitz criterion, as explained in Assumption 3. Now, we rearrange
Equation (18) using change of variable. Let ρ(k) = Tς(k) + ∆Γ(k). From this, we obtain

s(k + 1) = K1s(k)− TΩ1|s(k)|1/2sgn(s(k)) + ρ(k)

ρ(k + 1) = K2ρ(k)− T2Ω2sgn(s(k)) + ϵ(k),
(19)

where ϵ(k) = ∆Γ(k+ 1)−K2∆Γ(k). Without loss of generality, we can rewrite Equation (19)
for i = 1, 2, 3 as:

si(k + 1) = K1isi(k)− TΩ1i|si(k)|1/2sgn(si(k)) + ρi(k)

ρi(k + 1) = K2iρi − T2Ω2isgn(si(k)) + ϵi(k).
(20)
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Equation (20) can be expressed using a compact matrix notation as follows:

χi(k + 1) = Ψ(k)χi(k) +φ(k)sgn(si(k)) + ξ(k), (21)

where χi(k) = [si(k), ρi(k)]T , and Ψ(k), φ(k), and ξ(k) are:

Ψ(k) =
[

K1i 1
0 K2i

]
, (22a)

φ(k) =
[
−TΩ1isgn|si(k)|1/2

−T2Ω2i

]
, (22b)

ξ(k) =
[

0
ϵi(k)

]
. (22c)

We select a positive definite Lyapunov function V(k) that satisfies λmin(L)∥χi(k)∥2 ≤
∥χi(k)∥L ≤ λmax(L)∥χi(k)∥2. Here, λmin and λmax are the minimum and maximum
eigenvalues of L, respectively.

Vi(k) = χT
i (k)Lχi(k). (23)

The difference in the Lyapunov function is:

∆Vi = Vi(k + 1)− Vi(k). (24)

By substituting Equation (21) into Equation (24), we obtain

∆Vi = Vi(k + 1)− Vi(k)

= χT
i (k + 1)Lχi(k + 1)− χT

i (k)Lχi(k),
(25)

Substituting Equation (24) into Equation (25), we obtain

∆Vi(k) = χT
i (k)Ψ

T LΨχi(k) + χT
i (k)Ψ

T Lφsgn(si(k)) + χT
i (k)Ψ

T Lξ +φT LΨχi(k)sgn(si(k))

+φT Lφ+φT Lξsgn(si(k)) + ξT LΨχi(k) + ξT Lφsgn(si(k)) + ξT Lξ − χT
i (k)Lχi(k).

(26)

After collecting these terms, Equation (26) becomes

∆Vi(k) = χT
i (k)

{
ΨT LΨ − L

}
χi(k) +φT Lφ+ ξT Lξ + 2χT

i (k)Ψ
T Lφ(k)sgn(si(k))

+ 2χT
i (k)Ψ

T Lξ + 2φT Lξsgn(si(k)).
(27)

Using the Λ-matrix inequality ĀT B̄ + B̄T Ā ≤ ĀT
ΛĀ + B̄T

Λ−1B̄ [48], some of the ex-
pressions in Equation (27) are simplified as follows:

1. 2χT
i (k)Ψ

T Lφsgn(si(k)) ≤ χT
i (k)

{
ΨT LΛ1LΨ

}
χi(k) +φTΛ−1

1 φ.

2. χT
i (k)Ψ

T Lξ ≤ χT
i (k

{
ΨT LΛ2LΨ

}
χi(k) + ξTΛ−1

2 ξ.

3. ξT Lξsgn(si(k)) ≤ φT LΛ3Lφ+ ξTΛ−1
3 ξ.

Hence, Equation (27) can be rewritten as

∆Vi(k) ≤ χT
i (k)

{
ΨT LΨ + ΨT LΛ1LΨ + ΨT LΛ2LΨ − L

}
χi(k) +φT

{
L + Λ−1

1 + LΛ3L
}

φ

+ ξT
{

L + Λ−1
2 + Λ−1

3

}
ξ.

(28)
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By adding rVi(k) to both sides of Equation (28), we obtain

∆Vi(k) ≤ χT
i (k)

{
ΨT

{
L + LΛ1L + LΛ2L − (1 − r)L

}
Ψ
}

χi(k) +φT
{

L + Λ−1
1

+ LΛ3L]φ+ ξT
{

L + Λ−1
2 + Λ−1

3

}
ξ − rVi(k),

(29)

where 0 < r < 1. Using LMI, if there exists a negative definite matrix Φ satisfying
the following inequality:

ΨT
{

L + LΛ1L + LΛ2L(1 − r)L
}

Ψ ≤ −Φ,

∆Vi(k + 1) can be rewritten as

∆Vi(k) ≤ χT
i (k)Φχi(k) +φT

{
L + Λ−1

1 + LΛ3L
}

φ+ ξT
{

L + Λ−1
2 + Λ−1

3

}
ξ − rVi(k). (30)

∆Vi(k) ≤ −χT
i (k)Φχi(k) +φT Fφ+ ξT Hξ − rVi(k), (31)

where F = L + Λ−1
1 + LΛ3L, and H = L + Λ−1

2 + Λ−1
3 .

∆Vi(k) ≤ −χT
i (k)Φχi(k) +φT Fφ+ ξT Hξ − rVi(k), (32)

However, φT Fφ can be simplified as follows [36]:

φT Fφ = ϱ̄1|si(k)|+ ϱ̄2. (33)

The simplification of Equation (33) is presented in Appendix A. For the positive definite
matrices Ψ and H in Equation (31), we can apply the two-norm definition: λmin(Ψ)∥χ(k)∥2 ≤
∥χi(k)∥Ψ ≤ λmax(Ψ)∥χi(k)∥2, and λmin(H)∥ξ(k)∥2 ≤ ∥ξ(k)∥H ≤ λmax(H)∥ξ(k)∥2.
Here, λmin and λmax are the minimum and maximum eigenvalues of the matrices, respec-
tive. Thus, Equation (32) becomes

∆Vi(k) ≤ −χT
i (k)Φχi(k) +φT Fφ+ ξT Hξ − rVi(k) ≤ −λmin(Ψ)∥χi(k)∥2 + ϱ̄1|si(k)|+ ϱ̄2

+ λmax(H)∥ξ(k)∥2 − rVi(k) ≤ −λmin(Ψ)∥χi(k)∥2 + ϱ̄1|si(k)|+ ϱ̄2

+ λmax(H)ϵ2
i − rVi(k).

(34)

Let ζ1 = λmin(Ψ) > 0, and ζ2 = λmax(H). |si(k)| ≤ ∥χi(k)∥, Equation (34) becomes

∆Vi(k) ≤ −ζ1∥χi(k)∥2 + ϱ̄1|si(k)|+ ϱ̄2

+ ζ2ϵ2
i − rVi(k)

≤ −ζ1∥χi(k)∥2 + ϱ̄1∥χi(k)∥+ ζ2ϵ2
i

+ ϱ̄2 − rVi(k).

(35)

The expression ζ1∥χi(k)∥2 + ϱ̄1∥χi(k)∥ in Equation (35) is simplified using the com-
pleting squares method as follows:

−ζ1∥χi(k)∥2 + ϱ̄1∥χi(k)∥ = −ζ1

{
∥χi(k)∥2 − ϱ̄1

ζ1
∥χi(k)∥

}
= −ζ1

{
∥χi(k)∥ −

ϱ̄1

2ζ1

}2
+

ϱ̄1
2

4ζ1
.

(36)
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By substituting Equation (36) into Equation (35), we obtain

∆Vi(k) ≤ −ζ1∥χi(k)∥2 + ϱ̄1∥χi(k)∥+ ζ2ϵ2
i + ϱ̄2 − rVi(k)

≤ −ζ1

{
∥χi(k)∥ −

ϱ̄1

2ζ1

}2
+

ϱ̄1
2

4ζ1
+ ζ2ϵ2

i + ϱ̄2 − rVi(k)(k)

≤ ϱ̄1
2

4ζ1
+ ζ2ϵ2

i + ϱ̄2 − rVi

= σ − rVi(k),

(37)

where σ = ϱ̄1
2

4ζ1
+ ζ2ϵ2

i + ϱ̄2.

∆Vi(k) ≤ σ − rVi

Vi(k + 1)− Vi(k) ≤ σ − rVi(k)

Vi(k + 1) ≤ (1 − r)Vi(k) + σ.

(38)

Equation (38) is a linear, first-order, ordinary difference equation; thus, we can compute
the solution by induction from the first few iterations given as follows:

Vi(1) ≤ σ + (1 − r)Vi(0), (39a)

Vi(2) ≤ σ + σ(1 − r) + (1 − r)2Vi(0), (39b)

Vi(3) ≤ σ + σ(1 − r) + σ(1 − r)2 + σ(1 − r)3Vi(0). (39c)

Therefore, from the results in Equations (39a)–(39c), we can generalize the kth iteration
as follows:

Vi(k) ≤ σ + σ(1 − r)Vi(0)

≤ σ + σ(1 − r) + σ(1 − r)2 + · · ·+ σ(1 − r)k−1 + (1 − r)kVi(0)

≤ (1 − r)kVi(0) +
k−1

∑
j=0

σ(1 − r)j.

(40)

As k approaches infinity, Vi(k) becomes:

lim
k→∞

Vi(k) ≤
σ

1 − r
. (41)

Hence, the radius of the ball is

rb ≤ σ

1 − r
.

This concludes the proof of Theorem 1.

4. Controller Gain Optimization Using Genetic Algorithm

In this section, the computation of the optimal gains of the proposed controller using
GA is discussed. Setting controller gains, particularly for complex nonlinear systems, is
difficult and requires experience. The system response can be made faster with higher
controller gains; however, this leads to higher control signals, which in turn increase
the energy consumption and actuator saturation. Thus, to address these problems, we
applied a GA to tune the controller gains.

To determine optimal gains, an objective or cost function must first be established.
In optimal control, the choice of cost function depends on the performance measures that
the system must satisfy. These performance measures can be the error, time, and control en-
ergy, or a combination of them [49]. The use of the sum of tracking error and control energy,
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or a combination of other performance metrics as a cost function, is a common approach
and has been applied in real-world applications. Nevertheless, there is always a trade-off
between the selections of the performance criteria. After selecting the cost function, a suit-
able optimization algorithm is chosen to find the optimal parameters of the controller based
on the cost function.

In this study, GA was selected because it is convenient for discrete-time optimiza-
tion [50]. GA is an evolutionary algorithm based on Darwin’s theory of natural selection.
Generally, it uses three operators: selection, crossover, and mutation. The operation
of the GA commences by setting an initial random population comprising possible can-
didate solutions, and the fitness of the individuals is evaluated using the cost function.
The selection operator then selects the fittest individuals, from which parents are selected
for reproduction. Offsprings are produced by crossing the chromosomes of the parents. To
increase the diversity of the next generation, a mutation operator is applied that prevents
stagnation, that is, the similarity of the solution after several generations. This operation
continues until the stopping criteria are satisfied [50,51]. The GA operation is summarized
in the flowchart in Figure 4.

Start

Create initial population

Computing fitness of individuals 

using the cost function

Are stopping 

criteria met?

Apply selection operation

Crossover operation

Mutation operation End

No

Yes

Figure 4. Flowchart of the Genetic algorithm for gain optimization.

The proposed method avoids real-time use of GA. If employed in real-time, the con-
vergence time of GA significantly impacts control performance. Problems may arise if GA
fails to converge within the desired time period corresponding to the control frequency.
To address this, we employed GA to tune the controller parameters offline before real-time
operation. This tuning is specifically for the nominal case, without external disturbances,
and is done prior to the real-time operation of the controller.

Since ASVs can stay on the water surface for long periods of time, they should use
energy efficiently apart from following the desired trajectory by minimizing the tracking
error. Thus, we employ a quadratic cost function Jc, which is the sum of the tracking error
and control energy, defined as follows:

Jc =
k−1

∑
i=0

(
∥e(i)∥2

Q + ∥u(i)∥2
R

)
, (42)
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where k is the number of time steps and e(i) and u(i) are the vectors of the tracking
error and control signal at the ith time instant, respectively. Q ∈ R3×3 is a positive semi-
definite matrix and R ∈ R3×3 is a positive definite matrix. The cost function, as defined
in Equation (42), incorporates weighting matrices Q and R for the tracking error index
and control energy index, respectively. The values of these matrices depend on the size
of the tracking error and the control energy, as mentioned in [52]. They are selected to strike
a balance between tracking performance and control energy consumption. It should be
noted the cost function is formulated as an unconstrained optimization problem.

The cost function given by Equation (42) is coded using MATLAB. The error and
control signals are logged into the MATLAB workspace using the Simulink® model imple-
mentation of the vehicle. The cost function is computed from these signals. Then, the cost
function and GA options were passed to the built-in MATLAB GA. Finally, the algorithm
tunes the controller’s gains until the stopping criteria are reached, which in our case are
the maximum number of generations and stall generations.

Figure 5 illustrates our analysis of GA convergence, showing plots of fitness, stopping
criteria, and the average distance between individuals. The GA operates with a population
size of 250, and its stopping criteria include a maximum of 15 generations and a stall
generation of 7, as outlined in Table 1. Other GA settings are detailed in the same table.
The fitness graph in Figure 5 demonstrates GA convergence to the ‘best’ solution in nearly
6 generations, terminating based on the maximum number of generations criterion. More-
over, the graph depicting the average distance between individuals gradually decreases
as the generation advances, indicating the convergence of GA towards a proper solution.

Table 1. Parameter setting of genetic algorithm.

Parameter Value

Population size 250
Maximum generation 15

stall generation 7
Crossover Two point cross

Selection function Roulette
Elite count 2

Crossover fraction 0.8
Mutation rate 0.01

Mutation function Uniform
Migration direction Forward

Figure 5. Illustration of convergence of genetic algorithm using fitness, stopping criteria, and average
distance between individuals.
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5. Simulation Results and Discussion

This section presents a verification of the performance of the proposed controller through
numerical simulations. The simulation comprises two scenarios: (i) the performances of the pro-
posed GA-based DSTA (hereafter, GA-DSTA) and DSTA controllers with TDE are compared.
Additionally, to evaluate the performance of these controllers and chattering reduction, we
used the commonly used conventional discrete-time SMC based on reaching law (DSMR)
implemented in [45]. (ii) Since ASVs could be deployed in areas where the disturbance due
to ocean current, wind, and ocean waves is significant, the robustness of the proposed controller
will be tested in the presence of an external disturbance.

The reference trajectories used were body-fixed velocity trajectories. The physical
parameters of the vehicle are obtained from the research vessel used in [44]. The vehicle
has an overall length of 2.53 m and a 0.565 m beam, and is a scaled-down (1:17.1) model
of a large research vessel. The vehicle parameters are listed in Table 2.

Table 2. Physical parameters of the ASV.

Parameter Value Unit Parameter Value Unit

Xu̇ −3.5 kg · m X|u|u −6.822 kg · s/m
Yv̇ −41.55 kg · m Y|v|v −71 kg · s/m

Nv̇ = Yṙ −14 kg · m Y|r|r −35.52 kg/s
Nṙ −28 kg · m2 N|v|v 20.6 kg/s
Xu −4.27 kg/s N|r|r −11.52 kg · m2 · s
Yv −25.63 kg/s m 125.37 kg

Yr = Nv −19.44 kg · m/s xg 0.232 m
Nr −32.65 kg · m2 · s Iz 1.5 kg · m

kg: kilogram, s: second, and m: meter

5.1. Scenario 1: Nominal Case

In this case, the performance of the proposed controller without external disturbances
is addressed. A piecewise body-fixed reference trajectory given in Equations (43)–(45)
for surge, sway, and yaw was used to test the effectiveness of the proposed controller.
Discontinuous trajectories are used to validate the controller’s performance in worst-case
scenarios, even though they may not be used in real-world scenarios. To assess the dynamic
performance of the controller, i.e., how the controller reacts to abrupt changes in trajectory,
abrupt changes have been considered. These trajectories were discretized using the sample-
and-hold method. We assume that the maximum surge speed, sway speed, and yaw rate
of the vehicle are 15 m/s, 2 m/s, and 1 rad/s, respectively. The initial speed of the vehicle
is set to [u0, v0, r0]

T = [0 m/s, 0 m/s, 0 rad/s]T . A sampling time has to be selected based on
the update rate or frequency of the sensors and actuators. Thus, in this study, a sampling
time of T = 0.01 s is chosen.

ud =


0.1t2, for 0 ≤ t < 10
−10 sin(0.1t) + 5 cos(0.1πt), for 10 ≤ t < 20
0.01t2 − 2 sin(0.05πt), for 20 ≤ t < 30
100e−

t
8 sin(0.8t), for 30 ≤ t < 40

(43)

vd =


0, for 0 ≤ t < 10
2 sin(0.05πt), for 10 ≤ t < 20
−1.5, for 20 ≤ t < 30
0.8 sin(0.5t), for 30 ≤ t < 40

(44)

rd =


π
4 , for 0 ≤ t < 10
0.4, for 10 ≤ t < 20
e−

t
8 sin(0.8t), for 20 ≤ t < 30

π
3 , for 30 ≤ t < 40

(45)
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The weighting matrices of the objective function are heuristically selected as
Q = diag(1.5, 1.5, 1.5) and R = diag(0.01, 0.01, 0.01). The parameters of both the DSTA and
the DSMR were also heuristically tuned. To ensure a fair comparison, we used a fairly
similar values as well as to prevent higher control signals which causes control signal
saturation and chattering effect. The parameters of the proposed GA-DSTA, DSTA, and
DSMR controllers are listed in Table 3.

Table 3. GA-DSTA, DSTA, and DSMR controllers’ gain setting.

Controller Parameter Value

GA-DSTA

Kp diag(0.0023, 0.1006, 0.3481)
K1 diag(0.0081, 0.0145, 0.0037)
K2 diag(0.8750, 0.8628, 0.3212)
Ω1 diag(0.0009, 0.0008, 0.0006 )
Ω2 diag(0.0009, 0.0003, 0.0008)

DSTA

Kp diag(0.4, 0.4, 0.4)
K1 diag(0.5, 0.5, 0.5)
K2 diag(0.3, 0.3, 0.3)
Ω1 diag(0.02, 0.02, 0.02)
Ω2 diag(0.02, 0.02, 0.01)

DSMR
Kp diag(0.8, 0.8, 0.8)
q diag(20, 20, 20)
ϵ diag(0.02, 0.02, 0.02)

To qualitatively evaluate the performance of the proposed controller, we used two per-
formance indices: (i) the root mean square error (RMSE) was used to compute the tracking
error of the three controllers for the surge, sway, and yaw rate; (ii) The Frobenius norm
was used to obtain the total control energy expenditure of the three control algorithms.
The RMSE and Frobenius norm are given by Equation (46) and Equation (47), respectively.

⋆RMSE =

√√√√ 1
N

N

∑
i=1

(
⋆d(k)− ⋆(k)

)2
, (46)

∥U∥F =

√√√√ M

∑
i=1

N

∑
j=1

|uij|2, (47)

where ⋆ represents one of the three degrees of freedom, N is the number of time steps, and
M denotes the number of degrees of freedom (that is, three in this case). U is a control
signal matrix whose dimensions are the number of degrees of freedom by the number
of time steps, and uij denotes each element of U.

The simulation results of the three controllers for the nominal case of the surge, sway,
and yaw rates are shown in Figures 6–8. As can be observed from the simulation results,
the three controllers drive the vehicle along the desired trajectory successfully; however,
the proposed GA-DSTA controller outperforms the other two controllers both in terms
of overshoot and tracking error minimization.
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Figure 6. Surge speed trajectory following comparison of the GA-DSTA, DSTA, and DSMR controllers
for Scenario 1.
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Figure 7. Sway speed trajectory following comparison of the GA-DSTA, DSTA, and DSMR controllers
for Scenario 1.
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Figure 8. Yaw rate trajectory following comparison of the GA-DSTA, DSTA, and DSMR controllers
for Scenario 1.
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The RMSEs of the surge, sway, and yaw rate of the three controllers are listed in Table 4.
It can be seen from this qualitative analysis that the proposed GA-DSTA controller yields
a 13.5% and 40.01% reduction in RMSE compared to the DSTA and DSMR controllers,
respectively, for the surge direction. Similarly, the percentage of reduction in RMSE was
observed for the sway direction, except for the yaw rate of DSMR, which was approxi-
mately 42.56%.

Table 4. RMSEs of GA-DSTA, DSTA, and DSMR controllers for surge, sway, and yaw rate for Sce-
nario 1.

GA-DSTA DSTA DSMR

uRMSE vRMSE rRMSE uRMSE vRMSE rRMSE uRMSE vRMSE rRMSE

0.4123 0.0508 0.0228 0.4761 0.0586 0.0264 0.6873 0.0845 0.0397

For the sake of brevity, the RMSEs of the three controllers are shown in the bar graph
in Figure 9. As shown in the bar chart, the RMSE for the surge speed is higher than
the RMSE for the sway speed and yaw rate for all the three control methods. This shows
that when the speed increases, the tracking error increases as well.

GA-DSTA DSTA DSMR
0

0.2

0.4

0.6

R
oo

tm
ea

n
sq

ua
re

er
ro

r
(R

M
SE

)

Surge Sway Yaw rate

Figure 9. Comparison of RMSEs of GA–DSTA, DSTA, and DSMR controllers for surge, sway, and
yaw rate for Scenario 1.

Additionally, a step change was included in the desired trajectories to test the dy-
namic performance of the proposed controller. The proposed controller reacts quickly
to the change and tracks the desired trajectory effectively, although there is an insignifi-
cant overshoot, as shown in Figures 6–8. The conventional DSMR controller has a large
overshoot compared to those of GA-DSTA and DSTA; however, it reacts immediately and
settles almost within less than 0.2 s for the surge, sway, and yaw rate. This is due to the
TDE algorithm, which estimates the unknown system dynamics so that the controller
reacts quickly.

The expenditure of control energy of the proposed GA-DSTA controller including
those for DTSA and DSMR are given in Table 5. The energy consumption of the proposed
controller was lower than those of the other two controllers. It was found that there was
an 41.78% reduction in the energy expenditure of the GA-DSTA controller compared with
that of the DSTA controller. However, the energy consumption of the GA-DSTA controller
was reduced to 66.4% of that of the DSMR controller. This is clearly shown in the bar graph
in Figure 10.
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Table 5. The total energy expenditure of GA-DSTA, DSTA, and DSMR controllers for surge, sway,
and yaw rate for Scenario 1. RPM is revolutions per minute.

GA-DSTA DSTA DSMR

∥U∥F (RPM) ∥U∥F (RPM) ∥U∥F (RPM)

3.4419 × 105 5.9119 × 105 1.0244 × 106

GA-DSTA DSTA DSMR
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Figure 10. Comparison of the total energy expenditure of the GA–DSTA, DSTA, and DSMR controllers
for Scenario 1. RPM is revolutions per minute.

The total energy consumption of the proposed method and the other two controllers
are listed in Table 5. As can be seen from this energy-consumption table, the proposed
method has the lowest energy consumption. The energy consumption is related to the
chattering. If the chattering is significant, then the energy consumption is high as well.
The GA-DSTA controller significantly minimizes the chattering compared to both DSTA and
DSMR controllers, resulting in the lowest energy consumption. Additionally, the chattering
by the DSTA controller is lower than that of the conventional DSMR controller, leading
to lower energy consumption as well. Despite the small difference in tracking errors across
the three controllers, the notable improvement in chattering by the GA-DSTA and DSTA
controllers contributes to the overall reduction in energy consumption. The chattering
effect in the control signals for Scenario 1 is shown in Figure 11.
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Figure 11. Control signals for surge, sway, and yaw rate of GA-DSTA, DSTA, and DSMR controllers
for Scenario 1. RPM is revolutions per minute.
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5.2. Scenario 2: External Disturbance

In the real world, the motion of the ASV is affected by external disturbances such
as currents, wind, ocean waves, model uncertainties, and parametric variations. Thus,
before deploying a control algorithm, its robustness against external disturbances must be
tested. In this subsection, we present a simulation in the presence of external disturbances.
Note that the external disturbances are assumed to be bounded and satisfy the Lipschitz
condition given in Assumption 3. The external disturbances for the surge, sway, and yaw
rates are given by Equations (48)–(50).

udis =


0, for 0 ≤ t < 10
1.5 sin(2πt) cos(πt), for 10 ≤ t < 20
1.5sawtooth(2πt), for 20 ≤ t < 30
0, for 30 ≤ t < 40

(48)

vdis =


0, for 0 ≤ t < 10
0.5sawtooth(0.5πt), for 10 ≤ t < 20
0.5 sin(0.2πt) cos(0.2πt), for 20 ≤ t < 30
0, for 30 ≤ t < 40

(49)

rdis =


0.2 sin(0.5πt) cos(0.4t)
−0.1 sin(0.2t), for 0 ≤ t < 10
0, for 10 ≤ t < 20
0.2sawtooth(0.5πt), for 20 ≤ t < 30
0, for 30 ≤ t < 40

(50)

where sawtooth is a MATLAB built-in sawtooth function. For the surge and sway directions,
disturbances were added to the reference trajectory from t = 10 to t = 30, and disturbances
for the yaw rate were added from t = 0 to t = 10 and t = 20 to t = 30. The maximum
magnitudes of the disturbances for the surge udis, sway vdis, and yaw rate rdis were
±1.5 m/s, ± 0.5 m/s, and ± 0.2 rad/s, respectively. The sampling time was the same
as that in the nominal case.

The simulation results for the second scenario are shown in Figures 12–14 for the surge,
sway, and yaw rates, respectively. Even in the presence of external disturbances, the pro-
posed method, including the other two controllers, successfully followed the desired trajectory.
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Figure 12. Surge speed trajectory following comparison of the GA-DSTA, DSTA, and DSMR con-
trollers for Scenario 2.
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Figure 13. Sway speed trajectory following comparison of the GA-DSTA, DSTA, and DSMR controllers
for Scenario 2.
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Figure 14. Yaw rate trajectory following comparison of the GA-DSTA, DSTA, and DSMR controllers
for Scenario 2.

The RMSEs for the second scenario are given in Table 6. The percentages of RMSEs
reduction of the proposed controller compared to the DSTA controller for the surge, sway
direction, and yaw rate are approximately 13.39%, 9.046%, and 13.36%, respectively, and
40%, 35.44%, and 41.7% as compared to the DSMR, respectively. From this comparison,
it can be inferred that the proposed controller outperforms the other two. The RMSEs are
depicted in the bar chart in Figure 15.
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Table 6. RMSEs of the GA-DSTA, DSTA, and DSMR controllers for the surge, sway, and yaw rate
for Scenario 2.

GA-DSTA DSTA DSMR

uRMSE vRMSE rRMSE uRMSE vRMSE rRMSE uRMSE vRMSE rRMSE

0.4126 0.0550 0.0253 0.4764 0.0608 0.0292 0.6877 0.0852 0.0434

GA-DSTA DSTA DSMR
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re
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)

Surge Sway Yaw rate

Figure 15. Comparison of the RMSEs of the GA-DSTA, DSTA, and DSMR controllers for the surge,
sway, and yaw rate Scenario 2. RPM is revolutions per minute.

The robustness of the proposed controller to external disturbances relies on the gains
of the controllers Ω1 and Ω2. When the values of these gains are small, the chattering
effect decreases, and the robustness of the controller degrades. The GA tunes these gains
to smaller values based on a given objective function. This slightly could degrade the ro-
bustness of the proposed controller. However, the presence of the TDE algorithm prevents
further performance degradation by estimating unknown system dynamics and exter-
nal disturbances.

Regarding the control energy expenditure, the proposed controller utilized lower
energy than the DSTA and DSMR controllers as shown in Table 7. There is a 41.6%
reduction in the energy consumption of GA-DSTA compared to that in DSTA, and 66.3%
compared to that in DSMR. The bar chart in Figure 16 shows the total energy consumed
by the three controllers. The proposed GA-DSTA and DSTA controllers have less chattering
compared to DSMR controller as shown in Figure 17.

Table 7. The total energy expenditure of the GA-DSTA, DSTA, and DSMR controllers for the surge,
sway, and yaw rate for Scenario 2. RPM is revolutions per minute.

GA-DSTA DSTA DSMR

∥U∥F (RPM) ∥U∥F (RPM) ∥U∥F (RPM)

3.4524 × 105 5.9207 × 105 1.0250 × 106
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Figure 16. Comparison of total energy expenditure of the GA-DSTA, DSTA, and DSMR controllers
in revolution for Scenario 2. RPM is revolutions per minute.
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Figure 17. Control signals for surge, sway, and yaw rate of GA-DSTA, DSTA, and DSMR controllers
for Scenario 2. RPM is revolutions per minute.

6. Conclusions

In this study, a GA-DSTA controller was proposed for trajectory following of an ASV.
Besides, a TDE algorithm was incorporated to estimate the unknown dynamics of the sys-
tem. The stability of the closed-loop system was analyzed using a Lyapunov approach.
The controller gains were tuned using GA based on a quadratic performance index, the sum
of the tracking error and the control energy. The performance of the proposed controller
was validated with and without the presence of external disturbances, and its performance
was also compared with both DSTA and DSMR. The results showed the proposed GA-
DSTA controller outperformed, in terms of both the tracking error and the chattering
phenomenon reduction, the other controllers. However, though GA improved the tracking
capability of the proposed method by suppressing the chattering effect, its robustness
slightly decreased when external disturbances were added. However, the TDE algorithms
improved the robustness of the controller.

The proposed controller can be applied to the trajectory following of an ASV which
can be used to replace time-consuming, expensive, and hazardous sensing tasks which
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were previously performed by manned marine vehicles. In the future, the practical imple-
mentation of the proposed controller will be done.
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Appendix A. Proof of Equation (33)

φT Fφ =

[
−TΩ1i|si|

1
2

−T2Ω2isgn(si(k))

]T[
f11 f12
f21 f22

][
−TΩ1i|si|

1
2

−T2Ω2isgn(si(k))

]
= T2Ω2

1i f11|si(k)|+ 2T3 f12Ω1iΩ2i|si(k)|
1
2 + T4 f22Ω2

2i

= (ϱ1|si(k)|+ ϱ2)|si(k)|
1
2 + ϱ3

≤ ϱ1|si(k)|+ ϱ2|si(k)|
1
2 + ϱ2 + ϱ3

≤ (ϱ1 + ϱ2)|si(k)|+ ϱ2 + ϱ3

= ϱ̄1|si(k)|+ ϱ̄2,

where ϱ1 = T2Ω2
1i f11, ϱ1 = 2T3 f12Ω1iΩ2i, ϱ3 = T4 f22Ω2

2i, ϱ̄1 = ϱ1 + ϱ2, and ϱ̄2 = ϱ2 + ϱ3,
F is a positive definite matrix. And also, Ω1i > 0 and Ω2i > 0.
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