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Abstract: The registration of bridge point cloud data (PCD) is an important preprocessing step for
tasks such as bridge modeling, deformation detection, and bridge health monitoring. However,
most existing research on bridge PCD registration only focused on pairwise registration, and payed
insufficient attention to multi-view registration. In addition, to recover the overlaps of unordered
multiple scans and obtain the merging order, extensive pairwise matching and the creation of a fully
connected graph of all scans are often required, resulting in low efficiency. To address these issues,
this paper proposes a marker-free template-guided method to align multiple unordered bridge PCD
to a global coordinate system. Firstly, by aligning each scan to a given registration template, the
overlaps between all the scans are recovered. Secondly, a fully connected graph is created based on
the overlaps and scanning locations, and then a graph-partition algorithm is utilized to construct
the scan-blocks. Then, the coarse-to-fine registration is performed within each scan-block, and the
transformation matrix of coarse registration is obtained using an intelligent optimization algorithm.
Finally, global block-to-block registration is performed to align all scans to a unified coordinate
reference system. We tested our framework on different bridge point cloud datasets, including
a suspension bridge and a continuous rigid frame bridge, to evaluate its accuracy. Experimental
results demonstrate that our method has high accuracy.

Keywords: point cloud registration; hierarchical multi-view registration; terrestrial laser scanning;
template-guided; bridge point cloud data

1. Introduction

According to the Ministry of Transport of the People’s Republic of China, the total
number of highway bridges surpassed one million at the end of 2022 in China [1]. These
bridges include large-scale structures that span seas, rivers, and lakes, as well as bridges
of various sizes. As the operation time of these bridges increases, issues related to their
structural health and carrying capacity have become increasingly prominent [2,3]. Regular
operation and maintenance management of bridges are essential to ensure traffic safety,
extend the lifespan of bridges, and reduce maintenance costs. There are several methods
available to obtain structural dynamic parameters that can reflect the health condition of
bridges. One commonly used approach is the eigen perturbation method [4], which enables
the extraction of modal parameters. In addition to analytical methods, manual inspections
remain essential for certain tasks such as crack inspections, settlement detection, bridge
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alignment checks. However, traditional manual maintenance methods are expensive, time-
consuming, and subjective and relies on inspectors to obtain all information accurately [5].

Recently, the three-dimensional (3D) laser scanning technique has opened up new
possibilities for bridge health monitoring and maintenance [6]. The terrestrial laser scanner
(TLS) can acquire 3D point cloud data (PCD) of bridges in a short period of time. PCD
provides a comprehensive and accurate representation of bridges, allowing for a detailed
assessment of its current condition. By analyzing the acquired PCD, valuable insights can
be gained to guide maintenance efforts and ensure the longevity and safety of the bridge
structure. Furthermore, PCD can be leveraged to create building information modelling
(BIM) models. A BIM model provides a digital representation of a bridge and can be
valuable for bridge maintenance and digital twins [5,7]. To obtain PCD of the entire bridge,
it is necessary to perform multiple scans from different locations because of the limited
view of TLS. However, each scan has its own coordinate system, making it essential to align
all the scans into a unified coordinate system in order to generate an accurate 3D model of
the bridge. Because the accuracy of the 3D model is heavily influenced by the registration
accuracy, PCD registration therefore becomes a crucial preprocessing step for TLS-based
bridge health monitoring and maintenance.

Although some researchers have studied registration methods of bridge PCD, they
mainly focused on pairwise registration [8,9]. However, to align multiple scans of a bridge
to a unified coordinate system, the utilization of multi-view registration techniques is
essential. In engineering practice, artificial markers such as target spheres [10] and target
papers [11] have been commonly used to assist registration and improve registration
accuracy when dealing with multiple scans. Although the registration results using these
artificial markers are highly reliable, placing artificial markers is time-consuming and
costly [12], especially for large infrastructure like bridges. Extensive research has been
conducted on marker-free multi-view registration techniques. However, when it comes
to applying these techniques to the registration of bridge PCD, there are two notable
challenges that need to be addressed. The first challenge involves recovering the overlaps
between unordered multiple scans. This typically requires extensive pairwise matching
and the creation of a fully connected graph that encompasses all the scans [13]. However,
when deal with TLS scans of large bridges, the process of extensive pairwise matching can
become quite time-consuming. The second challenge is related to determining the merging
order of the scans. Typically, the creation of a fully connected graph that encompasses all
the scans is necessary to establish the merging order [14]. However, when dealing with a
large number of scans, creating such a fully connected graph can be inefficient. To tackle
this challenge, Wu et al. [12] proposed a method to simplify this heavy registration task
by subdividing all the scans into several scan-blocks. In this way, the number of pairwise
registration procedures is significantly reduced. However, they constructed scan-blocks
according to the scanning order, which is sometimes impractical in bridge scenes. Because
bridges are essential components of urban transportation infrastructure, minimizing the
disruption to urban traffic during the scanning process is crucial. As a result, the PCD of
bridge scans cannot always be registered in a sequential order. Manual specification of
the registration sequence becomes necessary in such cases. However, for large bridges,
where dozens of scans may be acquired, the manual specification process can become quite
tedious and inefficient.

To address these issues, this paper proposes a template-guided hierarchical multi-
view registration framework that can register unordered bridge terrestrial laser scanning
data without any artificial targets. Firstly, the overlaps of multiple scans are recovered
using a template-guided initial pose estimation method and extensive pairwise matching
is avoided. Next, all the scans are partitioned into different scan-blocks based on their
locations and overlaps. Subsequently, the pairwise coarse registration is conducted in each
scanning block, and the transformations are obtained using an intelligent optimization
algorithm. After that, the fine registration is then performed to further refine the poses
within each block. Finally, the above steps are repeated between blocks until all scans are



Sensors 2024, 24, 1394

30f17

merged into a unified common coordinate system. The main contributions of the proposed
method are as follows:

(1) A marker-free multi-view registration framework is proposed to hierarchically align
unordered bridge terrestrial laser scanning data.

(2) A template-based initial pose estimation method is proposed to recover the overlaps of
unordered PCD, which avoids extensive pairwise matching and improves the efficiency.

(3) To group scans with high overlaps into the same block, a graph partition algorithm
based on the overlaps and scanning locations is utilized to construct scan-blocks.

2. Research Background
2.1. Registration of Bridge PCD

Several researchers have conducted studies on the registration techniques for bridge
PCD. For example, Data et al. [8] proposed a method for pairwise registration of bridge PCD.
They relied on straight-line edges as linear features and used the random sample consensus
(RANSAC) algorithm with a hash table of line pairs to match line pairs. The experiments in
three bridge datasets demonstrated its accuracy and efficiency. Zhao et al. [15] proposed an
efficient local descriptor for pairwise registration and validated its accuracy using a dataset
of a large-scale high-pier concrete bridge. Based on a long-span suspension bridge dataset,
Zhang et al. [9] compared and evaluated three iterative closest point (ICP) registration
methods from various aspects including convergence rate, execution time, and accuracy.
They also provided suggestions for efficiency optimization and accuracy improvement
to enhance long-span bridge deformation analysis. Deng et al. [16] introduced a novel
dual-purpose target for total station and laser scanner applications. Their experimental
results on a long-span arch bridge demonstrated that the using this target can improve
the accuracy of PCD registration. While these studies have made significant contributions
to the field of bridge PCD registration, it is important to note that they primarily focused
on pairwise registration and did not explore multi-view registration methods. However,
multi-view registration is more crucial in determining the speed and accuracy of bridge
PCD registration.

2.2. Multi-View Registration

For unordered multiple scans, multi-view registration first obtains the scanning order
of all the scans, and then merges them into a single PCD. The methods for obtaining
the scanning order can be roughly classified to marker-based methods and marker-free
methods. Marker-based methods involve placing unique markers in the scanning scene and
identifying these markers from the scanned PCD to assist with registration. For example,
Singh et al. [17] developed 3D unique identifiers along with a 3D registration workflow
for mapping and monitoring applications in underground mines. Ge et al. [18] presented
an automated marker-based approach for the registration of unordered scans in complex
forest scenes, which can automatically detect the artificial markers and build a geometric
network to judge their connectivity. However, since installing markers is time-consuming
and expensive, these methods are only suitable for complex or single repetitive scenarios.
For marker-free methods, Dong et al. [13] utilized multi-level descriptors, including a local
descriptor called binary shape context (BSC) and a global descriptor named the vector of
locally aggregated descriptor (VLAD), to describe each scan. They evaluated the similarity
between every pair of scans based on the distance between their features. Then, they
iteratively merged two scans until all the scans were combined into a single coordinate
system. However, the performance of VLAD is directly influenced by the distinctiveness
of the descriptor. To enhance the robustness of descriptors in urban scenarios dominated
by planar structures, Ge et al. [19] proposed a new descriptor by combining panoramic
images and the planar features of PCD. However, due to the diverse types of components
in bridge scenes, it is challenging to segment them using planar structures, making this
method difficult to apply in such scenarios. In addition, the extensive pairwise matching is
time-consuming when dealing with a large number of scans.
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The methods for merging scans can be roughly divided into sequential registration
methods and joint registration methods. Sequential registration methods utilize pairwise
registration to iteratively merge two scans until all the scans are merged into a common
coordinate system [20]. To determine the merging order, Weber et al. [14] created a fully
connected graph and extracted the minimum spanning tree (MST) to define the merging
order from root to leaf. The weights of edges in the fully connected graph were defined
based on the number of true correspondences between two scans. However, when ap-
plied to large-scale scans, searching for corresponding point pairs can be time-consuming.
To improve the efficiency of the MST-based methods, some researchers have adopted shape
growing algorithms to merge scans, which have higher computational efficiency [19,21].
Other researchers have employed hierarchical merging-based methods to enhance the
robustness and efficiency of scans with limited overlaps. For example, Wu et al. [12]
proposed a framework for aligning ordered multi-view PCDs. Their approach involves
partitioning all the scans into blocks based on the scanning order and then merging the
scans within each block to achieve alignment. However, this method is not suitable for
unordered scans. Joint registration-based methods consider the multi-view registration
problem as a graph optimization problem by using all pairwise registration results to
minimize global residuals. Theiler et al. [22] constructed an energy function by considering
all loop consistency constraints in the graph and then utilized the lazy flipper algorithm
to minimize the energy function, thereby reducing the overall registration error. Tang
et al. [23] proposed a method to minimize the sum of squared distances between point
pairs generated by the ICP algorithm. Their approach includes a constraint that ensures the
product of all transformations within each loop results in an identity matrix. This constraint
helps to optimize the alignment process and improve the accuracy of the registration results.
However, these methods only redistribute the registration errors on the constructed graph
without updating correspondences, and they cannot reduce the total registration error [20].

3. Methodology

The proposed method aims to addresses the challenge of automatically aligning un-
ordered scans of bridges without any makers. The overview of the registration framework
is plotted in Figure 1. For unordered scans, a template-guided approach is employed in
Section 3.1 to recover the overlaps. Subsequently, all the scans are partitioned into different
scan-blocks based on their scanning locations and overlaps in Section 3.2. Within each
block, pairwise coarse registration is conducted using an intelligent optimization algorithm,
as described in Section 3.3. Finally, the fine registration is performed to further refine the
poses within each block in Section 3.4. These steps are iteratively executed between blocks
until all scans are merged into a unified common coordinate system.

3.1. Template-Guided Initial Pose Estimation

Typically, bridges are long and symmetrical structures, and their geometric features
on the side view are distinct and can be leveraged to approximate the location of each scan.
By comparing the geometric features of the side view of an individual scan of the entire
bridge, the approximate position of that scan along the bridge’s length can be determined.
Therefore, using the as-designed side view as the template, an initial pose estimation
method is proposed.

3.1.1. Acquisition of Side View Geometric Features

The side view geometric features of each scan can be obtained by projecting the PCD
into a binary image along the direction perpendicular to the traffic direction of a bridge.
First, the traffic direction of a bridge can be determined using the principal component
analysis (PCA) algorithm. Considering the non-uniformity of scans, only the points that
form the minimum convex hull of two-dimensional (2D) PCD on the xOy plane are utilized
in the PCA algorithm. Second, the PCD is rotated so that its traffic direction aligns with
the x axis, as shown in Figure 2a. Then, the 2D PCD can be obtained by projecting the
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PCD into the xOz plane. Next, the 2D PCD is voxelized using the grid sizes éy and &, (their
calculation methods will be introduced later), and then it is converted to a binary image
with each grid corresponding to a pixel. If the number of points within a grid is more than
one, the grey value of the corresponding pixel is set to 1; Otherwise, it is set to 0. The binary
image of the PCD in Figure 2a is shown in Figure 2b.

Initial pose
estimation

Scan-block
generation

Block 1 Block 2 Block 3

MST calculation

& pairwise ®
registration .

MST of Block 1 MST of Block 2 MST of Block 3

@
>

Merge scans c 0
Number of

‘ Number of scans = 1 scans > 1

Output

Figure 1. Flowchart of the proposed method.

3.1.2. Unified Scale of the Template and Binary Images

We employ an as-designed side view as the registration template. To ensure that the
scale of the template is same as the binary images converted by PCD, the grid sizes 6, and
6, are determined using the following two formulas.

L

o= 3 M
H

=y @

where L and H represent the length and height of the bridge, respectively; Ny and Ny are the
width and height of the minimum bounding box of the non-blank region in the template.
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Figure 2. An example of the binary image: (a) Traffic direction estimation. (b) Binary image.

3.1.3. Image Matching

Image matching algorithms can be utilized to obtain the approximate positions of
scans relative to the bridge. Based on the utilized primitives, image-matching algorithms
can be classified as area-based matching (ABM) or feature-based matching (FBM) algo-
rithms [24]. ABM is based on the idea that grey values of pixels of conjugate points have
similar radiometric characteristics [25], while FBM is based on feature extraction, feature
description, and correspondence feature matching. We opted for the ABM for image match-
ing, which has high efficiency and reliability [26]. Given two images, ABM considers one
as the reference image, the other one as the matching image. The matching image slides
within a search window on the reference image, and a similarity measure is calculated at
each position. The location of the matching image is assumed to be the position of the best
agreement [27]. In our study, the registration template is set to the reference image and the
search window is the entire image. Binary images are the matching images. An example of
image matching is shown in Figure 3a. Considering that the image matching step can only
determine the positions of PCDs but cannot adjust their orientations, the matching score
between the horizontally mirrored image of the binary image and the registration template
is also calculated. The case with the higher matching score is selected as the final result.
Based on the matching relationship between each scan and the registration template, the
relative positional relationships on the xOz plane between different scans can be obtained,
as shown in Figure 3b. The alignment in the y-axis direction is determined based on the
centres of the scans.

3.1.4. Correction of False Matching

In some cases, same geometric patterns may appear multiple times in a bridge, which
may result in false matching. As shown in Figure 4, the geometric elements within the red
boxes appear four times. When the coverage area of a scan is small, these repeated patterns
may cause false matching.
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Figure 3. An example of image matching: (a) The relative positions of a scan with respect to the
registration template. (b) The relative positions between different scans.

Figure 4. Repeated geometric patterns in a bridge.

To address this issue, a method for identifying and correcting false matching is pro-
posed. A good scanning plan should provide a uniform coverage of a bridge while avoiding
over-coverage in any particular area. When a scan is matched to a false location, the scan
is considered “redundant” for the false location because it results in an over-coverage for
the false location. Therefore, we can quantify the redundancy of a scan by comparing it
with its adjacent scans. For the ith scan, its projected image is denoted as I;, and its areas
intersecting with all the other scans are calculated based on the locations obtained in the
template matching step. The n scans with the largest intersection areas are selected, their
projected images denoted as Iy, I, . . ., I, are utilized to calculate the redundancy score S;
for the ith scan using Formula (3).

(LULU---Ul,) ol

A B
Y ¥ Iiab)

a=1b=1

Si =

©)

where A and B are the height and width of I;, respectively; (o) denotes the Hadamard
product. The scores for all the scans are then statistically analyzed to calculate the coefficient
of variation. A higher coefficient of variation indicates a greater discreteness of scans,
meaning false matching may be present. The top 20% scans with the highest scores are
selected as potentially mismatched PCDs, awaiting further validation.
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Images projected by adjacent scans Part of the registration template

Considering that there may be differences between the as-designed side view and
the actual state of the bridge, the similarity between a scan with its adjacent scans in the
right location will be higher than the similarity between the scan with its adjacent scans
in the false location. Therefore, further validation of whether a scan is mismatched can
be determined based on its positional relationship with adjacent scans. For the ith scan
which is labelled as potentially mismatched, three locations with the top three highest
matching scores in the template matching step are considered as candidate positions.
All the candidate positions are the pixels with the highest matching scores in a certain
neighbourhood area. For each candidate position, the intersection areas with other scans
that have not been labelled as mismatched are calculated. Three scans with the largest
intersection areas are selected, and their projected images are added to the registration
template with a proportion of 5% to modify the template, as shown in Figure 5. The
matching score between the modified registration template and the ith scan is computed at
each candidate position. The candidate position with the highest matching score is selected
as the final position for the ith scan.

Part of the registration template

Images projected by adjacent scans

Images projected by adjacent scans Part of the registration template

Figure 5. Candidate positions of a scan.

3.2. Overlap-Based Scan-Block Construction

The main focus of our work lies in the efficiency of processing large bridges, such as
suspension bridges, which may require dozens of TLS scans. The fully connected graph that
arises from all these scans can be quite large, making the registration task computationally
intensive. To address this challenge, a hierarchical registration strategy can be employed.
This strategy can recursively subdivide and fuse the heavy registration task into smaller,
more manageable subsets. By breaking down the registration process into hierarchical
levels, the number of pairwise registration procedures can be significantly reduced [12].
In more detail, the hierarchical registration strategy involves partitioning all the scans
into different scan-blocks and then locally aligns the scans in each scan-block, and finally
performs the global block-to-block registration. The local registration accuracy of each
scan-block plays a vital role in determining the overall registration accuracy of all the scans.
To improve the registration accuracy, it is crucial to ensure significant overlaps within
each block. Therefore, the block partitioning step plays a critical role in improving both
registration precision and efficiency.

Partitioning scan-blocks must take into account both the scanning locations and
overlaps between scans, and the overlaps of two scans can be qualified by the overlaps of
their bounding boxes. The normalized cut (Ncut) algorithm [28] is utilized in our work for
scan-block construction. First, a fully connected graph is created with each scan treated as
anode. The edge weight w;; between the nodes v; and v; is defined as
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~IoU
C Ax+ Az
where Ax represents the ratio between the difference in x-coordinate values of the scanner
positions and the width of the bridge, and Az the ratio between the interpolated z-coordinate
values and the height of the bridge. IoU is defined as the intersection ratio of the bounding
boxes of two PCDs, i.e.,

(4)

ZUZ']'

©)

B; and B; in Equation (5) represent the bounding boxes of two scans.

The objective of the Ncut algorithm is to minimize the cut between different blocks
while maximizing the sum of the edge weights within each block. The objective function
can be formulated as

L CMt(Ai,ZZ')
—_— 6
) ©

NCth(Al,Az,- .- /Ak) = Z
= wol(

where A; represents the ith scan-block, A; the complement of A;, k the total number of
blocks, and cut(A;, A;) the cut between A; and jth scan-block 4;, i.e.,

cut(Ai, A]) = } Z Wi (7)

vol(A;) represents the sum of degrees of each node within A;, i.e.,

vol(A) = Y d; ®)
i€A

Based on the normalized Laplacian matrix, the objective function can be simplified,
and the Rayleigh-Ritz theorem can be employed for the solution. Finally, the partitioning
results can be obtained using the k-means clustering algorithm [29]. Using the TLS scans of
a suspension bridge as an example, the scan-block construction result is shown in Figure 6,
where the numbers within the purple circles indicate the scanner positioned above the
bridge deck, while the numbers within the black circles represent the scanner positioned
below the bridge deck. It can be observed that our block construction method is capable of

grouping scans with closer proximity and higher overlap into the same block.

Block 1

Figure 6. An example of the scan-block construction result.
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3.3. Pairwise Coarse Registration by Optimization Algorithms

The pairwise coarse registration is commonly formulated as the maximum consensus
set (MCS) problem [12]. Given two scans, P and Q, the point p; in P is paired with its
nearest neighbour g; in Q, forming a point pair (p;, g;). The set of point pairs is represented
as H = {(p;, qj)}lk, where k is the number of point pairs. If the distance between p; and
g; is less than a threshold J, the point pair is considered as a true correspondence. The
MCS problem [30] aims to find the transformation matrix corresponding to the maximum
number of true correspondences, i.e.,

R?IagHm, subject to || p; — (Rgj + 1) | <6, v(pi q) €1 9)

The feature-based coarse registration method is the most commonly used coarse
registration method [20]. It first extracts key points from two PCDs, and computes features
of key points. Then a subset of key points is randomly selected from one PCD, and their
corresponding points are searched in the other PCD using the feature similarity. After that,
a transformation matrix can be obtained based on the matched point pairs, along with the
number of true correspondences, which is called a consensus set. This process is usually
iterated multiple times, and the transformation matrix associated with the highest number
of true correspondences, which is called the maximum consensus set, will be output as
the final transformations. However, existing feature extraction methods are susceptible
to variations in point density and noise, and it makes the above methods less robust [20].
Considering that all the scans already have rough relative position relationships after the
template matching step, performing pairwise coarse registration on the basis of this can
significantly reduce the search space. We employ the particle swarm optimization (PSO)
algorithm to search for the maximum consensus set.

The PSO algorithm is an iterative intelligent optimization algorithm that relies on
collaboration and information sharing among particles to search for the optimal solution.
During the searching process, each particle records its current position as well as its
historical best solution, and the population also records its historical best solution. Based
on the historical best solutions, the positions and velocities of the particles are updated,
enabling the particle swarm to iteratively evolve and converge towards the global optimum.
In this study, the particles denote the combinations of R and T, and each particle is described
by speed v;j and position x;;, which are updated by Equations (10) and (11).

Ul']'<t + 1) = wvl-j(t) +c1 X1 X (Pl] — xl-]-(t)) +Cp X1y X (pg] — xl-]-(t)) (10)

xij(t—i-l) = xl-]-(t)—l—vij(t—i-l) (11)

where i is the particle number and j is a variable dimension; v;(t) and v;(t + 1) are the
particle speeds at times f and ¢ + 1, respectively; x;;(t) and x;j(t + 1) are the particle positions
at times t and ¢ + 1, respectively; pj; is the historical optimal solution of the current particle;
and py;j is the historical optimal solution of the swarm; ¢; and ¢, are acceleration constants
and both set to 2; w is the inertia weight and is set to 0.8; 1 and r; are random numbers in
the closed interval [0,1].

For the initial pose shown in Figure 7a, the PSO algorithm can obtain an accurate
transformation, as shown in Figure 7b. Although the PSO algorithm can avoid becoming
trapped in local optima, there may still be cases where two scans within the same scan-
block cannot obtain the correct transformation matrix due to low overlap or slightly larger
scanning distances. To identify false matches, Wu et al. [12] proposed a method based on
the loop closure constraint and proved to be effective. This method is utilized in this study
to reject false scan-to-scan matches obtained by the PSO algorithm.
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(b)

Figure 7. An example of coarse registration by the PSO algorithm: (a) Before PSO. (b) After PSO.

3.4. Fine Registration and Pose Optimization

To obtain the optimal merging order of scans within each scan-block, the mini-
mum spanning tree (MST) is utilized to extract a cycle-free and well-pairwise-registered
graph [30]. The MST relies on edge weights to define the shortest path. In this study, the
weight of each edge is defined as the number of true correspondences after the pairwise
coarse registration, and the weights of the edges with false matches are set to 0. Along the
edges of the MST, all the other nodes in a scan-block can be merged into the root node using
the coarse registration matrix calculated by the PSO algorithm and the fine registration
matrix computed by the ICP algorithm [31]. However, the errors will accumulate along the
edges from the root to the leaf node since the MST is a cycle-free graph [13]. To address the
issue of error accumulation, the Lu-Milios algorithm [32] is utilized to further optimize
the pose.

Treating each scan-block as a new scan, the registration between scan-blocks can be
accomplished using the same methods described in Sections 1-4. This process is repeated
until all scans are merged into a single scan. To avoid excessive point growth, PCD down-
sampling is performed after the scan merging step.
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4. Experiments and Analysis
4.1. Datasets Description and Evaluation Criteria

We evaluated the performance of the proposed method using two bridge point cloud
datasets, including a suspension bridge and a continuous rigid frame bridge. The sus-
pension bridge named Cuntan Yangtze River Bridge is located in Chongging with a total
length of approximately 1.6 km and a width of about 38 m (Figure 8a). It was scanned using
Leica P40 with a ranging error of 1.2 mm + 10 ppm and an angular accuracy of 8" [33].
The continuous rigid frame bridge named Huanghuayuan Jialing River Bridge is located
in Chongqing with a total length of approximately 1.2 km and a width of about 31 m. It
was scanned using Faro S350 with a ranging error of 1 mm between 10 m to 25 m and an
angular accuracy of 19" [34]. More details about the two datasets are listed in Table 1.

i

E S
P L

[ L e ggnTnd

o

Figure 8. Two bridges in the bridge datasets: (a) Cuntan Yangtze River Bridge. (b) Huanghuayuan
Jialing River Bridge.

Table 1. The detailed description of the two datasets.

Dataset Scanners Scans Pts (Billion)
. . Leica P40
Cuntan Yangtze River Bridge (Leica, Wetzlar, Germany) 29 1.52
Huanghuayuan Jialing River Bridge Faro 5350 20 1.68

(Faro, Lake Mary, FL, USA)
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For the Huanghuayuan Jialing River Bridge, only the area below the bridge deck
was scanned using TLS, while the bridge deck area was scanned using a mobile scanning
system. Prior to inputting the data into the algorithm, background points were roughly
removed. In addition, the ground truth result was obtained through manual registration.

The performance of the method is evaluated by the axis-angle rotation error ¢” and
translation error e’ of all transformations among the scans [35], which are as follows:

tr(Rg(Rf)T) 1
2

¢’ = arccos (12)

el =t — 85 (13)

where R® and #° represent the estimated rotation matrix and translation vector, respectively,
and R¢ and #8 are the those of the ground truth. In addition, the successful registration rate
(SRR) is also utilized and defined by

N;

RR =
5 N-1

(14)

where N represents the total number of scans, and N; the number of successfully aligned
scans. A scan is considered successfully aligned when its rotation error and translation
error are both less than the specified thresholds ¢” and ¢*, respectively.

4.2. Results of Template-Guided Initial Pose Estimation

Based on the bridge datasets, we evaluated the accuracy and efficiency of the template-
guided initial pose estimation method. The proposed method is implemented in Python
through an Intel Core i7-7700K CPU (Intel, Santa Clara, CA, USA). The initial pose estima-
tion results of the Cuntan Yangtze River Bridge and Huanghuayuan Jialing River Bridge
are shown in Figure 9a and Figure 9b, respectively. It can be seen that this step can roughly
align the scans and obtain the relative scanning positions.

The average rotation error, average translation error and running time for two bridges
are listed in Table 2. For the Cuntan Yangtze River Bridge, the average rotation error is
19.1 mdeg, and the average translation error in the three coordinate axis directions are
0.66 m, 3.62 m, and 1.88 m, respectively. For the Huanghuayuan Jialing River Bridge, the
average rotation error is 19.7 mdeg, and the average translation error in the three coordinate
axis directions are 0.64 m, 5.16 m, and 2.35 m, respectively. Due to the alignment in the
y-axis direction being solely based on the centres of the PCD, translation errors are more
pronounced in the y-coordinate.

The running times of the two bridges are 6.08 min and 4.43 min, respectively. Com-
pared with extensive pairwise matching, template-guided initial pose estimation has a
higher efficiency, primarily due to two key reasons. Firstly, in our method, only N template
matching is required to create a graph, where N represents the number of scans. In contrast,
extensive pairwise matching necessitates C3, = N(N — 1)/2 matches. This reduction in
the number of matches significantly improves the efficiency of our approach. Secondly,
in template-guided initial pose estimation, the problem scale in each individual match is
determined by the number of points in the scan, denoted as . The fundamental operation
is mapping each point to a 2D grid. As a result, the time complexity for processing a single
scan in the initial pose estimation step is O(), and the time complexity for processing all
scans is O(Nn). The quadratic time complexity ensures that our method has high efficiency
and is adaptable to larger datasets. In summary, the data showed that our method can
achieve a relatively high alignment accuracy, provide good initial poses for subsequent
steps, and it helps to improve efficiency by avoiding extensive pairwise matching.
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(b)

Figure 9. Initial pose estimation results of two bridges: (a) Cuntan Yangtze River Bridge.

(b) Huanghuayuan Jialing River Bridge.

Table 2. Evaluation on template-guided initial pose estimation.

Rotation Error Translation Error (m)
Dataset Time (min,
atase (mdeg) Ax Ay As (min)
Cuntan Yangtze River Bridge 19.1 0.66 3.62 1.88 6.08
Huanghuayuan Jialing River Bridge 19.7 0.64 5.16 2.35 443

4.3. End-to-End Performance Evaluation

During the experiments, we set the average number of scans in a scan-block to 5, the
down-sampling voxel size to 0.1 m, and ¢” and ¢* to 100 mdeg and 100 mm, respectively.
The experimental setup utilized a hybrid programming approach, with the template-guided
initial pose estimation step implemented in Python and the remaining parts in C++. Our
method was tested on a laptop with 32 GB RAM and an Intel Core i7-7700K CPU.
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The registration results for the two bridges are plotted in Figure 10. The points are
coloured according to the difference in height. It can be seen that the mismatching in
Figure 9 has been removed. This demonstrates that our method can deal with PCD of large
bridges, and obtain a good performance in accuracy.

(b)

Figure 10. Registration results of the bridge dataset: (a) Cuntan Yangtze River Bridge.
(b) Huanghuayuan Jialing River Bridge.

The accuracy and efficiency of the proposed method was evaluated, and the rotation
and translation errors with the root mean square error (RMSE), SRR, and running time are
listed in Table 3. The average rotation errors of our method are 0.96, 0.74 (mdeg) and average
translation errors are 28.04, 43.25 (mm), with the SSR of 100% and 100%. The results show
that our method achieves relatively small rotation errors, but slightly larger translation
errors. Compared with the Cuntan Yangtze River Bridge, the Huanghuayuan Jialing River
Bridge has a relatively simple geometric shape and lacks complex features and structures,
resulting a larger translation error. In conclusion, the registration results listed above prove
that our method performs well in registering the TLS scans of varying bridges, and the
accuracy can satisfy the requirements of component extraction and 3D reconstruction.
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Table 3. Evaluation of the proposed method.

Rotation Error (mdeg) Translation Error (mm) o . .
Dataset Average RMSE Average RMSE SSR (%) Time (min)
Cuntan Yangtze River Bridge 0.96 0.67 28.04 14.13 100 50.6
Huanghuayuan Jialing River Bridge 0.74 0.66 43.25 28.48 100 40.5

4.4. Discussion

Although our method has demonstrated good performance, it still has two limitations.
Firstly, prior to registration, the manual removal of background points is required. This step
can become cumbersome when dealing with a large number of scans. Therefore, future re-
search will focus on developing automatic background-point removal techniques. Secondly,
our method is currently only applicable to bridges, which limits its application. Future
research will aim to expand this method to more diverse scenarios and environments.

5. Conclusions

In this paper, we present a template-guided hierarchical multi-view registration frame-
work for aligning unordered bridge terrestrial laser scanning data without any markers.
The proposed framework incorporates two distinct features: template-guided initial pose
estimation and overlap-based scan-block generation. The former enables the rapid recovery
of the scanning sequence for multiple unordered bridge scans, while the latter leverages
the overlap between scans and a graph segmentation algorithm to partition the scans into
different scan-blocks. Experimental results on two different bridge datasets demonstrate
the accuracy and efficiency of the proposed method.
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