Identification of Olives Using In-Field Hyperspectral Imaging with Lightweight Models
Abstract
:1. Introduction
- (1)
- A lightweight classifier is proposed for the real-time identification of olives in images taken in olive groves, which is a problem that has not been extensively addressed in the literature.
- (2)
- Spectral band analysis is used for wise dimensional reduction. A spectral band analysis was performed to identify the critical bands for the identification problem through wise dimensional reduction using wavelengths in the visible and NIR spectra.
- (3)
- Comparison with other state-of-the-art techniques. We compared the state-of-the-art techniques for real-time in-field object identification using a lightweight classifier.
2. Materials and Methods
2.1. Dataset and Data Management
2.2. Evaluation Metrics
3. Framework Presentation
3.1. Data Acquistion and Preparation
3.2. Proposed Models and Training
3.3. Test and Validation
4. Results and Discussion
4.1. Model Results
4.2. Critical Band Evaluation
5. Conclusions
Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Olive Council. IOC—STATISTICS. 2023. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2022/12/IOC-Olive-Oil-Dashboard-2.html#production-2data (accessed on 22 January 2024).
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Trapani, S.; Migliorini, M.; Cherubini, C.; Cecchi, L.; Canuti, V.; Fia, G.; Zanoni, B. Direct quantitative indices for ripening of olive oil fruits to predict harvest time. Eur. J. Lipid Sci. Technol. 2015, 118, 1202–1212. [Google Scholar] [CrossRef]
- Perna, C.; Sarri, D.; Pagliai, A.; Priori, S.; Vieri, M. Assessment of Soil and Vegetation Index Variability in a Traditional Olive Grove: A Case Study. In Proceedings of the 2022 Conference of the Italian Association for Agricultural Engineering (AIIA): Biosystems Engineering Towards the Green Deal, Palermo, Italy, 19–22 September 2022; pp. 835–842. [Google Scholar]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Griffor, E.R.; Greer, C.; Wollman, D.A.; Burns, M.J. Framework for Cyber-Physical Systems: Volume 1, Overview; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2017. [Google Scholar]
- Khan, A.; Khan, U.; Waleed, M.; Khan, A.; Kamal, T.; Marwat, S.N.K.; Maqsood, M.; Aadil, F. Remote Sensing: An Automated Methodology for Olive Tree Detection and Counting in Satellite Images. IEEE Access 2018, 6, 77816–77828. [Google Scholar] [CrossRef]
- United States Geological Survey. Landsat Data Access, Landsat Data Access. U.S. Geological Survey. 2023. Available online: https://www.usgs.gov/landsat-missions/landsat-data-access (accessed on 23 October 2023).
- European Space Agency. Sentinel-3 Olci—Technical Guide—Sentinel Online, Sentinel Online. 2023. Available online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-3-olci (accessed on 23 October 2023).
- Vermote, E.; Franch, B.; Claverie, M. VIIRS/NPP Surface Reflectance 8-Day L3 Global 500m SIN Grid V002. 2023. Available online: https://data.nasa.gov/dataset/VIIRS-NPP-Surface-Reflectance-8-Day-L3-Global-500m/emiq-s47e/about_data (accessed on 22 January 2024).
- Wang, D. MODIS/Terra+Aqua Surface Radiation Daily/3-Hour L3 Global 1km SIN Grid V061. 2021. Available online: https://lpdaac.usgs.gov/products/mcd18a1v061/ (accessed on 22 January 2024).
- Masek, J.; Ju, J.; Roger, J.-C.; Skakun, S.; Vermote, E.; Claverie, M.; Dungan, J.; Yin, Z.; Freitag, B.; Justice, C. HLS Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30m v2.0. 2021. Available online: https://cmr.earthdata.nasa.gov/search/concepts/C2021957657-LPCLOUD/35 (accessed on 22 January 2024).
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Rasmussen, J.; Azim, S.; Boldsen, S.K.; Nitschke, T.; Jensen, S.M.; Nielsen, J.; Christensen, S. The challenge of reproducing remote sensing data from satellites and unmanned aerial vehicles (UAVs) in the context of management zones and precision agriculture. Precis. Agric. 2020, 22, 834–851. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Gao, Z.; Shao, Y.; Xuan, G.; Wang, Y.; Liu, Y.; Han, X. Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artif. Intell. Agric. 2020, 4, 31–38. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, C.; Yang, H.; Jiang, H.; Li, L.; Yang, G. Non-destructive and in-site estimation of apple quality and maturity by hyperspectral imaging. Comput. Electron. Agric. 2022, 195, 106843. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Almonacid-Caballer, J.; Crespo-Peremarch, P.; Recio, J.A.; Pardo-Pascual, J.E.; Sánchez-Garc, E. Automated classification of crop types and condition in a mediterranean area using a fine-tuned convolutional neural network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 1061–1068. [Google Scholar] [CrossRef]
- Aquino, A.; Ponce, J.M.; Andújar, J.M. Identification of olive fruit, in intensive olive orchards, by means of its morphological structure using convolutional neural networks. Comput. Electron. Agric. 2020, 176, 105616. [Google Scholar] [CrossRef]
- Mart, S.S.; Gila, D.M.; Beyaz, A.; Ortega, J.G.; Garc, J.G. A computer vision approach based on endocarp features for the identification of olive cultivars. Comput. Electron. Agric. 2018, 154, 341–346. [Google Scholar]
- Chauhan, N.K.; Singh, K. A Review on Conventional Machine Learning vs Deep Learning. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens. 2021, 13, 1619. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2019, 9, 85–112. [Google Scholar] [CrossRef]
- Applalanaidu, M.V.; Kumaravelan, G. A Review of Machine Learning Approaches in Plant Leaf Disease Detection and Classification. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021. [Google Scholar]
- Figorilli, S.; Violino, S.; Moscovini, L.; Ortenzi, L.; Salvucci, G.; Vasta, S.; Tocci, F.; Costa, C.; Toscano, P.; Pallottino, F. Olive Fruit Selection through AI Algorithms and RGB Imaging. Foods 2022, 11, 3391. [Google Scholar] [CrossRef]
- Guzmán, E.; Baeten, V.; Pierna, J.A.F.; García-Mesa, J.A. Infrared machine vision system for the automatic detection of olive fruit quality. Talanta 2013, 116, 894–898. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Qing, Y.; Liu, W.; Feng, L.; Gao, W. Improved Transformer Net for Hyperspectral Image Classification. Remote Sens. 2021, 13, 2216. [Google Scholar] [CrossRef]
- Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision Transformers for Remote Sensing Image Classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Domínguez-Cid, S.; Larios, D.F.; Barbancho, J.; Salvador, A.G.; Quintana-Ortí, E.S.; León, C. TEFNEN: Transformer for Energy Forecasting in Natural Environment. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), La Laguna, Spain, 19–21 July 2023. [Google Scholar]
- Li, Y.; Wang, H.; Li, J.; Liu, C.; Tan, J. ACT: Adversarial Convolutional Transformer for Time Series Forecasting. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Thirty-First Annual Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- S.I.L. SPECIM. SPECIM IQ. Available online: https://www.specim.com/iq/ (accessed on 22 January 2024).
- Tsai, B.K.; Allen, D.W.; Hanssen, L.M.; Wilthan, B.; Zeng, J. A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE. SPIE Proc. 2008, 7065, 70650Y. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Cichosz, P. Assessing the quality of classification models: Performance measures and evaluation procedures. Open Engineering 2011, 1, 132–158. [Google Scholar] [CrossRef]
- MIT Computer Science & Artificial Intelligence Laboratory. LabelMe. Available online: http://labelme.csail.mit.edu/Release3.0/ (accessed on 22 January 2024).
- Cao, F.; Yang, Z.; Ren, J.; Jiang, M.; Ling, W.-K. Does Normalization Methods Play a Role for Hyperspectral Image Classification? arXiv 2017, arXiv:1710.02939. [Google Scholar]
- Dom, S.; Barbancho, J.; Larios, D.F.; Molina, F.J.; Gómez, A.; León, C. In-field hyperspectral imaging dataset of Manzanilla and Gordal olive varieties throughout the season. Data Brief 2023, 46, 108812. [Google Scholar]
Normalization | Classifier | Precision (%) | Accuracy (%) | F1-Score (%) | |||
---|---|---|---|---|---|---|---|
Validation | Test | Validation | Test | Validation | Test | ||
Bandnorm | LR | 98.598 | 98.988 | 98.791 | 99.232 | 98.641 | 99.139 |
DT | 95.777 | 95.381 | 96.209 | 95.142 | 95.731 | 94.431 | |
SVM | 98.361 | 99.008 | 98.521 | 99.203 | 98.335 | 99.105 | |
RF | 93.481 | 85.647 | 94.500 | 87.569 | 93.872 | 86.606 | |
Maxmin | LR | 99.225 | 99.056 | 99.188 | 98.835 | 99.084 | 98.680 |
DT | 97.065 | 96.460 | 96.613 | 95.175 | 96.120 | 94.367 | |
SVM | 98.967 | 98.181 | 99.004 | 98.218 | 98.877 | 97.987 | |
RF | 94.252 | 96.306 | 93.772 | 95.090 | 92.793 | 94.273 | |
Z-score | LR | 98.865 | 87.855 | 99.006 | 89.534 | 98.882 | 88.867 |
DT | 97.362 | 93.765 | 96.855 | 93.786 | 96.396 | 92.882 | |
SVM | 98.720 | 95.197 | 98.861 | 96.068 | 98.719 | 95.621 | |
RF | 97.159 | 92.495 | 96.246 | 93.025 | 95.660 | 92.081 | |
No normalization | LR | 98.949 | 98.298 | 99.112 | 98.501 | 99.002 | 98.314 |
DT | 97.605 | 96.182 | 97.777 | 95.792 | 97.493 | 95.173 | |
SVM | 98.348 | 98.741 | 98.535 | 98.831 | 98.352 | 98.684 | |
RF | 93.524 | 85.916 | 94.518 | 87.759 | 93.887 | 86.889 |
Classifier | F1-Score (%) | Inference Time (ms) | Size (KB) |
---|---|---|---|
DT | 95.17 | 164.63 | 245.97 |
SVM | 98.35 | 720,248.31 | 20,841.96 |
LR | 99.00 | 231.91 | 5.51 |
RF | 93.89 | 4855.78 | 739.96 |
Percentile | Classifier | F1-Score (%) | Inference Time (ms) | Size (KB) |
---|---|---|---|---|
P33 | DT | 97.094 | 87.063 | 270 |
LR | 98.839 | 109.156 | 2.29 | |
SVM | 98.462 | 470,580.587 | 6500 | |
RF | 94.287 | 4854.568 | 756 | |
P25 | DT | 97.423 | 89.960 | 281 |
LR | 98.641 | 94.093 | 1.92 | |
SVM | 98.330 | 446,215.157 | 5110 | |
RF | 93.960 | 4711.796 | 768 | |
P10 | DT | 96.193 | 81.218 | 367 |
LR | 98.079 | 83.616 | 1.19 | |
SVM | 98.106 | 515,363.557 | 2840 | |
RF | 92.933 | 5137.557 | 770 | |
P5 | DT | 94.375 | 85.020 | 462 |
LR | 98.034 | 59.558 | 0.982 | |
SVM | 98.188 | 762,950.853 | 2460 | |
RF | 91.202 | 5259.811 | 766 |
Object Detection | F1-Score (%) | Parameters |
---|---|---|
InceptionV3 * | 83.89 | 23.90 M |
Inception-ResNetV2 * | 84.01 | 55.90 M |
Our model | 98.03 | 30.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Cid, S.; Larios, D.F.; Barbancho, J.; Molina, F.J.; Guerra, J.A.; León, C. Identification of Olives Using In-Field Hyperspectral Imaging with Lightweight Models. Sensors 2024, 24, 1370. https://doi.org/10.3390/s24051370
Domínguez-Cid S, Larios DF, Barbancho J, Molina FJ, Guerra JA, León C. Identification of Olives Using In-Field Hyperspectral Imaging with Lightweight Models. Sensors. 2024; 24(5):1370. https://doi.org/10.3390/s24051370
Chicago/Turabian StyleDomínguez-Cid, Samuel, Diego Francisco Larios, Julio Barbancho, Francisco Javier Molina, Javier Antonio Guerra, and Carlos León. 2024. "Identification of Olives Using In-Field Hyperspectral Imaging with Lightweight Models" Sensors 24, no. 5: 1370. https://doi.org/10.3390/s24051370
APA StyleDomínguez-Cid, S., Larios, D. F., Barbancho, J., Molina, F. J., Guerra, J. A., & León, C. (2024). Identification of Olives Using In-Field Hyperspectral Imaging with Lightweight Models. Sensors, 24(5), 1370. https://doi.org/10.3390/s24051370