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Abstract: In the transition from virtual environments to real-world applications, the role of physics
engines is crucial for accurately emulating and representing systems. To address the prevalent issue
of inaccurate simulations, this paper introduces a novel physics engine uniquely designed with a
compliant contact model designed for robotic grinding. It features continuous and variable time-step
simulations, emphasizing accurate contact force calculations during object collision. Firstly, the
engine derives dynamic equations considering spring stiffness, damping coefficients, coefficients of
restitution, and external forces. This facilitates the effective determination of dynamic parameters such
as contact force, acceleration, velocity, and position throughout penetration processes continuously.
Secondly, the approach utilizes effective inertia in developing the contact model, which is designed for
multi-jointed robots through pose transformation. The proposed physics engine effectively captures
energy conversion in scenarios with convex contact surface shapes through the application of spring
dampers during collisions. Finally, the reliability of the contact solver in the simulation was verified
through bouncing ball experiments and robotic grinding experiments under different coefficients of
restitution. These experiments effectively recorded the continuous variations in parameters, such
as contact force, verifying the integral stability of the system. In summary, this article advances
physics engine technology beyond current geometrically constrained contact solutions, enhancing
the accuracy of simulations and modeling in virtual environments. This is particularly significant in
scenarios wherein there are constant changes in the outside world, such as robotic grinding tasks.

Keywords: physics engine; continuous contact model; compliant contact force; robotic grinding
trajectory planning

1. Introduction

With the development of robotic trajectory planning technology, a large number of
robots [1] have reduced the need for manual labor. The grinding process requires more
uncertain contact with the external workpiece, and the physical robot cannot determine
whether the planned grinding contact force is appropriate directly. The physics engine [2] is
the most important part of the simulator, used to process physical effects such as simulating
rigid body motion, collision, gravity, and friction. Simulation needs to be carried out from
the virtual environment, but the current physics engine is not accurate enough to pursue
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speed. If there are differences between the simulated contact force and the real contact force
in the physics engine, the trajectory planning of the sim-to-real [3] process will be wrong.

Contact–impact events encompass intricate physical occurrences characterized by
brief durations, substantial forces, rapid energy dissipation, and notable alterations in
speed. Modeling these contact–impact phenomena is inherently demanding owing to
their significance and complexity. Due to the importance and complexity of these contact–
collision phenomena, modeling them is inherently demanding. These events involve
numerous variables, such as the material properties of the contacting surfaces, the surface
shape of the contacting bodies, and the constitutive relations. The abrupt velocity changes
render the contact behavior typical of a nonlinear and non-smooth system.

In the realm of modeling methodology, various approaches have surfaced to describe
contact response in the context of multibody dynamics. Broadly categorized, these ap-
proaches can be divided into two groups: methods based on “geometric constraints” and
models relying on “contact forces” [4]. The “geometric constraint” methods assume that
the colliding bodies remain sufficiently rigid to avoid deformation during the collision
process. This approach is referred to as the non-smooth dynamic formulation [5]. Con-
versely, the “contact force”-based model relies on evaluating the spring–damper model as
a function of penetration depth and relative velocity, known as compliance or penalty [6].
Unlike non-smooth formulations, the “contact force”-based model is considered compliant,
as colliding objects can deform in the contact region. The “contact force”-based model,
also known as continuous analysis, continuously evaluates the contact force as a function
of penetration.

The linear complementarity problem (LCP) [7] stands as a widely adopted model
for addressing impact in the realm of robotics, particularly within the framework of the
“geometric constraint” method. In robotic simulations, complementarity is central, re-
quiring either zero displacement or zero contact force. This simultaneous satisfaction
implies that the product of two values is forever zero. Essentially, the LCP method is
used to solve the geometric contact problem of two objects. The impenetrability of rigid
bodies at the velocity level can be achieved by constraining motion or contact forces. Some
well-known game physics engines, such as ODE [8], Pybullet [9], and Vortex [10], use
equivalent replacements for friction, although inaccuracies arise due to the non-physical
nature of the parameters [11]. This kind of replacement for the convenience of calculation
is prone to errors in numerical integration, which further leads to the collapse of the system.
RaiSim [12] achieved a great breakthrough in computer graphics by implementing a new
iterative solution method through the commonly used Gaussian–Sedar (PGS) method.
Drake employs its transition-aware solver TAMSI [13] to accomplish compliant contact
with regulated friction. MuJoCo [14] greatly improves the constraint-solving method by re-
laxing parameters to formalize the problem. Due to its superior computing speed, MuJoCo
is widely used in the reinforcement learning training of robots [15].

Adopting a compliant contact force model has proven helpful [16] in overcoming the
limitations faced by traditional approaches. The core idea of the continuous compliant
contact model is a spring damping model in which the surface is regularly filled with
parameters related to the surface material coefficient [17]. According to the set components,
the contact force can be achieved to bounce off, thereby preventing penetration at the
force level. The determination of stiffness and deflection magnitudes for the spring–
damper elements is carried out based on factors such as relative indentation, material
properties, and surface geometries of the colliding bodies. After years of development,
Flores et al. [18] and Gonthier et al. [19] proposed the continuous compliance contact model.
Their model was continuously compared with real physical collisions, and experiments
verified the reliability of the model. In the field of mechanical simulation, the method of
calculating collision using compliant contact force is widely used due to its speed and ease
of programming. At the same time, this model can perform dynamic calculations very well
from the physical level, which is beneficial to the numerical stability of the entire system.
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Therefore, this model has been applied to many closed-source commercial programs, such
as RecurDyn [20], EDEM [21], and ADAMS [22].

Unlike prevalent robotic simulators [23], which often rely on geometric constraints for
solving the contact process, thereby confining rigid contact to an idealized state, this paper
aims to address these limitations. Our proposed solution involves a variable time-step
physics engine with a continuous compliance contact model [24]. Firstly, the bouncing ball
experiment with different consumption coefficients was tested to verify the calculation
effect of the contact model. Then, by comparing the stability experiments of our proposed
method and advanced physics engines, the superiority of the variable time step was
verified. Finally, grinding experiments were conducted to further verify the reliability of
the conversion from virtual contact force to real. The innovation and primary contributions
of this study are outlined below.

(1) Development of a Novel Physics Engine: Central to our innovation is the development
of a new physics engine based on the continuous compliance contact model. The
analytical solution of the model facilitates the dynamic adaptation of contact forces
throughout the simulation, leading to variable time-step integrator behavior.

(2) Enhanced Collision Process Modeling: Our engine introduces a framework to model
collision processes precisely. By adopting this advanced approach, we improve
simulation-to-real conversion. This is achieved through careful calibration of stiffness
and disturbance parameters, which is beneficial to enhancing the simulation accuracy
of the entire simulation system.

(3) Redefining Conventional Methods: This study challenges the traditional geometric
constraint-based methods, signaling a significant paradigm shift toward more realistic
and robust simulations in robotics. By leveraging a swift and stable analytical solution
for dynamic equations, our approach ensures rapid acquisition of feedback force.

The rest of this paper is organized as follows. We describe the overview of the whole
system in Section 2. We focus on the principle of the contact solver in Section 3. We discuss
the performance of ball experiments and robotic grinding experiments in Section 4. Finally,
the conclusions of this study are summarized in Section 5.

2. Framework of the Variable Time-Step Physics Engine

In this section, we propose the primary flow chart of the physics engine for robotics
(referring to Figure 1). The components of the physics engine include the following: Firstly,
Import the CAD model of the multi-jointed robot as a BVH model, which contains vertices
and triangles. Then, the collision detection is calculated in FCL and the contact information
is obtained, including whether there is a collision, the location of the collision point, and the
collision normal vector. Contact forces are calculated in our proposed contact solver. Then,
the next link position is further calculated in the integrator used. The dynamical calculation
of the next time step is further updated and it continuously calculates the simulation.

Collision detection can provide the fundamental algorithms for contact solvers. Import
the configuration of the robot and scene through XML files and save them as triangular
patches for broad-phase detection. The data contain the model’s vertex and triangle
needed for front-end display and collision detection, including vertex coordinates, triangle
meshes, texture maps, and information about the object’s surface and material. This paper
underscores the utilization of bounding volume hierarchies (BVHs), with a specific focus on
oriented bounding boxes (OBBs), for the computation of separation distances across various
robotic configurations [25]. In collision scenarios involving convex shapes, the Gilbert–
Johnson–Keerthi (GJK) algorithm and the expanding polytope algorithm (EPA) stand out
as the preferred methods. In continuous collision detection, the goal is to identify potential
collisions along a known continuous path. This is achieved by sampling points along the
path and performing periodic collision detection at these sampled locations. To enhance
the efficiency of these tests, OBBs and rectangular swept spheres (RSSs) are employed as
bounding volumes. The practical application of these algorithms is recommended to be
carried out using the Flexible Collision Library (FCL) [26].
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Utilizing collision detection outcomes, including contact position, normal vector, and
penetration depth, this paper proposes a physics engine built upon a continuous compliance
contact model. Section 3 is dedicated to detailing the contact solver. Data such as position,
velocity, and contact forces obtained from the solver are reintegrated into the dynamical
calculations. The robot’s position is updated by iterative application of semi-implicit Euler
integration, and each new position is updated into the collision detection process.

3. Construction Contact Solver Based on Continuous Compliance Model
3.1. Kelvin–Voigt Contact Model

According to the spring-damping model theory, the contact model can be constructed
initially [27]. Taking into account the material properties of the contact surface, the contact
position and velocity, and the geometric characteristics of the impact surface, the Kelvin–
Voigt model [28] is adopted. Then, the normal force is defined as

FN = D
.
δ(t) + Kδ(t) (1)

where
.
δ(t) is the penetration velocity about time t, δ(t) is the penetration about time t, and

D is the viscous damping coefficient. The generalized stiffness parameter K relies on the
material properties and the geometry of the contact surfaces. For contact between a sphere
i and a plane surface body j, the generalized stiffness parameter depends upon the radius
R of the sphere and the material properties of the contacting surfaces, and is expressed
as [29]

K =
4

3
(
σi + σj

)√Ri (2)

in which the material parameters σi and σj are given by

σl =
1− v2

l
El

, (l = i, j)

The quantities vl and El are, respectively, the Poisson’s ratio and Young’s modulus
associated with each object. When it is the initial moment of collision, that is, time t is 0,
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we can obtain the penetration δ(0) = 0. From the normal force balance, we can obtain the
general dynamic equation as follows:

Fext = m
..
δ(t) + FN = m

..
δ(t) + D

.
δ(t) + Kδ(t) (3)

where Fext means an external force, such as gravity or other external force acting on the
object at the step time. Given the appropriate simulation step size, we can assume that the
external force remains constant throughout the time step.

Solving the second-order inhomogeneous equation (Equation (3)) with initial condi-
tions, δ(0) = 0 can obtain the penetration about time t:

δ(t) = ert

[
K

.
δ(0) + rFext

Kω
sin(ωt)− Fext

K
cos(ωt)

]
+

Fext

K
(4)

where r = − D
2m , ω =

√
4Km−D2

2m .
Equation (4) serves as an analytical solution to the dynamical solution, allowing the

physics engine to adjust the integration step with a variable time step during the contact
process. This adaptive approach significantly enhances the stability of the system compared
to geometric constraint solving.

The engine utilizes a combination of local error estimates and stability considerations,
which together dictate the adjustment of the time step. The simulation step size is limited
by collision detection and other dynamics calculation threads. The thresholds for these
adjustments are determined in different scenarios based on empirical studies and theoretical
models that predict the simulation’s behavior under variable conditions. Therefore, in order
to ensure the reliability of the simulation, the simulation step size must be smaller than
the minimum time period of other computing threads. By implementing this strategy, we
aim to strike a balance between computational efficiency and the fidelity of the simulation
outcomes, ensuring that the selected time step remain within bounds that preserve the
integrity and reliability of the simulation’s dynamics.

3.2. Contact Force Calculation

After obtaining the position (Equation (4)) of the object during the collision process,
further calculations are needed to obtain the contact force of the object within the integration
step. Integrating the contact force FN (Equation (1)) within time ∆t, we can obtain∫ t1

t0
FNdt =

∫ t1
t0

(D
.
δ(t) + Kδ(t))dt

= (AK+DAr+DBω)[ωsin(ωt)+rcos(ωt)]ert

r2+ω2

+ (BK+DBr−DAω)[rsin(ωt)−ωcos(ωt)]ert

r2−ω2 + Fextt
∣∣∣∣ t1

t0

(5)

where t0 and t1 represent the initial and end moments of each contact. And A = −Fext/K,
B =

(
K

.
δ(0)− Krδ(0) + rFext

)
/ωK .

In order to find the expression of the contact force model without the viscous damping
coefficient ‘D’, we need to use energy conservation to further build the contact force model.
The simplest way to quantify the energy loss during a contact event is to use the concept of
coefficient of restitution, which can be evaluated from the balance of energy that occurs
between the initial instant of contact t(−) and the final instant of contact t(+). Equation (3)
shows that, since the motion process of spring damping is an analytical solution, the entire
collision process time is known as

t = π

√
m
K

(6)
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By deriving Equation (4), the analytical solution of velocity can be obtained. Therefore,
by incorporating Equation (6) into the analytical solution for velocity, we can obtain the
velocity at the final collision moment. And we denote the velocity of the i-th object at the
initial collision moment as vi0 and at the final collision instant as vi1.

vi1 = −
.

δ0e−ξ πω
ωd (7)

where ξ = D
2mω , ωd = ω

√
1− ξ2. According to the principle of energy conservation, the

energy change in the collision process is

∆E =
1
2

miv2
i0 −

1
2

miv2
i1 =

1
2

miv2
i0

(
1− e−ξ 2πω

ωd

)
(8)

Defined by the coefficient of restitution, we have cr = −
.
δ
+

/
.
δ
−

. The energy variation
within the collision process can be described as

∆E =
1
2

miv2
i0 −

1
2

miv2
i1 =

1
2

miv2
i0

(
1− c2

r

)
(9)

Solving Equations (8) and (9) yields the relationship between D and cr. Subsequently,
we can obtain the available collision contact force:

FN = −2|lncr|
√

Km
π2 + ln2cr

.
δ(t) + Kδ(t) (10)

By utilizing the analytical solution from the contact model, the proposed physics
engine can obtain the compliant contact force throughout the collision. This feature ensures
the stability of simulation dynamics calculations and enables the simulator to capture
dynamic changes in contact forces accurately. As a result, the simulator offers a realistic
modeling of the robotics interactions with its environment, ensuring the reliability of
the results.

3.3. Continuous Compliance Contact Model-Based Approximate Dynamic Equation

Hunt and Crossley [30] introduced a comprehensive formulation for contact force,

which is expressed as FN = Kδn(t) + λδm(t)
.
δ

q
(t). Among them, n, m, and q are all

constants. By incorporating a damping term λδm(t) before
.
δ(t), the Kelvin–Voigt model

can effectively emulate energy dissipation during the contact–impact process. However, a
challenge arises in the Kelvin–Voigt model, as the computed contact force persists even
when no deformation occurs in the initial and separation phases of collision, deviating from
realistic behavior. Hunt and Crossley’s research has gained widespread recognition and laid
the groundwork for the development of numerous other methods for evaluating contact
forces. Among them, the most worthy of our attention is novel continuous contact force
model [31] with arbitrary indentation depth and velocity exponent using the approximate
dynamic equation and system dynamic equation. The coefficient of the damping term
λδm(t) can be replaced by a constant. From references [31], we can obtain{

m0
..
δ(t) + C1Kδm(t) = 0 Compression phase

m0
..
δ(t) + C2Kδm(t) = 0 Restitution phase

(11)

where the constant term C1, C2 is

C1 =
m + 1
n + 1

m0(n + 1)
.
δ
(−)2

2K
· c2

r + cq
r

1 + cq
r


m+1
n+1

+
λ

K

(
2

2 + q

)(
.
δ
(−)

)q
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C2 =
m + 1
n + 1

m0(n + 1)
.
δ
(−)2

2K
· c2

r + cq
r

1 + cq
r


m+1
n+1

− λ

K

(
2

2 + q

)(
cr

.
δ
(−)

)q

In order to make the mathematical form easier to understand, the penetration δ(t) in
Equation (11) is replaced by y, and variables of time t are replaced by x. By converting the
format, the equation can be converted into the following format:

..
y(x) = Aym(x) (12)

where A = −CiK/m0. According to the initial conditions, we have the following con-
stant terms:

y(0) = 0, y′(0) =
.
δ
(−)

The equation is mathematically the Emden–Fowler Equation. The solution can be
obtained by looking up the table in [32] as

x =

±
∫ (

2Aym+1/(m + 1) + C1
)− 1

2 dy if m ̸= −1,

±
∫
(2Aln|y|+ C1)

− 1
2 dy if m = −1

(13)

Equation (13) is the solution to Equation (12), which is also the solution to Equation (11)
and obtains the advantages of the Hunt and Crossley contact model. This, in turn, makes
the obtained contact force closer to the real force, which further improves the accuracy of
the physics engine.

3.4. Semi-Implicit Euler Integrator

In the previous section, we calculated the acceleration of the objects at each moment.
In order to further update the physics engine, we need to calculate the velocity and position
of the object. The Runge–Kutta integral is orders of magnitude better than the semi-implicit
Euler integral for smooth dynamics, but its advantage is lost in the presence of contact
dynamics [23]. To speed up the calculation, we employ semi-implicit Euler integration.
According to [33], by assuming that the integration step size within ∆t is constant, we have{

vn+1 = vn + ∆t·an
pn+1 = pn + ∆t ·vn+1

(14)

where the subscript n represents the nth moment calculated by the physics engine, and
n+ 1 is the next calculation cycle after one time step corresponding to n, vn+1 represents the
velocity at moment after an integration time ∆t, an represents acceleration, vn represents the
velocity at moment n-th. Similarly, pn+1 represents the position of the link at the moment
after an integration time ∆t. It should be noted that, for the purpose of integration accuracy,
the position integral in semi-implicit integration is used vn+1.

By incorporating the acceleration into the semi-implicit Euler integration, we can
successively update the velocity and position of the robot at each integration step. These
updates are then refreshed into the physics engine and synchronized to the display thread.
This process enables the achievement of a precise simulation step size. The above is the
calculation process of the entire physics engine. The code implementation of the entire
calculation process can be expressed as Algorithm 1.
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Algorithm 1 Contact Solver base Force

Given parameters K and CR
while True do

Get position of collide object δi[t]
collide(A,B)//Collision detection for object A and B
if number of contact > 0

Compute Ic ,
..
rc , Ie f f

for each contact i do
if contact is start

then ccd pi[t]← pi[t− 1]
else if contact is end

then t← tc //modify time of contact
end if
Compute ai[t], vi[t], pi[t] with integrator
Compute fi[t] ← Fi[t]/∆t

end for
end if

end while

4. Experiment and Discussion

In order to verify the reliability of the simulation system with the above contact
model, we initially conducted a bouncing ball experiment with varying coefficients of
restitution to validate the accuracy of the contact model calculations. Subsequently, we
compared the stability of our proposed method with advanced physics engines through
stability experiments, confirming the superiority of the variable time-step approach. Finally,
grinding experiments were performed to further validate the reliability of translating
virtual contact forces into real-world scenarios.

4.1. Bouncing Ball Experiment

Designing bouncing ball experiments to verify contact models is a very effective
and conventional method. The classic bouncing ball experiment [28] was selected for its
exemplary capacity to illustrate the effectiveness and precision of our contact model in
handling dynamic events, a critical focus of our research. At the same time, in the future
we will also conduct a comprehensive analysis of the importance of a wider range of
experiments to more strongly substantiate our claims.

As shown in Figure 2, a demonstration shows a sphere engaging in a perfect collision
with the plane, starting from a height of 1.0 m. This sphere has a mass of 1.0 kg, a radius
(R) measuring 0.1 m, and a moment of inertia of 0.1 kg·m2. The effective stiffness is
140 × 106 N/m, determined using the formulation in Equation (1). The initiation of the
sphere’s motion is solely attributed to the gravitational force acting in the downward
(-y) direction from its starting position. Consequently, the ball undergoes free fall until
it encounters the stationary and rigid ground, initiating a collision. Upon contact with
the plane, a force is generated, prompting the sphere to rebound. This rebound imparts a
specific height influenced by the coefficient of restitution.
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Figure 2. Continuous collision optimization initiation and end process: (a) The initiation moment of
the collision; (b) The end moment of the collision.

During the penetration process, the colliding object will not be able to detect the contact
surface if the step time is too long. Hence, the penetration process needs to be corrected, as
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shown in Figure 2a, using the movement process of the object before the contact collision to
find a more accurate contact collision point. Similarly, at the end of penetration, as shown
in Figure 2b, the contact collision process can be accurately modeled by correcting the
collision time of objects according to the differential equation. This method is called ccd
(continuous collision detection).

To investigate the influence of the coefficient of restitution (CR), a series of experiments
on the contact dynamic response was conducted, which is depicted in Figure 3a–f. These
graphical representations include time-dependent plots illustrating penetration, penetration
velocity, and contact force observed during the initial contact. Additionally, Figure 3d
illustrates the relationship between contact force and penetration. The analysis incorporates
five different CR values: 0.2, 0.4, 0.6, 0.8, and 1.0. It is evident that, as the CR increases, the
penetration of the sphere increases, accompanied by a rise in the maximum value of the
contact force. This phenomenon results in a prolonged contact duration, and an enlarged
hysteresis loop size, representing the energy dissipated during the penetration process.
When the coefficient of restitution reaches 1, adhering to pure Hertz contact law, there is an
absence of energy dissipation during penetration.
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Figure 3. Modeling collisions between balls and surface using the Kelvin–Voigt contact force model
at different coefficients of restitution (CR): (a) Contact force plotted against time; (b) Contact force
plotted against penetration; (c) Sphere velocity plotted against time; (d) Sphere velocity plotted
against penetration; (e) Penetration acceleration plotted against sphere velocity; (f) Energy dissipa-
tion percentage.

4.2. Performance of Calculation Stability

In a study conducted by [23], the stability of calculations in different physics engines
for robotics was compared. The findings reveal a gradual onset of instability in the calcula-
tions as the step time increases. However, the proposed contact force calculation process,
employing a continuous compliance contact force model, allows for the variable time
step throughout the calculation process, ensuring the stability of the system. In order to
detect the maximum simulation step time, we used the bouncing ball experiment when
the coefficient of restitution was 1.0. By adjusting the time step, the experimental results
can be obtained as shown in Table 1. It shows the maximum limit of each physics engine
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in adjusting the simulation step time. We can see that the proposed physics engine can
achieve larger step size simulations by using the continuous compliance contact model,
and the failure is due to the collision detection speed limit. Due to the advantage of using
the contact model, the analytical solution calculated from Equation (4) furthermore ensures
that our integrator ensures that the integration time step of the simulation is variable.

Table 1. Comparison between the proposed and other advanced physics engines.

Physics Engine Contact Solver Max Timestep (ms)

Bullet [9] MLCP 1/32
ODE [8] LCP 1/4

PhysX [34] LCP/PGS 2
Mujoco [14] Newton/PGS/CG 16

Proposed Continuous Compliance Model 128

Observing Figure 4, it becomes evident that, when the coefficient of restitution reaches
the unit, the energy within the contact model should be constant. When calculated by
integration, a significant energy loss of 12% is observed using the kinetic energy change
compared with ODE78 in Matlab. In cases involving multiple collisions, this cumulative loss
can result in significant calculation errors, ultimately leading to highly inaccurate results.
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4.3. Optimal Robotic Grinding Trajectory Planning

In production and manufacturing, optimized grinding trajectories can be achieved
efficiently through simulation. However, it is necessary to have high virtual-to-reality
reliability of contact force in the simulation. A grinding experiment is constructed to
confirm the conversion effect of the proposed physics engine. The impact of contact force is
then verified through roughness to further verify the reliability of the contact model.

During grinding, the abrasive grains are subjected to the resistance of the deformation
of the workpiece material and the friction between the abrasive grains and the workpiece
surface, resulting in a grinding force. The grinding force can be decomposed based on the
relative position of the workpiece and the grinding tool into a tangential component force,
a normal component force, and an axial component force, with the normal component force
generally being larger [35]. Furthermore, in the continuous contact model, the friction force
can be derived from the normal force by formulas, which will be a focus of our future work.
Therefore, normal force is currently selected for research, and other forces will be further
studied in the future.

Figure 5 shows the entire grinding experiment process. Initialize and set the distance
between the robot and the workpiece for the grinding experiment so that the simulation and
physics experiment are consistent. Calculate the contact force of the grinding experiment in
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the robot simulation. If the designed trajectory meets the requirements, it will be sent to the
actual robot for experiment. Verify that the trajectory is correct by measuring the surface
roughness at the grinding location. At the same time, use the force sensor to measure the
real contact force. And then compare the measured contact force with the calculated contact
force, thereby assessing the effectiveness of contact models in the simulator.
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In this article, we use ESTUN’s ER10-900 industrial robotic arm for simulation and
physical experiments, as shown in Figure 6.
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The front-end of the developed robotic simulator uses the open source geometry
engine Opencascade [36] as the display. The robotic dynamics algorithm then uses the
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open source library ARIS [37] for kinematics and dynamics solving. By starting the display
thread, robot dynamics calculation thread, collision detection thread, and contact force
solution thread at the same time, the grinding contact force under the determined stiffness
coefficient and damping coefficient can be obtained through simulation.

In this article, the method parallel to the first selection curve is used to generate
the surface grinding trajectory. The trajectory points are generated based on the surface
position and normal vector of the curved surface. The advantage is that it can generate the
required grinding trajectory for surfaces with convex shapes, greatly reducing manpower.

Figures 7 and 8 show the simulation and real robot grinding processes, respectively.
The trajectory realized in the simulation is sent to the physical robot, and a control frequency
of 1 kHz is used in the grinding workstation to ensure real-time performance. This high-
frequency control ensures not only precision but also real-time responsiveness during the
grinding operation. Due to the utilization of a position control both, a consistent trajectory
is observed between the simulated robotic arm and the actual grinding experiment. This
synchronization establishes a robust link between the simulated and real-world scenarios,
providing a reliable foundation for further analysis and validation of our proposed methods.
In the experiment, the choice of 5N was based on preliminary tests designed to study the
system’s behavior under minimal stress conditions [38]. A force was chosen to be applied
in the robotic grinding experiments, recognizing that this number may seem low compared
to the higher forces typically used in industrial settings. However, because the grinding
experiment can be repeated, the required grinding tasks can be completed in soft metal
such as aluminum. Future work will extend the range of forces applied in our experiments
to better understand the error behavior and its consequences at these higher force levels.
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grinding process.

By installing a force sensor between the end of the robotic arm and the grinding
tool, we can measure the grinding contact force in real physical grinding experiments,
as shown in Figure 9. Through twenty sets of experiments, we can compare simulated
grinding experiments and real physical experiments. Changes in grinding force occur in
physical experiments, which is a phenomenon that hardware experiments have to face.
This phenomenon is primarily due to the random distribution of the abrasive grains on
the grinding tool. These grains are polyhedral in shape, with each edge and corner acting
as an individual cutting edge. Real grinding experiments require consideration of many
factors, such as grinding workpiece surface, grinding speed, and grinding heat dissipation.
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Specifically, in this grinding experiment on soft metal aluminum, the irregularity of the
weld and insufficient heat dissipation caused continuous fluctuations in the contact force.
Despite these fluctuations, the results confirm that such changes do not affect the accuracy
of continuous contact model force calculations in robot simulations, as demonstrated by
experimental validation. Obtained through experimental data processing, the difference
between the calculated force and the actual contact force was determined by calculating
the average relative error, which showed a gap of 2.75%. Pre-calculating contact force
in simulations can enhance the efficiency of conventional manufacturing processes to a
certain extent.
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Recognizing the importance of validating our model, we plan to undertake additional
application experiments in the future. These experiments will aim to verify the model’s
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applicability to more complex, large-scale grinding operations, thereby enhancing its
accuracy and reliability in industrial scenarios.

As shown in Figure 10, they are the contact force of two different motion trajectories.
It can be seen that the contact force was too small in the first experiment according to
the grinding experience database. By adjusting the grinding strategy, the contact force
during the entire grinding process can be more reliable with expectations and achieve better
grinding results. Future efforts will focus on improving the contact model and physical
conditioning. In addition, Section 4.2 demonstrates that variable time steps can be used
for relatively fast and stable simulations. Therefore, precomputing and obtaining external
forces from the simulation throughout the process facilitates grinding trajectory adjustment
and helps improve efficiency in manufacturing.
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Figure 10. Grinding contact force of the surface before and after optimization.

In order to observe the grinding effect from the side, we detect 10 sets of roughness
on the grinding results. As shown in Figure 11, we measure and compare the roughness
data of the third point before and after grinding. A total of 10 sets of roughness data were
collected from the workpiece surface, revealing compliance with the grinding requirements.
Figure 12 presents the roughness data for each point both before and after grinding. Notably,
the initial roughness at each point appears to be relatively large, averaging 1.6396 [39].
Following the grinding process, a significant reduction in roughness at each point is
observed, with minimal changes, averaging 0.9166. This corresponds to a 44.09% decrease
in the average roughness value, affirming the effectiveness of the simulation’s strategy.
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Figure 11. Grinding roughness measurement on the third same point: (a) Surface roughness before
grinding; (b) Surface roughness after grinding.
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4.4. Discussion

The above experiments verified different aspects of the physics engine and the pro-
posed features.

The bouncing ball experiment (Section 4.1) tested the contact model calculation effect
through different coefficients of restitution. When the coefficient of restitution becomes one,
it will become a completely elastic collision. The calculation results show that the contact
force of the small ball can be accurately calculated as an analytical solution at different
penetration depths or different moments.

Comparative experiments (Section 4.2) with different advanced physics engines verify
the stability of the variable time step of the physics engine. Comparison of the previous
literature [15] found that the maximum time step is only 16 milliseconds, which Mujoco
can achieve. By employing a compliance contact force model and solving a second-order
differential equation, the simulator achieves 128 ms as a max time step. Unlike the majority
of existing robotic simulation engines that depend on geometric constraints to solve the
contact process, resulting in hard contacts only existing in an ideal state, our approach
employs the continuous compliance contact model with parallel springs and dampers,
providing a stable representation of penetration.

We conducted grinding experiments (Section 4.3) on curved surfaces, discovering that
optimal roughness during grinding [39] can be achieved by adjusting the contact force. The
experimental findings reveal an average relative error of 2.75%, indicating a discrepancy
between the virtual force and the actual contact force. In the future, as the contact model
becomes more general, such as adding multiple points of contact, we will test experiments
in more robotic scenarios. The adjustment not only enhances grinding simulation accuracy
but also simplifies the verification process for grinding experiments.

Our results show that the physics engine equipped with the continuous compliance
contact model can enable efficient simulations for robotics and in the future also help to
effectively generate data for training artificial intelligence algorithms.

5. Conclusions

In this research, we propose a physics engine for robotic grinding, employing a
continuous compliance contact model to calculate contact forces during virtual simulations.
The contact force solver discussed in this paper relies entirely on the principles of spring
damping, providing an analytical solution for contact forces in collision scenarios. This
study features an illustration using the classic ball bouncing model, showing the simulator’s
ability to calculate contact forces continuously. In contrast, contact solutions in game
engines, relying on geometric constraints, often involve numerous non-physical parameters,
leading to reduced accuracy and stability.
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The proposed grinding simulator boasts several key advantages. Firstly, the contact
model is grounded in the well-established classic spring–damping model in the mechanical
field, incorporating penetration parameters for modeling, resulting in exceptional accuracy.
The second advantage is that the simulator is able to obtain the contact forces in the analyti-
cal solution, allowing for a large degree of adjustment of the integration time step, thus
ensuring more stable system performance. Additionally, analytical solutions to dynamic
equations offer significant advantages in terms of computational efficiency and uniqueness.
The availability of real-time feedback forces significantly enhances the overall stability
of the system, further bolstering its robustness and reliability. Such advantages enable a
more accurate simulation of complex grinding processes, aiding technicians in reducing
manpower and material resources and ultimately improving experimental efficiency.

One constraint within the scope of this investigation pertains to the measurement of
restitution coefficients, especially concerning diverse material surface properties. Conse-
quently, there exists uncertainty in the generalizability of our findings to specific practical
scenarios. Addressing this limitation necessitates additional research efforts that concen-
trate on constructing a comprehensive and dependable correlation model between the
spring stiffness system and the damping coefficient. Another viable approach involves the
exploration of swifter and more precise methods for identifying the coefficient of restitution,
as such advancements enhance the accuracy and reliability of our findings in practical
applications. Future work will continue to further optimize model storage and calculation,
which will further ensure the speed of collision detection.
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