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Abstract: Underwater acoustic technology as an important means of exploring the oceans is receiving
more attention. Denoising for underwater acoustic information in complex marine environments has
become a hot research topic. In order to realize the hydrophone signal denoising, this paper proposes
a joint denoising method based on improved symplectic geometry modal decomposition (ISGMD)
and wavelet threshold (WT). Firstly, the energy contribution (EC) is introduced into the SGMD as an
iterative termination condition, which efficiently improves the denoising capability of SGMD and
generates a reasonable number of symplectic geometry components (SGCs). Then spectral clustering
(SC) is used to accurately aggregate SGCs into information clusters mixed-clusters, and noise clusters.
Spectrum entropy (SE) is used to distinguish clusters quickly. Finally, the mixed clusters achieve the
signal denoising by wavelet threshold. The useful information is reconstructed to achieve the original
signal denoising. In the simulation experiment, the denoising effect of different denoising algorithms
in the time domain and frequency domain is compared, and SNR and RMSE are used as evaluation
indexes. The results show that the proposed algorithm has better performance. In the experiment of
hydrophone, the denoising ability of the proposed algorithm is also verified.

Keywords: improved symplectic geometry modal decomposition (ISGMD); wavelet threshold (WT);
the energy contribution (EC); spectral clustering (SC); spectral entropy (SE); denoising

1. Introduction

Thanks to the abundant resources in the ocean, oceanic exploration has received
widespread attention [1,2]. Underwater acoustic technology is the main means of obtaining
information in the ocean due to its advantages in transmission range [3], propagation speed,
and energy loss. Since accurate underwater acoustic signals play an important role in the
detection and localization, underwater acoustic communication, and data transmission,
hydrophones have become a research hotspot as devices for receiving underwater acoustic
signals. Influenced by the complex marine environment including waves, marine organ-
isms, and ships, hydrophone signals [4,5] inevitably contain noise, which poses a challenge
for acquiring information in the ocean. Thus denoising the hydrophone signals to obtain
useful signals has important significance.

The noise in underwater acoustic signals is usually strong random and time-varying
in complex and variable marine environments, which brings huge challenges to the ex-
traction of useful signals. Compared with improving hydrophone hardware structure,
denoising algorithms are widely used in underwater acoustic signal processing. Some
algorithms including Fourier transform, Kalman filter (KF), and wavelet transform (WT)
have good denoising effects [6–8], but they inevitably have some inherent defects. The
Fourier transform can reflect the relationship between the time function and the spectral
function but cannot present the specific details in the signal [9], so it is not applicable to the
processing and analysis of non-stationary signals. KF filters and predicts signals by matrix
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operations, which results in algorithms that are computationally intensive and cause signal
distortion [10]. Wavelet transform, as the most common denoising algorithm, is widely
used in the field of medical devices [11] and marine technology [12], thanks to its ability to
well reflect the local characteristics of the signal in the time-frequency domain. The wavelet
threshold denoising algorithm proposed by Donoho et al. [13] is usually used to analyze
non-stationary signals and has excellent denoising ability, but using it alone for complete
signals can cause signal distortion.

Empirical modal decomposition (EMD) was proposed by Hilbert Huang et al. in 1998 [14],
as a novel adaptive decomposition method, which can deal with nonlinear and non-stationary
time series, and is applied to the fields of fault diagnosis [15] and speech recognition [16]. EMD
decomposes a signal based on its time-scale characteristics and breaks the signal into a finite
number of intrinsic modal functions (IMFs) with order frequencies. There is some modal overlap
between adjacent IMFs, inevitably leading to the aliasing noise present in the reconstructed
signal. Wu [17] et al. proposed an Ensemble empirical modal decomposition (EEMD) method,
which adds white noise to the signal modal decomposition process to eliminate modal aliasing.
However, the instability and computational complexity have not been fully resolved in the
algorithm. Yeh [18] et al. proposed a Complete Ensemble empirical modal decomposition
(CEEMD) method, which adds auxiliary noise in the form of positive and negative pairs into
the signal to reduce the number of noise sets and eliminate residual noise. CEEMD leads to
stochastic signal decomposition results because each decomposition does not have a fixed
number of intrinsic modal decompositions. Li [19] et al. proposed CEEMDAN combined with
wavelet thresholding to process the underwater acoustic signal algorithm, which makes the
underwater acoustic signal obtain a good denoising effect.

The variational modal decomposition (VMD) proposed by Zosso et al. in 2014, as an
adaptive non-recursive signal processing method, overcomes modal aliasing by introducing
a variational model [20]. Compared with EMD-based algorithms, VMD possesses strong
robustness due to its solid theoretical support, which makes it widely used in engineering
fields [21–23]. Regrettably, the VMD needs to be set with suitable parameters. An unrea-
sonable number k for IMFs can result in under-decomposition or over-decomposition for
the signal. The decomposition accuracy of the VMD [24] depends on the penalty factor
α, which, on increasing, will make the bandwidth of the IMFs larger. Thus, a suitable
parameter [k, α] is crucial for signal decomposition. Yan [25] et al. used the whale optimiza-
tion algorithm to find the optimal solution for the VMD parameter. Then they calculated
the correlation coefficients between the IMFs and the original signals, and finally realized
the denoising of the hydrophone signals. Wang [26] et al. used a genetic algorithm to
optimize the VMD and used wavelet thresholding for IMFs to complete the removal of
noise from local discharge signals in cables. The optimal IMFS can be obtained by the
combined MOPSO and VMD algorithm proposed by Zhou [27] et al. and time-frequency
peak filtering (TFPF) is used in IMFs to achieve noise removal from the gyroscope signal.

Symplectic geometry spectral analysis (SGSA) is based on the symplectic geometry
theory [28] and the components obtained by the symplectic geometry transformation keep
the characteristics of the time series, which makes the series have a more accurate decom-
position. SGSA can handle non-stationary signals well and possesses strong robustness,
but manually setting the embedding dimension affects the signal decomposition results.
In 2018, Pan [29] et al. proposed the symplectic geometry modal decomposition (SGMD)
method, which adaptively obtains the embedding dimension by the power spectral density,
and realizes denoising and fault diagnosis for rotating machinery. Chen et al. [30] intro-
duced cyclic kurtosis and cyclic impact intensity into SGMD to accomplish the adaptive
reconstruction of symplectic geometry components, and it effectively realizes denoising
and fault diagnosis of gears. Yu et al. [31] combined SGMD with EMD to accomplish the
denoising and debris feature extraction for inductive oil chip sensors. The combination of
multiple algorithms to efficiently realize signal denoising is getting more attention.

In order to effectively remove the noise signals from the hydrophone signals, this
paper conducts some exploratory research. This paper proposes a denoising algorithm that
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combines improved SGMD with wavelet thresholds. Specifically, the contributions in this
paper are as follows:

1. This paper is the first to optimize the termination conditions in SGMD to improve its
ability to remove noise signals.

2. For SGMD generating excessive symplectic geometry components (SGCs), this pa-
per uses spectral clustering to categorize the SGC and efficiently aggregate the
noisy signals.

3. The mixed signals are denoised by WT and the clusters are reconstructed to get the
ideal denoised signal.

Section 2 introduces the algorithms and models used in this paper, including improved
SGMD, spectral clustering, spectral entropy, and joint denoising algorithms. Section 3 illus-
trates the advantages of the proposed method in this paper by comparing the experimental
results. Finally, Section 4 gives the conclusion.

2. Algorithms and Models

In signal denoising, a single denoising method makes it difficult to achieve the goal
ideally, so the denoising algorithm combining many methods has become the main means.
In order to realize the noise reduction for non-stationary signals and ensure the fidelity
of the signals, this paper adopts the algorithm combining SGMD and WT to process the
signals. For pre-denoising the signal during signal decomposition and obtaining better
decomposition results, it introduces the energy contribution (EC) to improve SGMD. In
addition, spectral clustering (SC) is used to cluster the decomposed signals according to
signal structure features. Based on the idea of classification processing, spectral entropy
(SE) is introduced to classify the clustered signals. Figure 1 shows the framework of the
algorithm combining many methods.
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2.1. Improved Symplectic Geometry Model Decomposition

SGMD solves the eigenvalues of the Hamiltonian matrix by the symplectic geometry
similarity transform and uses the corresponding eigenvectors to reconstruct the symplectic
geometry components (SGCs) [29]. SGMD uses a nonlinear transform and is suitable for
the analysis of nonlinear signals. It can decompose a nonlinear signal and the decomposed
sub-signal is nonlinear. The iteration termination condition in SGMD uses normalized
mean square error (NMSE), which may cause overfitting of signal decomposition. Thus,
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this paper uses EC as the iteration termination condition to improve SGMD. The flowchart
of the SGMD and improved SGMD (ISGMD) methods is shown in Figure 2.
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2.1.1. Symplectic Geometry Model Decomposition

1. Phase space reconstruction

x = {x1, x2, ..., xn} denotes the original time series, where n represents the signal
length. The trajectory matrix X is mapped by Taken’s embedding theorem [29].

X =


x1 x2
x2 x2+τ

· · · x1+(k−1)τ
· · · x2+(k−1)τ

...
...

xm xm+τ

. . .
...

· · · xm+(k−1)τ

 (1)

In Equation (1), k is the embedding dimension and τ is the delay time, and
m = n − (k − 1)τ. The embedding dimension k and the delay time τ directly affect
the trajectory matrix X. When τ = 1, the trajectory matrix X is a Hankel matrix, and
the elements of the matrix that are symmetric about the diagonal are the same [32]. The
trajectory matrix X should remain a Hankel matrix, and the delay time in phase space
should be 1. In this paper, the embedding dimension k is determined by using the power
spectral density (PSD), and the frequency of the maximum peak fmax is estimated by the
PSD of the initial time series x. During the iteration, the embedding dimension k is set to
k/3 if the normalization frequency is less than the given threshold 10−3. Otherwise, k is set
to k = 1.2 × ( fmax/ fs), where fs represents the sampling frequency, and k takes an integer
value less than k if not an integer value.

2. Symplectic geometry similarity transformation

The trajectory matrix X is analyzed by autocorrelation to obtain the covariance sym-
metry matrix A = XTX, and a Hamilton matrix is constructed [33]:

B =

[
A 0
0 −AT

]
(2)

According to Equation (2), set C = B2, and both C and B are Hamiltonian matrices
by the definition of Hamiltonian matrix. Thus, the symplectic orthogonal matrix Q can be
constructed as Equation (3):

QTCQ =

[
D R
0 DT

]
(3)
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where the matrix Q is a symplectic matrix containing the orthogonality [34]. During the
symplectic transformation, due to the structural features of the Hamiltonian matrix being
maintained, the transformed matrix is a Hamiltonian matrix. D is the upper triangular
matrix, i.e., hij = 0(i > j + 1). The matrix C can transform to the matrix D by using the
Schmidt transform and the eigenvalues of the matrix D can be obtained by the QR algorithm
as Equation (4):

σ(D) = {σ1, σ2, · · · , σk} (4)

Assuming that A is a real symmetric matrix, the eigenvalues of A are the same as those
of D, and the eigenvalues λ(X) of X are the square roots of σ(D):

λj =
√

σj , j = 1, 2, · · · , k (5)

Sorting the eigenvalues of A by order as Equation (5):

σ1 > σ2 > · · · > σk (6)

The matrix Q represents the symplectic eigenvectors of A and Qi(i = 1, 2, · · · , k) are
the eigenvectors corresponding to the eigenvalues σi of the matrix A. Let S = QTX, Z = QS,
and Z is the reconstructed trajectory matrix. i-th row in the transformed coefficient matrix
Si is denoted as Equation (7):

Si = QT
i X (i = 1, 2, · · · , k) (7)

The corresponding reconstruction matrix can then be expressed as Equation (8):

Zi = QiSi (i = 1, 2, · · · , k) (8)

where Zi is the reconstructed single-component matrix. Thus, the reconstructed trajectory
matrix in phase space is Equation (9) [29]:

Z = Z1 + Z2 + · · ·+ Zk (9)

3. Diagonal averaging

The reconstructed phase space matrix Z can be transformed by diagonal averaging to
a sum of k symmetric geometric components with length n.

Define the dimension of the reconstructed trajectory matrix as m × k and reorder the
time series of length n using the diagonal averaging technique. The original time series
x is decomposed into d time series. Defining matrix Zm∗k =

(
zij
)

m∗k, where 1 ≤ i ≤ m,
1 ≤ j ≤ k, m∗ = max(m, k) and m = n − (k − 1)τ. If m < d, set z∗ij = zij, otherwise,
z∗ij = zji. Then the elements yt(t = 1, 2, · · · , k) in Yi are transformed [35] as Equation (10):

yt =


1
t ∑t

k=1 yq, t−q+1 1 ≤ t ≤ k
1
k∗ ∑k∗

q=1 yq, t−q+1 k∗ < t < m
1

n−t+1 ∑n−d∗+1
q=t−d∗+1 y∗

q, t−q+1 m∗ ≤ t ≤ n

(10)

According to the diagonal averaging formula, the matrix Zi is converted to a series
Yi(y1, y2, · · · , yk) with the corresponding length.

4. Component reconstruction

The initial components are not completely independent, and there may be some
relationship between them. Analyzed from a frequency perspective, component signals
with similar frequencies can be considered to come from the same original signal. First,
the first symplectic geometric component SGC1 is composed by Y1 and other component
signals containing a similar frequency to Y1. Then SGC1 is removed from the initial signal
and the remaining components are represented by g1. However, the original signal usually
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contains noise signals, which can affect the signal reconstruction, so a termination condition
is required for signal reconstruction. The NMSE between the residual signal and the
original signal is usually set as the termination condition. The remaining signal will stop
decomposition when the NMSE is less than the set threshold h = 10−2. The NMSE equation
is as Equation (11):

NMSEh =
∑n

e=1 gh(e)
∑n

e=1 x(e)
(11)

where h represents the number of iterations and gh represents the remaining signal. The
initial signal is eventually decomposed into the sum of several component signals and the
residual component signal gN+1 as Equation (12):

x(n) = ∑N
i=1 SGCi(n) + gN+1(n) (12)

where N represents the number of decomposed component signals.

2.1.2. Improved Component Reconstruction

The termination conditions in SGMD during the formation reorganization affect the
number of SGCs and the ability of signal pre-denoising. NMSE, as the termination condition
for SGMD, cannot deal with localized noise in the signal and may overfit the signal during
denoising. For SGMD to achieve better signal pre-denoising, the energy contribution is used
as the termination condition during the iteration. Energy contribution as the termination
condition has many advantages [36,37], including a reasonable number of modes, better
pre-denoising effect, taking into account both global and local features of the signal, and
more adaptation to the signal structure.

The u = {u1, u2, · · · , uk} is denoted as a signal, where k represents the signal length.
Then the total energy for the signal is calculated [38] as Equation (13):

E[u] = ∑k
i=1|ui|2 (13)

Setting the energy contribution as the termination condition, and the remaining signal
will stop decomposition when the EC is less than the set threshold Et = 10−3. The energy
contribution formula is as Equation (14):

ECh =
E
[

g(e)h
]

E[u]
(14)

where h represents the number of iterations and g(e) represents the remaining signal. The
initial component signal is finally decomposed as x(n) = ∑N

i=1 SGCi(n) + gN+1(n).
SGMD uses NMSE as an iterative termination condition, which focuses more on the

similarity with the original signal, and the local features of the information cannot be
represented. When the noise fluctuates violently, the decomposed signal also fluctuates.
ISGMD uses the EC as an iterative termination condition, which can well extract the local
features of the signal and can make the decomposition of the signal more stable.

2.2. Spectral Clustering

Spectral clustering can process the datasets and converge to a globally optimal solution
by graph theory. A given dataset A =

{
ai

∣∣∣ai ∈ Rd, i = 1, 2, · · · , k
}

, uses all the samples in
graph A to construct a vertex set Y and set it into an undirected graph G = (Y, B, W) [39].
In a graph G, any two vertices can generate an edge, and all edges construct a set B. The
element wij in the affinity matrix W is called the affinity factor. The affinity factor indicates
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the similarity between yi and yj, and the affinity factor wij > 0. The element wij in the
affinity matrix W can be computed by using the similarity function [39]:

wij = exp

(
−d2(wi, wj

)
2σ2

)
(15)

In Equation (15), d represents the Euclidean distance between two points, and the
scale parameter σ > 0.

Set D = diag(d11, d22, · · · , dkk) to be the degree matrix and diag represents the diago-
nal matrix, where dii = ∑k

j=1 wij. L = D − W is the Laplacian matrix, and then computing
the normalized graph Laplacian [40] as Equation (16):

Lngm = D− 1
2 LD− 1

2 = I − D− 1
2 WD− 1

2 (16)

SGMD decomposition produces an excessive number of SGCs, and processing all of
them consumes a large amount of computational resources. In order to quickly distinguish
the information component from the noise component, the SGCs are processed by using
the spectral clustering approach. The similarity metrics and graph structures on which
SGMD and spectral clustering are based fit very well, which makes it easier to aggregate
SGCs together based on similarity.

2.3. Spectral Entropy

The power spectrum of a signal is the cornerstone for spectral entropy [41], and
spectral entropy is used to describe the irregularities of the signal spectrum. The spectral
entropy utilizes the Fourier transform to calculate the energy distribution in the domain
and combines it with the Shannon entropy to obtain the corresponding spectral entropy
value [42]. The corresponding power spectrum of the signal is obtained by using the
discrete Fourier transform [43]. At a certain frequency, the power spectrum possesses
power wi and the probability of possessing power at this frequency is as Equation (17):

pi =
wi

∑i wi
(17)

Let the length of the signal be k. The summation executes from i = 1 to i = k
2 during

using the discrete Fourier transform, and the power is normalized. The entropy of the
power spectrum is denoted as Equation (18):

H = −∑ fh
i= fl

pilogpi (18)

where fl and fh are the lower limit and upper limit, respectively. Normalizing the spectral
entropy to get the normalized spectral entropy [43] as Equation (19):

SE =
H

logN f
(19)

where N f is the number of frequencies in [ fl , fh].
Calculating the spectral entropy of a signal will help quickly distinguish the complexity

of the signal. The more complex the signal, the greater the value of spectral entropy. By
calculating the spectral entropy of a signal, the noise signal, mixed signal, and useful signal
are quickly discriminated, which helps to denoise the signal more accurately.

2.4. Wavelet Threshold Denoising

The wavelet transform is the basis for wavelet thresholding. The mixed signal is
decomposed by wavelet decomposition to produce different wavelet coefficients and the
wavelet coefficients of the useful signals are larger than those of the noisy signals [44].
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According to the theory, the mixed wavelet coefficients are processed by using a suitable
threshold, and the wavelet coefficients of the useful signal are reconstructed to obtain the
denoised signal. The steps of the wavelet threshold algorithm are as follows [45]:

2.4.1. Wavelet Decomposition

The effect of signal decomposition relies on the choice of wavelet basis function, and
a suitable wavelet basis function will give the ideal denoising effect. The characteristics
of the signal need to be considered when the signal is processed by the wavelet threshold
algorithm. The error in the signal and theoretical result is usually processed by wavelet
analysis as a criterion for evaluating the quality of the wavelet basis function.

2.4.2. Threshold for Wavelet Coefficients

The mixed wavelet coefficients are classified by a given threshold. The amplitude of the
wavelet coefficients generated by the useful signal is larger than a given threshold, which
needs to be reasonably preserved or reduced. The amplitude of the wavelet coefficients
generated by the noise signal is smaller than a given threshold, which should be discarded.
The choice of wavelet threshold affects the effectiveness of signal denoising. If the wavelet
threshold is too large, useful information may be discarded; if the wavelet threshold is too
small, noisy signals may be retained due to poor denoising.

2.4.3. Wavelet Reconstruction

The denoised signal can be obtained by inverse wavelet transform on the processed
wavelet coefficients. Compared to the noise signal, the useful signal has continuity in the
time domain and the amplitude of the wavelet coefficients for the useful signal is greater
than the amplitude of the wavelet coefficients for the noise signal in the wavelet domain,
so the wavelet transform can separate the noise signal from the useful signal. If the wavelet
threshold method is used for denoising, a reasonable threshold should be chosen. Methods
of threshold selection include fixed threshold estimation, heuristic threshold estimation,
unbiased likelihood estimation, etc. Usually, fixed threshold estimation and heuristic
threshold estimation make it easier to remove useful signals from mixed signals. Thus,
unbiased likelihood estimation is chosen as the threshold selection method. The steps are
as follows [46]:

(1) Obtain the absolute value of each element in the signal y(j) and arrange them in
ascending order to obtain a new signal sequence s(j) as Equation (20):

s(i) = (sort(|y|))2, (i = 0, 1, · · · , N − 1) (20)

(2) If the threshold (Th) uses the square root of the elements in the sequence s(j), the
corresponding risk accompanying this threshold is risk(j) as Equations (21) and (22):

Th =
√

s(j), (j = 0, 1, · · · , N − 1) (21)

risk(j) =
N − 2j + ∑

j
i=1 s(i) + (N − j)s(N − j)

N
(22)

(3) Find the point on the risk curve where the risky value is minimized and mark it as
jmin. Thus, the minimum threshold is noted as Equation (23):

Th =
√

s(jmin) (23)

The uniform threshold is based on a Gaussian noise model as Equation (24):

λ = σ
√

2lnN (24)
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where N is the signal length and σ is the standard deviation for the noise. The standard
deviation for the noise is usually estimated by using Equation (25):

σ =
median|v|

0.6745
(25)

where v is the wavelet coefficients and median represents the median function.
A threshold is the basis for the threshold function, and a suitable threshold function

can ideally filter the mixed wavelet coefficients. Threshold functions are categorized into
soft and hard threshold functions. They both can discard wavelet coefficients smaller than
a given threshold as noise. When the wavelet coefficients are greater than a given threshold,
the hard threshold function maintains the wavelet coefficients, while the soft threshold
function subtracts the threshold from the original value. The soft threshold function makes
the wavelet coefficients have better continuity, so in this paper the soft threshold function
is chosen.

The hard threshold function [47] is denoted as Equation (26):

λ(v, Th) =
{

v,
0,

|v|≥ Th
|v|< Th

(26)

The soft threshold function [47] is denoted as Equation (27):

λ(v, Th) =
{

sign(v)(|v|−Th),
0,

|v|≥ Th
|v|< Th

(27)

Using wavelet thresholding for mixed signals further removes the noise signals from
the mixed signals, which enhances the extraction of useful signals.

2.5. The Proposed Joint Denoising Algorithm (ISGMD-WT)

In the output signal of a hydrophone, the noise signal often swamps the useful signal.
Keeping more useful signals while reducing noise is the pursued aim. This paper proposes
a novel denoising algorithm combining ISGMD, SC, SE, and WT. The algorithm steps are
as follows:

Step 1: Optimize the SGMD

The SGMD algorithm has a significant advantage for the decomposition of non-
stationary signals and pre-noise reduction is accomplished during decomposition. SGMD
using NMSE as the termination condition for decomposition hardly obtains an ideal pre-
noising effect. Thus, SGMD uses energy contribution to optimize the termination condition
in this paper. The ISGMD flowchart is shown in Figure 2.

Step 2: Symplectic geometry model decomposition

The hydrophone signals were decomposed by ISGMD to obtain a series of SGCs. The
SGCs contain both useful and noise signals. The number of SGCs produced by SGMD is
usually high, so this paper introduces spectral clustering to categorize SGCs into clusters.

Step 3: Cluster

To reduce the number of decomposed signals and quickly distinguish useful SGCs,
the spectral clustering algorithm is adopted to cluster the SGCs. Spectral clustering is
able to handle nonlinear data structures and aggregate noisy signals into the same clus-
ter. In order to denoise purposely, this paper introduces spectral entropy to classify the
aggregated clusters.

Step 4: Calculate and classify

In order to purposely remove the noisy signals, this paper uses spectral entropy to
partition the clusters. The spectral entropy measures the randomness and complexity
of the signal. By calculating the spectral entropy, clusters can be categorized into noise
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clusters, mixed clusters, and information clusters. Noisy signals are mainly concentrated in
noise clusters, while useful signals are mainly concentrated in information clusters. Mixed
clusters contain many noise signals and useful signals.

Step 5: Denoise and Reconstruct

Clusters are categorized into noise clusters, mixed clusters, and information clusters
by spectral entropy. The noise clusters are directly discarded and the noise-free clusters
are obtained by using wavelet thresholding to denoise the mixed clusters. The noise-free
clusters and information clusters are reconstructed to obtain the denoised signal.

3. Simulation and Application

In order to verify the effectiveness and feasibility of the improved SGMD and wavelet
threshold (ISGMD-WT) algorithm proposed in denoising hydrophone signals, two analog
signals and one hydrophone signal are processed and analyzed in this paper. Signals in the
ocean are complex and variable, so the two analog signals simulate a variety of underwater
noise environments. The analog signal 1 is to explore the denoising capability of the
ISGMD-WT algorithm in an environment containing signals of different frequencies and
white noise. Analog signal 2 is to explore the denoising ability of the ISGMD-WT algorithm
in an environment with different white noise intensities. To illustrate the advantages of the
proposed algorithm in signal denoising, in the experiments, it is compared with the eminent
signal denoising algorithms including the wavelet threshold (WT) algorithm, empirical
modal decomposition and wavelet threshold (EMD-WT) algorithm, and the variational
modal decomposition and wavelet threshold (VMD-WT) algorithm. It is displayed in the
experimental results intuitively by using a signal-to-noise ratio (SNR) and root mean square
error (RMSE) as evaluation indexes.

3.1. Simulation 1

There are many different frequencies of noise in the ocean, and denoising the mixed
noise containing different frequencies is an essential operation to extract the target signal. In
this simulation experiment, the target signal is mixed with noise signals of other frequencies
and Gaussian white noise is added. In the noise, the line spectrum signal of different
frequencies represents the ship noise and the underwater acoustic communication signals
during operation, and the white noise comes from marine life and wind waves. The mixed
signals are as follows: 

f1 = 5 × sin(2π × 50t)
f2 = sin(2π × 5t)

f3 = 2 × sin(2π × 10t)
f4 = 0.7 × sin(2π × 20t)

f5 = 0.5 × sin(2π × 100t)
f6 = WGN(t)

f = f1 + f2 + f3 + f4 + f5 + f6

(28)

where the target signal f1 has a frequency of 50 Hz, f2, f3, f4, f5, and f6 are line spectrum
signals with different frequencies. The target and mixed signals are displayed in Figure 3.
The denoising results of the four denoising algorithms are shown in Figure 4. The denoising
evaluation indexes of the four algorithms are recorded in Table 1.
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From Figure 4, it can be known that all four algorithms can realize the denoising for the
signal. However, the signals obtained by denoising using the WT, EMD-WT, and VMD-WT
algorithms still contain significant noise, and the denoised signals possess fluctuations
on the whole. Combined with the data in Table 1, the outstanding advantages of the
ISGMD-WT in signal denoising can be clearly seen. The ISGMD-WT algorithm ensures
the waveform smoothness during signal denoising, and the waveform remains highly
consistent with the target signal. The proposed algorithm is significantly superior to the
comparison algorithm in terms of SNR and RMSE.

3.2. Simulation 2

The complex and diverse noise in the ocean leads to the possibility that hydrophones
may receive underwater acoustic signals that contain noise of different intensities. In the
noise, the line spectrum signal represents the signal during the vehicle operation, and white
signals of different intensities come from marine life and the variable marine environment.
To simulate a mixed signal containing variable noise intensity, the simulated signal is set
as follows: 

f1 = 2 × cos (2π × 100t)[sin (2π × 5t) + sin (2π × 10t) + 1]
f2 = 0.5 × cos(2π × 150t)

f3 = A × WGN(t)
f = f1 + f2 + f2

(29)

where f1 is the target signal and f2 is the line spectrum signal with a frequency of 150 hz.
f3 is a noise signal, and the A is set to be adjustable in order to satisfy the demand of
different noise levels. f is the mixed signal (original signal) received by the hydrophone. In
the paper, the noise signals are set with Gaussian white noise of 0 db, 5 db, and 10 db, where
the db of white noise is the ratio of the target signal ( f1) and the line spectrum signal ( f2)
to the white noise ( f3), while the SNR of the original signal is the ratio of the target signal
( f1) to the white noise ( f3). In Figure 5, Figure 5a shows the mixed signal with different
noised decibels in the time domain, and Figure 5b shows the spectrogram of the target
signal. Figures 6–8 show the spectrograms of the denoising signals denoised by the four
algorithms. Table 2 records the denoising evaluation indexes of the four algorithms under
different noise intensities.
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Table 2. Denoising evaluation indexes of the four algorithms under different noise decibels.

White
Noise Index Original Signal WT EMD-WT VMD-WT ISGMD-WT

0 db
SNR −2.64 0.96 4.90 8.58 9.23

RMSE 1.9360 1.7912 1.1375 0.9415 0.6909

5 db
SNR −1.28 6.04 5.08 10.19 13.43

RMSE 1.1888 0.9981 1.1139 0.6380 0.4261

10 db
SNR −0.33 8.10 8.64 9.37 17.87

RMSE 0.7059 0.7867 0.7393 0.6800 0.2557

From Figures 6–8 and Table 2, it can be intuitively seen that compared with the other
algorithms, the proposed algorithm possesses eminent denoising ability and the denoised
signal is highly consistent with the target signal. The algorithm proposed possesses high
signal fidelity in the 0 db and 5 db noise decibel environments. In an environment with
10 db noise, the proposed algorithm essentially obtains the target signal from the mixed
signal. It is clear that the denoising ability of the proposed algorithm in this paper is better
than other algorithms.

3.3. Application in Hydrophone Experiment

In order to verify the effectiveness of the algorithm in real signals, it is applied to
the processing of hydrophone signals. The signals in this paper are received from the
Olympus-v389-su hydrophone, which has a center frequency of 500 khz and a sampling
frequency of 2 Mhz for collecting underwater acoustic signals. The hydrophone is shown
in Figure 9a. The experimental platform is shown in Figure 9b. When the pulsed laser is
irradiated on the aluminum block, the surface of the aluminum block breaks and emits
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ultrasonic waves. The ultrasonic waves are picked up by the hydrophone and used as an
input signal for the experiment.
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Figure 9. Hydrophone experiment. (a) The Olympus-v389-su hydrophone. (b) Experimental platform.

Figure 10 shows the time-domain signal received by the hydrophone and the spectro-
gram of the signal. The hydrophone signal is divided into two main parts: the static phase,
and the signal reception phase. The received signal in the static phase consists entirely of
noise, and the signal in the signal reception phase consists of the noise and useful signals.
In this paper, hydrophone signals are decomposed by the ISGMD algorithm and SGCs are
clustered by using spectral clustering. The clusters are computed using spectral entropy,
discarding the noise clusters and denoising the mixed clusters by wavelet thresholding to
finally obtain the denoised signal. A time-domain diagram of the clusters is presented in
Figure 11, which visualizes the waveform and amplitude of each cluster.
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drophone signal. The denoising signals generated by the four algorithms are shown in 
Figures 12 and 13 and the evaluation indexes are recorded in Table 3. Figure 12 shows the 
time-domain waveform graph of the four algorithms after denoising the hydrophone sig-
nal, and Figure 13 illustrates the spectrograms of the four algorithms after denoising the 
hydrophone signal. 

 
Figure 12. Denoised signals generated by the four algorithms. 

Figure 11. The clusters generated by spectral clustering.

The clusters generated by ISGMD and spectral clustering are shown in Figure 9. The
ISGMD decomposes the signal into 51 SGCs, which are divided into 20 clusters by spectral
clustering, and the clusters are computed using spectral entropy. The noisy signal is
mainly in cluster 18, for which the noise-reduction process using wavelet thresholding
is used to obtain the noise-reduced cluster. Signal reconstruction obtains the denoised
hydrophone signal. The denoising signals generated by the four algorithms are shown
in Figures 12 and 13 and the evaluation indexes are recorded in Table 3. Figure 12 shows
the time-domain waveform graph of the four algorithms after denoising the hydrophone
signal, and Figure 13 illustrates the spectrograms of the four algorithms after denoising the
hydrophone signal.
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Table 3. Evaluation indexes for denoising hydrophone signal.

Index WT EMD-WT VMD-WT ISGMD-WT

SNR 23.96 29.31 36.07 42.18
RMSE 0.008401 0.005637 0.001555 0.001041

Combined with Figures 12 and 13, and Table 3, the outstanding performance of the
algorithm proposed in this paper in signal denoising can be clearly seen. In Figure 12, the
ISGMD-WT algorithm can smooth the curve of the signal when the signal is denoised,
especially in the face of sudden signal changes, and it can prevent the signal from distortion
during noise reduction. Based on the data in Table 3, it is known that the ISGMD-WT
algorithm improves the SNR and minimizes RMSE compared to the other algorithms.
Combining the results of the above three experiments, the algorithm proposed in this
paper can effectively denoise noises of different frequencies and intensities, and prevent
modal aliasing during the denoising process. It can provide new ideas for the denoising of
underwater acoustic signals, and can also be expanded to other areas of signal denoising,
providing technical support for the application of signal denoising in engineering.

4. Conclusions

In order to overcome the noise in the hydrophone that affects signal availability, a
joint denoising algorithm based on SGMD and WT is proposed in this paper. This paper is
the first to introduce the energy contribution into SGMD as the iterative condition, which
reasonably enhances the denoising ability of SGMD. Aiming at generating too many SGCs
during SGMD, this paper uses spectral clustering to cluster the SGCs, effectively aggregat-
ing the noise signals into the same cluster. Using spectral entropy to compute clusters, noise
clusters, mixed clusters, and information clusters can be quickly distinguished. The mixed
clusters are denoised by wavelet threshold and the signals are reconstructed to finally
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obtain the denoised useful signal. The experimental results show that the ISGMD-WT
algorithm has outstanding denoising capability, the highest SNR, and the smallest RMSE.
It can effectively denoise the hydrophone signals to obtain complete information from the
underwater acoustic signals.
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