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Abstract: Fourier ptychographic microscopy, as a computational imaging method, can reconstruct
high-resolution images but suffers optical aberration, which affects its imaging quality. For this reason,
this paper proposes a network model for simulating the forward imaging process in the Tensorflow
framework using samples and coherent transfer functions as the input. The proposed model improves
the introduced Wirtinger flow algorithm, retains the central idea, simplifies the calculation process,
and optimizes the update through back propagation. In addition, Zernike polynomials are used to
accurately estimate aberration. The simulation and experimental results show that this method can
effectively improve the accuracy of aberration correction, maintain good correction performance
under complex scenes, and reduce the influence of optical aberration on imaging quality.

Keywords: Fourier ptychographic microscopy; aberration correction; pupil recovery; Zernike
polynomials; Wirtinger Flow

1. Introduction

Fourier ptychographic microscopy (FPM) [1,2] is an emerging imaging technique,
which was proposed by Zheng et al. in 2013. Compared to the traditional microscopy imag-
ing mode, this technique combines the ideas of phase recovery [3–5], stacked imaging [6],
and synthetic aperture [7] by breaking through the limitation of the numerical aperture
of the objective lens and improving the image resolution under the premise of ensuring
the original size of the field of view. However, optical aberration emerges in the actual
application process, which imposes certain limitations on the imaging results.

Aberration refers to the difference between the actual and ideal images. While beam
focusing in optics can be elaborated as the convergence of light rays to a single point,
aberration is the deviation of light rays from the optimal focal point, causing the focus
to spread in space [8]. As the imaging system has a certain aperture and field of view,
the imaging position for incident light can be different at different apertures. In optics,
the aberration in the imaging system can be divided into seven kinds, namely, spherical
aberration, coma, dispersion, field curvature, aberration, positional chromatic aberration,
and magnification chromatic aberration, as shown in Figure 1.

Aberration is commonly corrected by restoring high-resolution complex objects and
unknown aberration pupil functions in the iterative process. For example, Ou et al. [9]
proposed a phase recovery algorithm (EPRY-FPM) based on the ePIE method [10], which
restores the extended sample spectrum and the pupil function of the imaging system by
employing the image of the sample captured by the FPM. With the continuous development
of deep learning, more and more researchers have introduced the aberration correction
process into the neural network, with the purpose of improving the computational effi-
ciency of the algorithm by taking advantage of its fast computing. For example, using the
neural network, Zhang et al. [11] modeled the samples and aberrations as the learnable
weights of the multiplication layer and discovered that the INNM network architecture
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could obtain a complex sample without aberrations. Zhang et al. [12] proposed a Fourier
imaging neural network (FINN-CP) with Tensorflow, which is composed of two models,
for effectively correcting the position error and wavefront aberration of the system. Hu
et al. [13] proposed a microscopic image aberration correction method based on deep learn-
ing and aberration prior knowledge, which enhances and corrects the microscopic image in
the form of image restoration. Zhang et al. [14] combined the channel attention module
with a physics-based neural network to adaptively correct aberrations; Zhao et al. [15]
established the relationship between the phase and aberration coefficient through deep
learning to segment samples and backgrounds [16] and realized fast automatic aberration
compensation correction [17]. Wu et al. [18] proposed an FPM aberration correction re-
construction framework (AA-P) algorithm based on an improved phase retrieval strategy,
which improves the iterative reconstruction quality by optimizing the spectral function
and the pupil function update strategy while alleviating the influence of mixed wavefront
aberrations on the reconstructed image quality and avoiding the occurrence of errors in the
reconstruction process. The quality of image reconstruction can be ensured by aberration
correction, endowing the reconstructed image with more details. Xiang et al. [19] proposed
a phase diversity-based FP (PDFP) scheme for aberration correction. The PD algorithm is
an unconventional imaging technique introduced by Gonsalves and Chidlaw [20], which
characterize wavefront aberrations by means of a set of focused images and defocused
images. Experiments have proven the ability of this scheme to correct changing aberra-
tions and improve image quality. Aberration correction can ensure the quality of image
reconstruction, achieving the reconstructed image with more details.
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and name it Integrated Neural Network based on Improved Wirtinger Flow (INN_IWF). 
The model proposed in this paper is a trainable network constructed on the basis of the 
TensorFlow framework to simulate the entire process. The network simulates the forward 
imaging process of the Fourier ptychographic microscopy system while modelling the 
optical aberration of the objective lens as the optical pupil function to better estimate the 
optical aberration and optimize the update by back propagation. Furthermore, the alter-
nate updating (AU) mechanism and the Zernike mode are introduced to the model to 
further improve the performance of the proposed network. Therefore, this method can 
effectively recover optical aberrations while guaranteeing the overall performance of the 
network. The results of several sets of experiments show that the mentioned method is 
superior to other methods in its capability to effectively improve the quality of image re-
construction while retaining more detailed information. 

  

Figure 1. Comparison of images before and after adding aberrations: (a) the cameraman image;
(b) the coherent transfer function with the addition of a spherical aberration; (c) the image with the
addition of a spherical aberration.

In this paper, we propose an aberration correction method based on the Fourier
ptychographic microscopy technique for the aberration existing in the imaging process
and name it Integrated Neural Network based on Improved Wirtinger Flow (INN_IWF).
The model proposed in this paper is a trainable network constructed on the basis of the
TensorFlow framework to simulate the entire process. The network simulates the forward
imaging process of the Fourier ptychographic microscopy system while modelling the
optical aberration of the objective lens as the optical pupil function to better estimate the
optical aberration and optimize the update by back propagation. Furthermore, the alternate
updating (AU) mechanism and the Zernike mode are introduced to the model to further
improve the performance of the proposed network. Therefore, this method can effectively
recover optical aberrations while guaranteeing the overall performance of the network.
The results of several sets of experiments show that the mentioned method is superior to
other methods in its capability to effectively improve the quality of image reconstruction
while retaining more detailed information.
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2. Methods
2.1. Fourier Ptychographic Microscope

The difference between a Fourier ptychographic microscope and conventional mi-
croscope is that the Fourier ptychographic microscope uses an array of LEDs instead of a
conventional microscope light source. The LEDs are correctly selected to achieve illumina-
tion from a variety of angles. Figure 2a shows the RX50 series upright field microscopes
and Figure 2b shows the simulation schematic diagram of the device. The camera used in
the device is a DMK 33UX264 camera (The Imaging Source, Bremen, Germany, 3.45 µm,
2448 × 2048). The purpose of this device is to digitally image the sample. Optical imaging
collected by the device can be accomplished either directly visually or by using the software
to view the actual iPlease provide manufacturer and address informationmages captured
by the camera.
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Figure 2. Fourier ptychographic microscope [21]. (a) Real FPM system; (b) FPM Simulation 
Schmatic. 
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etc. The LED light board parses the commands from the MATLAB program sent through 
the serial port to light up the LED lights in the specified positions. With LED lights and 
LED built-in RGB three-color beads, the device can capture images using a black and 
white camera and synthesize these images into color images. The light panel can be fixed 
or moved downwards and upwards through LED brackets. 
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Figure 2. Fourier ptychographic microscope [21]. (a) Real FPM system; (b) FPM Simulation Schmatic.

The device consists of a DMK 33UX264 camera, an eyepiece, an optical path selector
lever, a Y-axis moving handwheel, a mirror group, a tightening and loosening adjusting
handwheel, an adjusting light wheel, a light collector mirror, an X-axis moving handwheel,
a mechanical platform, an LED light board holder, an LED light board (20 × 20), etc. The
LED light board parses the commands from the MATLAB program sent through the serial
port to light up the LED lights in the specified positions. With LED lights and LED built-in
RGB three-color beads, the device can capture images using a black and white camera
and synthesize these images into color images. The light panel can be fixed or moved
downwards and upwards through LED brackets.

2.2. Imaging Model and Reconstruction Model
2.2.1. Imaging Model

In the forward imaging process, the sample can be represented by the transfer function
o(r), where r represents the two-dimensional coordinate. Assuming that the distance
between the LED lamp and the sample is far enough, the illumination wave of the LED
lamp can be approximated as an oblique plane wave, and the wave vector of the nth lamp
can be expressed as

kn =

(
sin θxn

λ
,

sin θyn

λ

)
(n = 1,2,3,······,Nled), (1)
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where
(
θxn, θyn

)
represents the incident angle of the nth LED lamp, λ is the wavelength

of the incident light, and the complex amplitude entering the sample plane is expressed
as eiknr. When the nth LED lamp illuminates the sample, the output field after Fourier
transform can be expressed as F

{
o(r)eiknr

}
= O(k − kn). Illuminating the sample using

the oblique plane wave with a wave vector is equivalent to the shift kn of the sample
spectrum O(k). When passing through the objective lens, the field is lowpass filtered by the
pupil function p(k). At this time, the forward imaging process of FPM can be expressed as

Inc(r) = |gnc(r)|2 =
∣∣∣F−1{p (k) ∗ (k − kn)}

∣∣∣2, (2)

where Inc(r) represents the intensity information on the sensor, gnc(r) represents the com-
plex amplitude distribution on the sensor, O(k − kn) represents the sample spectrum
illuminated by its plane wave vector kn plane wave, k represents the two-dimensional
coordinate, and F−1 represents the inverse Fourier transform [22].

2.2.2. Reconstruction Model

In the reconstruction process, FPM obtains a high-resolution complex amplitude
distribution Oε(r) = F−1{Oε(k)} by synthesizing images with different frequency domain
information. The classical FPM reconstruction algorithm iteratively estimates the complex
amplitude image and updates it using the captured intensity image. An iteration can be
expressed as

gnε(r) = F−1{p (k) ∗ Oε(k − kn)
}

, (3)

p(k) ∗ Oε(k − kn)= F

{
gnε(r) ∗

√
Inc(r)

|gnε(r)|

}
, (4)

Equation (3) is used to estimate the high-resolution image relative to each LED
light, while Equation (4) updates the high-resolution image by utilizing the captured
low-resolution intensity image. The degree of spectral convergence can be known by
repeated calculations, and low-resolution images can be used for the initial gnε(r). Finally,
the estimated spectral Oε{k} is transformed into Oε(r) by inverse Fourier transform, and
the high-resolution image is extracted from Oε(r).

2.3. Integrated Neural Network Based on Improved Wirtinger Flow
2.3.1. Network Architecture

The whole network implements aberration correction in the Tensorflow framework.
Figure 3 shows the overall flowchart of INN_IWF. The sample images captured by up-
sampling and the aberration-free coherent transfer function serve as the inputs of the
network, respectively. They are alternately updated and fed into the lighting update units
with different angles (LUDA), as shown in Figure 4. A set of captured images In(r) and their
corresponding wave vectors kn(r) are taken as a sampling process, and in each sampling,
all the samples with different angles are input into the model, and the model parameters are
updated by using back-propagation. The expected results are generated through multiple
sets of training phases, where the WFM module and the WFN module are separately shown
in Figure 5a,b.
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The pupil recovery module is specifically formulated as

φl(k) = O(k + kn)⊙ C(k), (5)

φh(k) = F
{√

In(r)⊙ fWF(k)
}

, (6)

where O(k) is the Fourier function of the sample, and φl and φh are the Fourier original
aperture during the update of the INN_IWF network and the updated aperture, respectively.
In(r) is a pre-upsampled sample image. C(k) represents the coherence transfer function
of the objective lens, which is used to characterize the imaging quality of the diffraction-
limited system under the condition of coherent illumination. The standard formula of pupil
function CTF can be expressed as

C(k) =

{
1,

(
k2

x + k2
y

)
< (NA ∗ k0)

2

0, otherwise
, (7)

where (k x, ky
)

denotes the two-dimensional spatial coordinates of the Fourier domain, and NA
denotes the numerical aperture, k0 = 2π/λ, where λ is the wavelength of the incident light.

Figure 4 shows the flowchart of LUDA. As the proposed network is defined in the
complex domain, the samples and the coherence transfer function (CTF) are divided into
real and imaginary parts, which are passed to the network as inputs to LUDA. The samples
are shifted according to kn and then multiplied by the CTF to generate φl(k),which is the
spectrum before updating, Hence, Equation (5) can be rewritten as

φl(k) = {Or + j ∗ Oi} ⊙ {Cr + j ∗ Ci}
= (Or ⊙ Cr − Oi ⊙ Ci) + j ∗ (Or ⊙ Ci − Oi ⊙ Cr)

(8)
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where r and i represent the real and imaginary parts, respectively.
The traditional correction method cannot meet the requirements of complex aberration

scenes. Therefore, this paper adds an optimization framework based on the traditional
method, as shown in Figure 5a. The whole updating process can be represented by
Equation (6). fWF(k) can be expressed by Equation (9).

fWF(k) = ∠
{

F−1{φm}
}

, (9)

where φm is the output of the WFM module in Figure 5a, represented by Equation (10),
using the idea of the Wirtinger Flow algorithm [23]. As a technology for solving the phase
retrieval problem, the Wirtinger Flow Algorithm [23] will transform the problem into a
problem of finding the minimum value and serves as a general optimization framework
that can reduce computational costs and effectively deal with noise. The spectrum φl before
updating will be divided into two parts, one of which remains unchanged, and the other
part is that φl is transformed by inverse Fourier transform and defined as φl = Y = Ax,
where A ∈ Cm×n is a linear sampling matrix, which is to be updated through operations
such as phase subtraction, the dot product, etc. Then, the updated variable will undergo
the Fourier transform again and be subtracted from φl to generate φm. The specific flow is
shown in the WFM module of Figure 5a.

φm
(k) = φl

(k) − F{∆ ∗ AH
[(

|Ax|2 − Y
)
⊙ (Ax)

]}
, (10)

where ∆ is the custom gradient descent step size and ⊙ represents the dot product.
According to Equation (10), φl(k) is gradient-updated to generate φm. φm enters the

WFN module for phase conversion for calculating ∠
{

F−1{φm}
}

to obtain fWF(k). Second,
the amplitude of the simulated image in the WFN module is represented by the square root
of the pre-sampled intensity image. As an intensity constraint, fWF(k) is multiplied by it.
The network generates the updated spectrum φh(k) according to the update process shown
in Figure 5a,b. Since the spectra before and after the update have the same frequency, the
whole network structure can be used to obtain the optimal result based on whether the
difference between the spectra before and after the update is minimized. In this paper, the
mean square error is used to calculate the minimum of the difference between the spectra
before and after the update. The loss function is expressed as

loss = lossMSE

= ∑I
i(φh(k)− φl(k))

2,
(11)

2.3.2. Alternating Update Mechanism

After the above update process, the network outputs the updated samples and CTF.
However, the samples and CTF have different properties when the network back propa-
gates, and if the same gradient descent step size is used, the network will fail to converge to
a perfect state. Therefore, an alternating update mechanism [24] is adopted to respectively
control the gradient descent steps of the samples and CTF in this paper.

The updating process is divided into two parts, one of which aims to change the
learning rate of the samples and control the gradient descent step size of the samples while
keeping the CTF unchanged, and the other is to change the learning rate of the CTF to
control the gradient descent step size of the CTF while keeping the samples unchanged,
as identified by orange. Only after these two sections are completed will the network be
able to converge to the optimal point and can better results be achieved for the samples
and CTF.
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2.3.3. Optical Aberration Processing Mechanism

The aberration function of the system is expressed in terms of Zernike polynomials, as
shown in Equation (12), which can be used to describe the wavefront characteristics [25].

W(ρ, θ) = ∑j ajZj(ρ, θ), (12)

where ρ and θ are variables, aj is the expansion coefficient of different Zernike polynomials,
and Zj(ρ, θ) is different Zernike polynomials, which can be expressed as:

Zodd number j(ρ, θ) =
√

2(n + 1)Rm
n (ρ)cos(mθ) m ̸= 0, (13)

Zeven number j(ρ, θ) =
√

2(n + 1)Rm
n (ρ)sin(mθ) m ̸= 0, (14)

Zj(ρ, θ) =
√
(n + 1)R0

n(ρ) m = 0, (15)

where m and n are positive integers with zeros, and n − m ≥ 0 are even numbers; n is
the highest order ρ of the polynomial; m is the azimuth frequency; j is the order of the
polynomial and is a function of n and m; and Rm

n (ρ) can be expressed as:

Rm
n (ρ) = ∑

n−m
2

s=0
(−1)s(n − s)!

s!
( n+m

2 − s
)
!
( n−m

2 − s
)
!
ρn−2s, (16)

The CTF is always updated as a whole. The Zernike polynomials are applied to model
the phase of the CTF in this paper, which, therefore, can be expressed as

∠C(k) = ∑I
i=1 ci ∗ Zi(k), (17)

where I in Equation (13) is the number of Zernike polynomials and ci is the coefficient of
each Zernike polynomial.

The amplitude of the CTF remains updated as a whole, and the final form of the CTF
modelling is expressed as

C(k) = |c(k)| ⊙ exp{j ∗∠C(k)}, (18)

3. Experimental Results
3.1. Experimental System Setup

The equipment used for the experiments is shown in Section 2.1. A programmable
controlled light source element LED and an illumination wavelength of 532 nm were used
and placed 100 mm below the sample to provide illumination. In the sample collection
process of the FPM device, the LED array is designed into a 15 × 15 LED rectangular area by
programming. The rectangular region can be understood as a two-dimensional coordinate.
The LED in the upper left corner of the coordinate starts to light up, and the remaining LED
lights up in turn according to the coordinates, forming illumination at different angles. LED
lights at different angles illuminate the samples placed on the stage. The FPM system used
had a numerical aperture of 0.1 and was used to capture low-resolution sample images
illuminated at different angles and record light intensity images using a CMOS camera
with a pixel size of 3.45 µm. The results obtained by the INN_IWF were verified through
both simulated and real datasets and then compared with those of other methods, such as
those proposed by Jiang et al. [26].

Two metrics, namely, the Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM), were used for evaluating the image quality. The Peak-Signal-to-Noise Ratio (PSNR)
is an indicator commonly used to measure signal distortion. The larger the PSNR value,
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the better the image quality. In the field of image evaluation, the Peak-Signal-to-Noise ratio
is calculated by the mean squared error (MSE):

PSNR = −10 ∗ log MSE, (19)

The MSE is defined as
MSE = mean

(
(I1 − I2)

2
)

, (20)

Among them, I1 and I2 represent the real image and the contrast image, respectively.
The Structural Similarity Index Measure (SSIM) is used to evaluate the image quality

from the perspectives of brightness, contrast, and structure, which is in line with the
intuitive effect observed by human vision, whose value falls in the range of 0~1:

SSIM =
(2µ1µ2 + C1)(2σ12 + C2)(

µ2
1 + µ2

2 + C1
)(

σ2
1 + σ2

2 + C2
) (21)

where µ1, σ1 and µ2, σ2 represent the mean and standard deviation of the two images,
respectively; σ12 is the covariance of the two; and C1 and C2 are constant and equal.

3.2. Comparative Experiments with Simulated Datasets

The Cameraman and street map were used as the amplitude and phase images for the
simulated dataset, as shown in Figure 6. The optical aberration is dominated by defocus
aberration, which is caused by an uneven sample or inaccurate focusing. The experimental
equipment, as described above, was used to generate 225 intensity images, from which the
amplitude, phase, and CTF were reconstructed.
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3.2.1. Correction Performance for Different Defocus Planes 
Three defocus planes of 25 µm, 50 µm, and 75 µm were selected to verify the aberra-

tion correction performance of the method at different defocus planes (ranging from 25 
µm to 75 µm). In this paper, Zernike polynomials were used to estimate the aberration, 
and the polynomial mode 𝑍ଶ଴ is about −1.44, corresponding to the defocus aberration of 
50 µm. The first column is the low-resolution images with aberrations generated using the 
forward imaging model, the second and third columns are the images without aberration 
correction, and the fourth and fifth columns are the images after aberration correction us-
ing the INN_IWF network. 

Figure 6. Comparison of low-resolution images with different defocus planes and images before and
after aberration correction on sitmulation datasets.

3.2.1. Correction Performance for Different Defocus Planes

Three defocus planes of 25 µm, 50 µm, and 75 µm were selected to verify the aber-
ration correction performance of the method at different defocus planes (ranging from
25 µm to 75 µm). In this paper, Zernike polynomials were used to estimate the aberration,
and the polynomial mode Z0

2 is about −1.44, corresponding to the defocus aberration of
50 µm. The first column is the low-resolution images with aberrations generated using the
forward imaging model, the second and third columns are the images without aberration
correction, and the fourth and fifth columns are the images after aberration correction using
the INN_IWF network.
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Figure 6 demonstrates the effect of aberration on the reconstructed results at different
defocus planes. As can be seen from the figure, the effect of aberration on the final generated
image became increasingly obvious with the increase in the amount of defocus. Compared
with the image without aberration correction, the imaging effect after aberration correction
using this method was improved, suggesting that the INN_IWF network can complete
the correction of aberrations and maintain a good correction performance on different
defocus planes.

In order to further verify the good aberration performance of the proposed method on
different defocus planes, INNM [11] and EPRY [9] are used as comparison algorithms in
this paper. Several experiments were carried out to compare the correction performance
of the above three aberration correction methods on different defocus planes, and the
PSNR and SSIM index values calculated by each experiment were averaged. As shown
in Figure 7, the images constructed using the three methods were affected to some extent
with the increase in the amount of defocus in different defocus planes. Among them,
the EPRY method is most affected by the change in the defocus plane, while the method
in this paper is least affected by the defocus plane, which can correct the aberration
well and obtain the reconstructed image with richer image details. Table 1 is the image
reconstruction index values of different methods on different defocus planes, among which
the optimal results are marked in bold. In Table 1, the maximum and minimum values
of the image reconstruction indexes calculated by many experiments are also shown. The
fluctuation range of the maximum and minimum values in Table 1 is smaller than that of
the other two methods. The purpose of the maximum and minimum values is to show
the fluctuation range of the evaluation indexes of each method. It can be seen from the
results shown in Table 1 that the EPRY method has a lower calculated evaluation index
value than the other two methods because its correction performance is greatly affected by
the change in the defocus plane. The method in this paper adds an optimization process
to the network. Compared to the INNM method, it has a better performance and higher
image evaluation index value. The above analysis shows that the method put forward
in this paper consistently exhibited good aberration correction performances on different
defocus planes.
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Table 1. Image reconstruction metrics of different methods on different defocus planes.

Defocus
Planes

EPRY
PSNR

(dB)/SSIM

EPRY
Max/Min

Value

INNM
PSNR

(dB)/SSIM

INNM
Max/Min Value

INN_IWF
PSNR

(dB)/SSIM

INN_IWF
Max/Min Value

Amplitude

25 µm 18.04/0.6054 18.76/0.6172
17.30/0.5926 26.40/0.8670 27.5/0.8370

25.3/0.8972 28.02/0.9214 28.29/0.9216
27.75/0.9182

50 µm 17.89/0.5576 18.08/0.5676
17.72/0.5476 22.71/0.8937 22.71/0.8937

21.92/0.8667 24.97/0.9182 24.97/0.9182
24.26/0.9126

75 µm 17.81/0.5003 18.01/0.5546
17.60/0.4462 21.22/0.8622 22.21/0.8698

20.42/0.8544 23.34/0.9035 24.34/0.9035
22.34/0.9002

Phase

25 µm 14.51/0.5055 14.99/0.5676
14.02/0.4432 22.02/0.8602 23.02/0.8625

21.04/0.8580 23.56/0.8776 23.56/0.8776
23.42/0.8726

50 µm 14.00/0.4521 14.16/0.4821
13.82/0.4221 21.82/0.8529 21.82/0.8529

20.52/0.8422 22.73/0.8699 22.73/0.8699
22.36/0.8662

75 µm 13.26/0.4024 13.48/0.4455
13.02/0.3592 18.66/0.7928 19.69/0.7921

17.63/0.7935 21.67/0.8539 21.85/0.8639
21.49/0.8429

3.2.2. Comparison of the Results of Different Methods on the Simulated Dataset

The results of this method were compared with those of INNM [11], EPRY [9], and
the method proposed by Jiang et al. [26] on a simulated dataset under the condition that
defocus aberration was used as the optical aberration, with a size of 50 µm. In addition,
the PSNR and SSIM index values for each experimental result of the above methods were
calculated and averaged, as shown in Figure 8 and Table 2. The results shown in Figure 8
show that the method in this paper can correct the aberration well. Compared to the other
three methods, it has a higher image clarity and more image detail features. In Table 2, the
optimal results are marked in bold. Table 2 shows the maximum and minimum values of
the image reconstruction indexes calculated by Jiang et al.’s [26] method. The values of
other methods are shown in Table 1. The results indicated that the results obtained by the
method proposed in this paper were better than those obtained by the other three methods.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

Table 1. Image reconstruction metrics of different methods on different defocus planes. 

 
Defocus 
Planes 

EPRY 
PSNR (dB)/SSIM 

EPRY 
Max/Min 

Value 

INNM 
PSNR 

(dB)/SSIM 

INNM 
Max/Min 

Value 

INN_IWF 
PSNR 

(dB)/SSIM 

INN_IWF 
Max/Min 

Value 

Amplitude 

25 µm 18.04/0.6054 18.76/0.6172 
17.30/0.5926 

26.40/0.8670 27.5/0.8370 
25.3/0.8972 

28.02/0.9214 28.29/0.9216 
27.75/0.9182 

50 µm 17.89/0.5576 18.08/0.5676 
17.72/0.5476 

22.71/0.8937 22.71/0.8937 
21.92/0.8667 

24.97/0.9182 24.97/0.9182 
24.26/0.9126 

75 µm 17.81/0.5003 18.01/0.5546 
17.60/0.4462 

21.22/0.8622 22.21/0.8698 
20.42/0.8544 

23.34/0.9035 24.34/0.9035 
22.34/0.9002 

Phase 

25 µm 14.51/0.5055 14.99/0.5676 
14.02/0.4432 

22.02/0.8602 23.02/0.8625 
21.04/0.8580 

23.56/0.8776 23.56/0.8776 
23.42/0.8726 

50 µm 14.00/0.4521 14.16/0.4821 
13.82/0.4221 

21.82/0.8529 21.82/0.8529 
20.52/0.8422 

22.73/0.8699 22.73/0.8699 
22.36/0.8662 

75 µm 13.26/0.4024 
13.48/0.4455 
13.02/0.3592 18.66/0.7928 

19.69/0.7921 
17.63/0.7935 21.67/0.8539 

21.85/0.8639 
21.49/0.8429 

3.2.2. Comparison of the Results of Different Methods on the Simulated Dataset 
The results of this method were compared with those of INNM [11], EPRY [9], and 

the method proposed by Jiang et al. [26] on a simulated dataset under the condition that 
defocus aberration was used as the optical aberration, with a size of 50 µm. In addition, 
the PSNR and SSIM index values for each experimental result of the above methods were 
calculated and averaged, as shown in Figure 8 and Table 2. The results shown in Figure 8 
show that the method in this paper can correct the aberration well. Compared to the other 
three methods, it has a higher image clarity and more image detail features. In Table 2, the 
optimal results are marked in bold. Table 2 shows the maximum and minimum values of 
the image reconstruction indexes calculated by Jiang et al.’s [26] method. The values of 
other methods are shown in Table 1. The results indicated that the results obtained by the 
method proposed in this paper were better than those obtained by the other three meth-
ods. 

 HR Uncorrected 
image 

EPRY Jiang et al. INNM INN_IWF 

Amplitude 

      

Phase 

      

Pupil 

      

Figure 8. Comparison of the results of different methods on the simulation dataset [26]. 

  

Figure 8. Comparison of the results of different methods on the simulation dataset [26].



Sensors 2024, 24, 1448 11 of 17

Table 2. Image reconstruction metrics of different methods on the simulated dataset.

EPRY
PSNR (dB)/SSIM

Jiang et al. [26]
PSNR (dB)/SSIM

Jiang et al. [26]
Max/Min Value

INNM
PSNR (dB)/SSIM

INN_IWF
PSNR (dB)/SSIM

Amplitude 17.89/0.5576 21.88/0.7360 21.97/0.7370
21.79/0.7270 22.71/0.8937 24.97/0.9182

Phase 14.00/0.4521 17.01/0.6900 17.07/0.6903
16.94/0.6988 21.82/0.8529 22.73/0.8699

3.3. Comparative Experiments with a Real Dataset
3.3.1. Correction Performance for Different Defocus Planes

In order to verify that the proposed method still has a good correction performance
in the face of complex aberration conditions, the device of Section 2.1 is used for sample
collection. The numerical aperture of the system and the position of the LED array remain
unchanged. The 15 × 15 LED illumination array irradiates the real cell image placed on the
stage through the plane wave of different angles. The CMOS camera with a pixel size of
3.45 µm captures 225 real sample images with different angles of illumination and records
the light intensity image. The intensity and phase images of the real samples are shown in
Figure 9a,b.
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Figure 9. The collected cell images. (a) Intensity Image; (b) Phase Image.

Three defocus planes of 25 µm, 50 µm, and 75 µm were selected for comparison.
The aberration correction results for different defocus planes are shown in Figure 10.
The first column shows a low-resolution image with aberrations generated using the
forward imaging model. The second and third columns are images without aberration
correction. The fourth and fifth columns are images after aberration correction using the
INN_IWF network.

Figure 10 shows the effect of aberrations on the reconstruction results of cell images
at different defocusing planes, which shows that the effect of the aberration on the final
reconstructed image became more and more pronounced with the increase in the defocus
amount. Compared with the image without aberration correction, the imaging effect of
the image corrected by the method proposed in this paper was improved, and the image
texture features were retained to a large extent, implying that the INN_IWF network could
not only achieve aberration correction but also maintain a good aberration correction per-
formance in the case of severe aberration, so the reconstructed results retained more image
detail features.
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Figure 10. Comparison of low-resolution images with different defocus planes and images before
and after aberration correction in a real dataset.

In order to further verify the good aberration correction performance of the method
presented in this paper for cell images on different defocus planes, INNM [11] and EPRY [9]
are used as comparison algorithms. The correction results of the above three aberration
correction methods on different defocus planes are compared by multiple experimental
results, and the PSNR and SSIM index values calculated by multiple experimental results
are averaged. As shown in Figure 11, the defocus amount of different defocus planes
gradually increased, which indicates that aberrations on the reconstruction results had
a more and more obvious influence on the reconstruction results and that they would
also have a certain degree of influence on the reconstruction image quality of the above
three methods. The optimal results are in bold in Table 3. The maximum and minimum
values of the image reconstruction indexes calculated by multiple experiments are also
shown in Table 3. The fluctuation degree of the maximum and minimum values of the
proposed method is the same as that of the INNM method, but the numerical value is
better than that of the INNM method. As can be seen from the table, aberration had the
greatest influence on the EPRY [9] method, and the proposed method and the INNM [11]
method are less affected by aberrations. Table 3 also shows that the aberration correction
effect of the method proposed on different defocus planes was better than that of the other
two methods, with a higher value of the image reconstruction index. The above analysis
shows that the proposed method maintains a good aberration correction performance
for cell images, and the correction performance is not reduced in complex scenes while
retaining image texture features.
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Table 3. Image reconstruction metrics of different methods on different defocus planes in a real dataset.

Defocus
Planes

EPRY
PSNR

(dB)/SSIM

EPRY
Max/Min

Value

INNM
PSNR

(dB)/SSIM

INNM
Max/Min Value

INN_IWF
PSNR

(dB)/SSIM

INN_IWF
Max/Min Value

Amplitude

25 µm 21.76/0.7023 24.76/0.7023
20.76/0.6626 27.29/0.9621 27.60/0.9657

26.98/0.9585 33.36/0.9838 34.36/0.9840
32.46/0.9752

50 µm 20.08/0.6588 21.10/0.6636
20.02/0.6586 22.63/0.9008 23.12/0.9108

22.16/0.8902 26.23/0.9506 27.46/0.9683
25.96/0.9489

75 µm 19.29/0.6182 20.01/0.6282
19.01/0.6084 20.21/0.8254 21.04/0.8355

20.18/0.8153 21.57/0.8955 21.77/0.8977
21.30/0.8923

Phase

25 µm 16.52/0.6371 17.42/0.6381
15.62/0.6321 36.14/0.9818 36.43/0.9837

35.85/0.9799 40.52/0.9916 41.15/0.9918
39.89/0.9901

50 µm 12.73/0.5167 13.72/0.5203
11.62/0.4960 29.32/0.9443 29.69/0.9447

28.99/0.9440 37.64/0.9871 37.84/0.9872
37.44/0.9868

75 µm 8.54/0.3893 9.85/0.3996
8.32/0.3792 20.32/0.9309 20.95/0.9329

19.79/0.9288 34.02/0.9679 34.19/0.9743
33.80/0.9610

3.3.2. Comparison of the Results of Different Methods on a Real Dataset

The dataset used in this subsection is four sets of cell images acquired under real
experimental conditions, and the superiority of the method is verified through a comparison
with other methods.

The results of multiple experiments of INN_IWF, INNM [11], EPRY [9], and the
method proposed by Jiang et al. [26] in real datasets are compared, as shown in Figure 12.
Table 4 is the average value of the image reconstruction index of the above four methods
in PSNR and SSIM. Due to the limitation of the table size in Table 4, the maximum and
minimum values of multiple sets of real image reconstruction indexes are shown in Table 5.
It can be seen from the results that the method in this paper is better than the other methods.
The optimal results are in bold. It can be seen from Figure 12 and Table 4 that the image
clarity obtained by the INN_IWF was improved when compared with that of the methods
proposed by Jiang et al. and EPRY in these four groups of experiments, with more image
details. As can been from the reconstruction indexes in Table 4, the reconstruction index
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value of the method proposed in this paper was higher. The results of the first two groups
of experiments were similar to those of the INNM method, while the results of the latter
two groups show that the correction performance of the proposed method is better than
that of the INNM method. The image reconstruction index values of the two methods in
Table 4 show that the INNM is suboptimal. In summary, the method in this paper had
a better aberration correction performance in real datasets and was able to obtain better
reconstruction results.
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Table 4. Image reconstruction metrics of different methods in a real dataset.

EPRY
PSNR (dB)/SSIM

Jiang et al. [26]
PSNR (dB)/SSIM

INNM
PSNR (dB)/SSIM

INN_IWF
PSNR (dB)/SSIM

One
Amplitude 20.08/0.6588 12.34/0.7732 22.63/0.9008 26.23/0.9506

Phase 12.73/0.5167 15.83/0.7298 29.32/0.9443 37.64/0.9871

Two
Amplitude 22.15/0.7915 22.20/0.8784 29.89/0.9385 31.61/0.9690

Phase 11.28/0.5481 10.57/0.5301 30.57/0.9297 33.61/0.9724

Three
Amplitude 20.01/0.6948 20.56/0.7687 22.11/0.8647 26.09/0.9335

Phase 9.56/0.4883 13.22/0.6115 12.70/0.6383 25.86/0.9176

Four
Amplitude 22.70/0.8253 18.85/0.8183 19.98/0.7986 22.80/0.9246

Phase 9.54/0.4568 9.89/0.5940 12.86/0.6086 21.09/0.8544

Table 5. The maximum and minimum values of the reconstruction metrics of different methods in a
real dataset.

EPRY
PSNR (dB)/SSIM
Max/Min Value

Jiang et al. [26]
PSNR (dB)/SSIM
Max/Min Value

INNM
PSNR (dB)/SSIM
Max/Min Value

INN_IWF
PSNR (dB)/SSIM
Max/Min Value

One

Amplitude 21.10/0.6636
20.02/0.6586

13.34/0.7743
11.32/0.7682

23.12/0.9108
22.16/0.8902

27.46/0.9683
25.96/0.9489

Phase 13.72/0.5203
11.62/0.4960

16.12/0.7328
15.54/0.7268

29.69/0.9447
28.99/0.9440

37.84/0.9872
37.44/0.9868

Two

Amplitude 22.15/0.7916
22.10/0.7901

22.26/0.8884
22.12/0.8682

29.99/0.9398
29.69/0.9372

33.29/0.9752
29.93/0.9629

Phase 11.32/0.5483
11.25/0.5476

11.02/0.5408
10.57/0.5401

31.01/0.9299
30.12/0.9293

36.61/0.9793
30.62/0.9655

Three

Amplitude 20.80/0.6956
19.21/0.6946

20.90/0.7736
20.18/0.7636

22.21/0.8699
22.01/0.8595

26.29/0.9342
26.02/0.9330

Phase 9.86/0.4896
9.24/0.4824

13.54/0.6215
12.90/0.6015

13.01/0.6434
12.39/0.6332

26.10/0.9207
25.53/0.9146

Four

Amplitude 22.74/0.8262
22.67/0.8221

19.30/0.8283
18.38/0.8083

20.01/0.7987
19.88/0.7985

22.96/0.9268
22.72/0.9246

Phase 9.60/0.4589
9.42/0.4558

9.90/0.5946
9.86/0.5938

13.06/0.6099
12.67/0.6072

21.42/0.8568
21.02/0.8542

4. Conclusions

This paper proposes an aberration correction method based on the improved Wirtinger
Flow algorithm under the Tensorflow framework. This method simulates the forward
imaging process and improves the Wirtinger Flow algorithm introduced into the model,
retains the central idea, simplifies the calculation process, and improves the performance of
the aberration correction of the network. The alternating update mechanism (AU) updates
the sample and the coherent transfer function in batches to obtain better results. Zernike
polynomials can estimate aberrations with high precision. The simulation and experimental
results show that the INN_IWF network demonstrates a better performance in correcting
aberrations while obtaining richer texture details of reconstructed images, proving that
the proposed method is superior on different defocus planes, effectively avoiding a low
correction accuracy and poor correction performance under complex aberration conditions
while retaining more image texture features when compared to traditional algorithms.
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