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Abstract: A detection and classification machine-learning model to inspect Thin Film Transistor
Liquid Crystal Display (TFT-LCD) Mura is proposed in this study. To improve the capability of
the machine-learning model to inspect panels’ low-contrast grayscale images, piecewise gamma
correction and a Selective Search algorithm are applied to detect and optimize the feature regions
based on the Semiconductor Equipment and Materials International Mura (SEMU) specifications.
In this process, matching the segment proportions to gamma values of piecewise gamma is a task
that involves derivative-free optimization which is trained by adaptive particle swarm optimization.
The detection accuracy rate (DAR) is approximately 93.75%. An enhanced convolutional neural
network model is then applied to classify the Mura type through using the Taguchi experimental
design method that identifies the optimal combination of the convolution kernel and the maximum
pooling kernel sizes. A remarkable defect classification accuracy rate (CAR) of approximately 96.67%
is ultimately achieved. The entire defect detection and classification process can be completed in
about 3 milliseconds.
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1. Introduction

As display technology advances, TFT-LCD has emerged as the predominant technol-
ogy in flat-panel display products. Its widespread adoption can be attributed to its inherent
benefits, such as energy efficiency and slim profile. To enhance product quality and bolster
profitability, panel manufacturers are unwavering in their commitment to reducing the
production of defective units to reduce losses. The manufacturing procedures for TFT-LCD
panels are multifaceted and intricate, featuring dedicated inspection equipment at each
stage to scrutinize for any defects. These potential product defects fall into two categories:
microscopic and macroscopic. Microscopic defects are typically smaller than 100 µm and
cannot be visually detected by human personnel. These defects can only be captured
through camera systems or magnification, followed by categorization by inspection person-
nel. Macroscopic defects are identifiable through visual inspection and often manifest as
the most prevalent issues, such as uneven brightness and Mura, on the glass surface.

Mura defects can be categorized into three primary shapes: Dot, Thin, and Area
types [1]. Figure 1a is a standard panel image devoid of Mura. Figure 1b illustrates an
image of a panel with a Thin Mura defect on the right side of the panel. The grayscale
value within the defect area registers around 110, while the background exhibits a grayscale
value of approximately 125. This discrepancy is challenging to discern with unaided
eyes. Figure 1c demonstrates the binarized version of the localized lateral Mura area from
Figure 1b, revealing distinct black vertical lines. The histogram of Figure 1b is depicted
in Figure 1d. In a grayscale range of 0 to 255, the digital grayscale image predominantly
spans between 108 and 130. In contrast to the full 256 grayscale levels, this image confines
itself to a mere 22 grayscale levels. Consequently, the image appears dark, characterized by
low contrast and a narrow bandwidth.
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22 grayscale levels. Consequently, the image appears dark, characterized by low contrast 
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Figure 1. (a) An image of glass panel with no Mura; (b) An image of glass panel with Thin Mura (on 
the right); (c) Binarized image of (b); (d) Histogram of (b). 

Different approaches have been employed for quantitative Mura evaluation [2–4]. 
Chen et al. [5] applied filtering techniques to detect Thin-type Mura. Kim and Lee [6] de-
tected Mura through the image histogram threshold based on Weber’s method. Further-
more, Chang et al. [7] employed Otsu binarization to identify the threshold that best dis-
tinguishes Mura from the background in a given environment. These study efforts encom-
pass spatial and frequency domain image processing methods. The spatial domain 
method primarily determines the threshold distinction between Mura and its background, 
while the frequency domain approach is typically time-intensive.  

Several studies have attempted to use machine-learning methods for the automated 
detection of Mura. Mura defects on LCD panels are characterized by low contrast, overall 
dimness, and diversity and coexistence. Diversity and coexistence refer to the presence of 
various shapes of Mura defects that may coexist on the same LCD panel, thereby making 
it difficult for machine-learning to detect. Signh et al. compared the DAR of different deep-
learning methods in 2019 [8]. The best result for the classification and localization of Mura 
defects using a state-of-the-art deep-learning network is F1~80%. Deep channel attention-
based classification network (DCANet) was proposed by Lin et al. [9] as a feature extractor 
using an antagonistic training algorithm based on a convolution neural network. It was a 
data augmentation method for inconspicuous targets. Xie et al. [10] proposed a U-shape 
generator to detect Mura in a generative adversarial network (GAN), with a detection 
speed of ~5.6 ms. per frame and 256×256 resolution each. Moreover, the detection accuracy 
of defects with larger shapes was higher than that with smaller shapes. Other studies 
[11,12] have also used GAN to detect Mura on LCD frames. However, GAN is a binary 
classification model with no capability to classify different types of Mura.  

Machine-learning models other than GAN have been studied by many researchers. 
An automated Mura defect detection system using a random forest classifier was applied 
to classify different types of Mura defects, such as white and black background with line 
and region/shape Mura. The proposed system obtained the best accuracy results of > 99% 
but 27 ms. per image [13]. Furthermore, a convolutional neural network (CNN)-based 
transfer learning method was reported by Imoto et al. with a defect detection accuracy of 
~90% on a semiconductor device observed using SEM [14]. Other neural network (NN) 
models have also been reported, including back-propagation NN [15] and RetinaNet [16]. 
However, most of the region-based convolutional neural network (R-CNN) models de-
veloped require human labor to select regions, which is difficult in its nature owing to the 
low contrast, diversity, and complexity of Mura defects on LCD frames. 

The spatial enhancement Mura unification (SEMU) specification proposed by the In-
ternational Semiconductor Equipment and Materials International (SEMI) in 2002 (SEMI 

Figure 1. (a) An image of glass panel with no Mura; (b) An image of glass panel with Thin Mura (on
the right); (c) Binarized image of (b); (d) Histogram of (b).

Different approaches have been employed for quantitative Mura evaluation [2–4].
Chen et al. [5] applied filtering techniques to detect Thin-type Mura. Kim and Lee [6]
detected Mura through the image histogram threshold based on Weber’s method. Fur-
thermore, Chang et al. [7] employed Otsu binarization to identify the threshold that best
distinguishes Mura from the background in a given environment. These study efforts
encompass spatial and frequency domain image processing methods. The spatial domain
method primarily determines the threshold distinction between Mura and its background,
while the frequency domain approach is typically time-intensive.

Several studies have attempted to use machine-learning methods for the automated
detection of Mura. Mura defects on LCD panels are characterized by low contrast, overall
dimness, and diversity and coexistence. Diversity and coexistence refer to the presence of
various shapes of Mura defects that may coexist on the same LCD panel, thereby making
it difficult for machine-learning to detect. Signh et al. compared the DAR of different
deep-learning methods in 2019 [8]. The best result for the classification and localization
of Mura defects using a state-of-the-art deep-learning network is F1~80%. Deep channel
attention-based classification network (DCANet) was proposed by Lin et al. [9] as a feature
extractor using an antagonistic training algorithm based on a convolution neural network.
It was a data augmentation method for inconspicuous targets. Xie et al. [10] proposed
a U-shape generator to detect Mura in a generative adversarial network (GAN), with a
detection speed of ~5.6 ms. per frame and 256×256 resolution each. Moreover, the detection
accuracy of defects with larger shapes was higher than that with smaller shapes. Other
studies [11,12] have also used GAN to detect Mura on LCD frames. However, GAN is a
binary classification model with no capability to classify different types of Mura.

Machine-learning models other than GAN have been studied by many researchers.
An automated Mura defect detection system using a random forest classifier was applied to
classify different types of Mura defects, such as white and black background with line and
region/shape Mura. The proposed system obtained the best accuracy results of > 99% but
27 ms. per image [13]. Furthermore, a convolutional neural network (CNN)-based transfer
learning method was reported by Imoto et al. with a defect detection accuracy of ~90% on
a semiconductor device observed using SEM [14]. Other neural network (NN) models have
also been reported, including back-propagation NN [15] and RetinaNet [16]. However,
most of the region-based convolutional neural network (R-CNN) models developed require
human labor to select regions, which is difficult in its nature owing to the low contrast,
diversity, and complexity of Mura defects on LCD frames.

The spatial enhancement Mura unification (SEMU) specification proposed by the
International Semiconductor Equipment and Materials International (SEMI) in 2002 (SEMI
Mura, SEMI D31-1102) [17] serves as a fundamental tool for assessing the extent of Mura
on flat-panel displays.
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To enhance low-contrast grayscale images, piecewise linear function transformation
and nonlinear function transformation techniques [18–23] are often used. Nonlinear func-
tion conversion uses a nonlinear operator applied to the normalized grayscale values of
an image. In 2021, Pattanayak et al. [21] highlighted that a single gamma-based nonlinear
conversion method might limit the grayscale improvement range in dark areas while caus-
ing the grayscale values in bright areas to increase excessively, resulting in poor contrast
between the dark and bright regions in the image. Hence, a bi-linear piecewise mapping
function was introduced to address this issue of grayscale contrast within specific areas,
with a fixed normalized grayscale value serving as the boundary. Yan et al. [23] also
proposed enhancing the grayscale contrast of Mura using gamma correction.

However, images featuring Mura chromatic aberration defects pose challenges, as
their grayscale values are not constant. Consequently, this study introduces piecewise
gamma correction (PGC) to adapt to an optimization algorithm for partition processing and
weight evaluation. This presents a derivative-free optimization challenge, and so Adaptive
Particle Swarm Optimization (APSO) is employed for solving such problems. Particle
Swarm Optimization (PSO), initially proposed by Kennedy and Eberhart in 1995 [24], was
subsequently enhanced by Shi and Eberhart in 1998 [25]. Zhan et al. [26] proposed APSO
in 2009 by introducing enhancements to the standard PSO for attaining global optimal
solutions easily. Tong et al. [27] introduced an exponential inertia weight reduction strategy
based on the distance between particles, which expedited the iteration speed.

To identify a specific object within an image, an initial search of all conceivable
candidate regions is imperative. Subsequently, these candidate regions are assessed to be
those that exhibit the desired target characteristics. Selective search (SS) was introduced
by Uijlings et al. in 2013 [28]. SS significantly diminishes the requisite number of searches
while concurrently reducing the computational time. Based upon this foundation, many
neural networks based on R-CNN, such as Fast R-CNN [29], Faster R-CNN [30], and You
Only Look Once (YOLO) [31], continue to employ the SS method, solidifying its relevance
in this domain.

The regional neural network consists of two components: one to search for and the
other for the classification of candidate areas. The CNN model, as one of the most important
classification methods, was initially introduced by Yann LeCun et al. in 1998 [32]. Over time,
it was refined for the development of deep-learning architectures [33]. Weimer et al. [34]
proposed a classification approach for six distinct panel defects and fine-tuned the CNN
hyperparameters, such as the quantity of kernels in each layer and the number of filters in
each layer within the CNN model, to enhance classification accuracy.

Owing to Mura’s low-contrast characteristics, its identification is challenging, and a
single panel can exhibit multiple intricate and difficult-to-extract defects simultaneously.

This study proposes a computational model integrating detection and classification to
enhance Mura defect detection capabilities. In the detection phase, panel image contrast
is first enhanced using PGC with a flexible gamma value calculated by the black-box
optimization algorithm, APSO. SS is introduced to select all possible regions by color
similarity, and an SEMU threshold determined statistically is employed to filter out false
regions. A pre-classified image database is exercised, and the DAR is used as the objective
function in the APSO. These detection phases evolved until reaching the maximum number
of iterations or finding the maximum DAR.

CNN is then applied to classify those identified defect regions and the hyperparam-
eters of the CNN model are fine-tuned using Taguchi experimental design techniques to
enhance the CAR.

2. Research Theories and Methods

Section 2 presents the research background of SEMU, PGC, APSO, and CNN. Addi-
tionally, the relevant parameters and study structure are detailed.



Sensors 2024, 24, 1484 4 of 18

2.1. Semiconductor Equipment and Materials International Mura Formula

SEMU is a standard defined by SEMI to evaluate the Mura index, as shown in
Equation (1) [17].

SEMU =
|Cx|
Cjnd

=

|Im−Ib |
Ib(

1.97
A0.33 + 0.72

) , (1)

Cx: The ratio of gray-level differences between the Mura area and the surrounding
non-Mura region.

Cjnd: Grayscale contrast value of Mura.
Im: The average grayscale value within the Mura region.
Ib: The average grayscale value of the non-Mura area (background).
A: The area of the Mura region (mm).
In Equation (1), the greater the grayscale difference ratio Cx, the more pronounced

the grayscale disparity of the Mura defect and the easier it is to discern. Additionally,
a larger defect area A enhances the likelihood of detection. In this study, the input im-
age was first segmented using the segmentation method [35] and then the hierarchical
grouping algorithm was employed to merge the initially segmented neighboring region
pairs, primarily relying on color similarity, which can result in a region proposal. The color
similarity strategy initially divides the image’s grayscale levels into 25 bins in the histogram,
and the color similarity between any neighboring region pair is calculated as shown in
Equation (2) [28]:

SScolour
(
rα, rβ

)
= ∑n

k=1 min
(

ck
α, ck

β

)
, (2)

rα: Region α.
rα, rβ: Neighboring region pair.
ck

α: The k-th bin value of region α in the color histogram.
Equation (2) calculates the values of color histograms within neighboring region pairs,

denoted as rαand rβ, then merges the most similar region pairs in the segmented regions.
This process continues iteratively until no neighboring regions remain, ultimately resulting
in the formation of a regional proposal.

2.2. Piecewise Gamma Correction

Conventional Gamma Correction (CGC) is commonly applied to the normalized
grayscale values of an image to boost grayscale contrast while preserving the grayscales of
the brightest and darkest areas. However, it is less effective for enhancing the contrast in
low-contrast images. This study introduces a method for enhancing the contrast between
bright and dark regions in images. PGC is an extension of CGC.

In this study, PGC is employed to partition the grayscale values within the image into
specific segments, and different gamma values are used to enhance the contrast of each
segment. PGC is defined as shown in Equation (3).

Sj = CjR
γj , (3)

S: Output grayscale normalized value.
Cj: Constant for each segment.
R: Input grayscale normalization value.
γj: Gamma for each segment.
j: Segment index.
Figure 2 presents a comparison between CGC and PGC. The thick lines represent the

enhanced output of PGC. As illustrated in Figure 2, PGC has the ability to independently
boost the grayscale contrast within specific segments, offering greater flexibility compared
to CGC. Through the use of a proper optimization algorithm, the size of each segment and
its associated gamma value can be calculated.
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2.3. Adaptive Particle Swarm Optimization

PSO was originally proposed using the example of a flock of foraging birds, with each
bird likened to a particle [14]. These birds determine the speed and direction of their next
flight based on their current state. At each iteration, the group’s position is considered as a
potential solution. If the position has reached the best solution, the group stops moving;
otherwise, they continue searching for the next move. Each particle has its “local best”
(pbest), and the best position found by all particles in the group is termed the “global best”
(gbest). The particle update rate and position follow Equations (4) and (5) [15].

vt+1
i = w × vt

i + c1rand1
(

pt
i − xt

i
)
+ c2rand2

(
pt

g − xt
i

)
, (4)

xt+1
i = xt

i + vt+1
i , (5)

w: Inertia weight value.
xt

i : The position of particle i at time t.
vt

i : The flight velocity vector of particle i at time t.
pt

i : The local best position pbest searched by particle i at time t.
pt

g: The global best position gbest searched by the particle swarm at time t.
rand1: Random value, ∈ [0, 1].
rand2: Random value, ∈ [0, 1].
c1: Individual learning factor.
c2: Group learning factor.
Equation (4) outlines how a particle updates its speed by considering the vector

distance between the speed from the previous iteration, its current position, its individual
best position, and the best position of the entire group. Equation (5) describes how the
particle relocates to a new position. In these equations, the position vector of particle
i in dimension d at time t is represented as xt

i =
(
xt

i1, xt
i2, . . . , xt

id
)
, where xt

id ∈ [Ld, Ud],
and Ld, and UdUd signify the lower and upper bounds in the search space, acting as
boundary constraints.

PSO requires users to define specific parameter values, and these parameters directly
impact the rate of convergence and the potential for falling into local optimal solutions.
In 2009, Zhan et al. [16] introduced APSO, which employs three techniques: evolutionary
state estimation, adaptive control of PSO parameters, and elite learning strategy (ELS), to
enhance PSO’s convergence speed and accuracy.

Among these strategies, ELS introduces a solution through a search increment based
on Gaussian perturbation. However, there is a risk that perturbed parameters may extend
beyond the designated search space. The typical remedy is to confine the parameters within
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the upper and lower bounds directly, but this often causes particles to reach these bound-
aries prematurely, leading to monotonic parameter combinations. In this study, we propose
Gaussian perturbation with proportional characteristics, as described in Equation (6), as a
proportional factor to prevent parameter values from exceeding the search space bound-
aries. The scaling factors are outlined in Equations (7) and (8).

pd
i = pd

i−1 +
(

xd
max − xd

min

)
× Gaussian

(
µ, σ2

)
× s f , (6)

s f =
xd

max − pd(
xd

max − xd
min

)
× 2

, (7)

s f =
pd − xd

min(
xd

max − xd
min

)
× 2

, (8)

s f : Proportional factor.
pd

i : Correction variable in dimension D.
xd

max: Upper limit on search space.
xd

min: Lower limit on search space.

2.4. Convolution Neural Network

The CNN basic model architecture consists of two core blocks: feature extraction and
classification. Feature extraction is responsible for extracting image features through a
sequence of operations, including the convolution layer, pooling layer, and flattening. The
convolution layer employs various kernels to extract image features, resulting in feature
maps. These features then undergo pooling to reduce their size, and then the output is
flattened into one-dimensional data. In the classification stage, the one-dimensional data
are processed using activation functions, optimized weights, and biases in the hidden layer
of a multi-layer perceptron (MLP) and are finally classified.

2.5. Study Structure

The study structure is divided into two parts: the Detection Optimization Model
(DOM) and the Classification Optimization Model (COM), as depicted in Figure 3. The
purpose of the DOM is to optimize the positions of each segment in the PGC preprocessing
and the gamma values utilized in each segment. This optimization method employs APSO
to ultimately achieve the highest DAR. The purpose of the COM stage is to classify different
Mura types. The Taguchi experimental design method is used to optimize the specific
hyperparameters of the CNN model and to ultimately achieve the highest CAR.
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Figure 3. Study structure. The structure comprises two stages: DOM and COM.

In the DOM, as shown in the flowchart provided in Figure 4, the process begins with
inputting the pre-classified image, where PGC and a 5 × 5 mean smoothing blur filter are
applied for image processing. Due to the low grayscale difference of Mura images, PGC
is employed to selectively increase the contrast of specific grayscale values. The image
histogram is divided into three segments; each is enhanced with a different gamma value.
After PGC, noise may appear, and a blur filter is applied to reduce noise and avoid the
impact on the detected regions by SS. Subsequently, SS is utilized to search for all possible
Mura regions by a color similarity strategy. All regions are then scored and filtered by the
SEMU threshold. The threshold of SEMU indicates the Mura inspection specifications, with
a smaller threshold indicating stricter inspection criteria. The partition size of the PGC and
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the gamma value for each region are configured as design variables for optimization. The
objective is to find the highest DAR using APSO. Before reaching the termination condition,
APSO will repeatedly return to the PGC step until reaching the maximum number of
iterations or finding the maximum DAR, at which point the process stops.
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Grayscale images utilized in this study are sourced from a particular panel company.
Prior to the study, dedicated panel experts categorized the images into four distinct types
based on Mura characteristics, namely No Mura, Dot Mura, Thin Mura, and Area Mura.
Each type comprises 100 images, totaling 400, with an image size of 200 × 382 pixels each.

In the COM stage, CNN is used as a classifier. As described in Section 2.4, the CNN
model in this experiment includes three integrated layers, each comprising a convolutional
layer and a maximum pooling layer. The main objective of the COM stage is to optimize
the hyperparameter values selected in the CNN model to improve the CAR. During the
optimization process of the CNN model, specific hyperparameters, such as the kernel size
of the convolutional layer and the maximum pooling layer, are treated as experimental
factors within the fixed CNN training architecture. A total of 6 kernel sizes were selected
from the convolutional layers and the maximum pooling layers, with two levels in each
kernel. Conducting a full factorial experiment would require experiments with 64 com-
binations. Therefore, Taguchi’s experimental design method was employed to conduct
12 experimental combinations. From the experimental results of these 12 combinations, the
combination that achieves the maximum CAR among all combinations is determined. The
Mura regions identified by the DOM are fed into the COM which uses the CNN model
for training.

2.6. Mura Region Type Classification

Table 1 outlines the classification criteria for Mura regions based on size. Regions
identified by SS are categorized as different Mura types based on these criteria. The
DAR is determined by comparing the detected and classified regions with the conditions
outlined in the original tested image category, using 100 images for each of the four types
for verification.

Table 1. Mura Region Classification Conditions.

Mura Types Mura Region Classification Logic

Dot Mura The length and width of Mura region are ≥2 mm and ≤15 mm,
respectively, with an aspect ratio ≤ 1.5.

Thin Mura The Mura region width is between ≥2 mm and ≤15 mm, with no limit on
length, with an aspect ratio ≥ 1.5.

Area Mura The length and width of Mura region are both >15 mm, with an
unlimited aspect ratio.

2.7. Piecewise Gamma Correction—Segmented Regions and Boundary Conditions

To establish the segmented size and boundary conditions for PGC, it is imperative
to identify the specific features of the image to be highlighted. This process involves
transforming the original image with Mura into a normalized histogram, as illustrated
in Figure 5. The grayscale value within the image exhibits a bimodal distribution. To
effectively employ PGC to enhance the two peaks and the lower segments between them
using varying gamma values, the brightness is divided into three distinct segments based
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on two points, P1 and P2. The values of P1 and P2 adhere to the condition 0 < P1 < P2 < 1.
Through the optimization algorithm, the optimal positions of P1 and P2, along with the
gamma values for each of these three segments, can be determined.
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2.8. APSO Set Parameters and Terminal Conditions

Table 2 outlines the parameter settings and terminal conditions for APSO. The number
of variables encompasses the gamma values for the three segments in PGC and the segmen-
tation points P1 and P2. The optimization process is subject to three terminal conditions,
with the process terminating if any of these conditions are met.

Table 2. APSO Set Parameters and Terminal Conditions.

APSO Algorithm Element Setting

Objective function Detection accuracy rate
Variable P1, P2, G1, G2, G3

Constraint: P1, P2 0 < P1 < P2 < 1
Constraint: G1, G2, G3 ∈[6, 10]

Initial Number of particles 50
Maximum number of iterations 100

Initial inertia weight w 0.9
Inertia weight w range ∈[0.4, 0.9]

Individual learning factor c1 2.0
Group learning factor c2 2.0

Experience weight c, c1, c2 range c1, c2 ∈ [1.5, 2.5], c1 + c2 ∈ [3, 4]
Terminal Conditions

The number of iterations reaches the maximum: 100.
The variation in the optimal solution position is less than 1 × 10−8.

The optimal solution fitness value change is less than 1 × 10−8.

2.9. CNN Training Materials

The region images employed in the CNN training model consist of the three Mura
types (Dot, Thin, and Area) selected from the DOM optimization model. The resolution of
the region image was 200 × 200 (pixels) after resizing. Among the Mura region samples,
1300, 4500, and 4500 Mura images were obtained and classified as Dot, Thin, and Area Mura,
respectively. Figure 6 shows three types of images: (a) image with Dot Mura, (b) image
with Thin Mura, and (c) image with Area Mura.
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2.10. CNN Training Model Description

The CNN model architecture used in this study, as depicted in Figure 7, incorporates
three integrated layers, each comprising a convolutional layer and a maximum pooling
layer within the image feature extraction section. The extracted features are flattened and
connected to an MLP. In the MLP, rectified linear unit excitation functions are employed,
and final classification is performed using the softmax function.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 18 
 

 

the region image was 200 × 200 (pixels) after resizing. Among the Mura region samples, 
1300, 4500, and 4500 Mura images were obtained and classified as Dot, Thin, and Area 
Mura, respectively. Figure 6 shows three types of images: (a) image with Dot Mura, (b) 
image with Thin Mura, and (c) image with Area Mura.  

 
Figure 6. (a) Dot Mura; (b) Thin Mura; (c) Area Mura. The defects in the figures were image-pro-
cessed. The white lines represent the boundary of Mura. 

2.10. CNN Training Model Description 
The CNN model architecture used in this study, as depicted in Figure 7, incorporates 

three integrated layers, each comprising a convolutional layer and a maximum pooling 
layer within the image feature extraction section. The extracted features are flattened and 
connected to an MLP. In the MLP, rectified linear unit excitation functions are employed, 
and final classification is performed using the softmax function. 

 
Figure 7. CNN model architecture. 

2.11. CNN Hyperparameter Settings 
The configuration of hyperparameters in the training model significantly impacts the 

model’s accuracy. This study primarily focuses on the convolution kernel size and Max-
Pooling kernel size as the hyperparameters of interest. The optimization of CNN hyperpa-
rameters is carried out in conjunction with Taguchi’s experimental method, where six fac-
tors, labeled as A-F, detailed in Table 3, are selected. Each factor has two levels. The highest 
CAR is the expected result. CAR is defined as the classification accuracy of 100 images 
which are not in the training dataset, each of 200 × 382 pixels, for Dot, Thin, and Area 
Mura. These images are classified using the trained CNN model to assess the classification 
accuracy for these 300 images. The other fixed hyperparameter settings are presented in 
Table 4. 

  

Figure 7. CNN model architecture.

2.11. CNN Hyperparameter Settings

The configuration of hyperparameters in the training model significantly impacts
the model’s accuracy. This study primarily focuses on the convolution kernel size and
Max-Pooling kernel size as the hyperparameters of interest. The optimization of CNN
hyperparameters is carried out in conjunction with Taguchi’s experimental method, where
six factors, labeled as A-F, detailed in Table 3, are selected. Each factor has two levels.
The highest CAR is the expected result. CAR is defined as the classification accuracy of
100 images which are not in the training dataset, each of 200 × 382 pixels, for Dot, Thin,
and Area Mura. These images are classified using the trained CNN model to assess the
classification accuracy for these 300 images. The other fixed hyperparameter settings are
presented in Table 4.

Table 3. Experimental Design Factors.

Each Factor Has Two Levels Convolution Kernel Size Max-Pooling Kernel Size

Layer 1 A B
Layer 2 C D
Layer 3 E F
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Table 4. Fixed Hyperparameter Settings.

Fixed Hyperparameter Setting

Number of layers 3
Dropout 30%

Dense 512
Activation function ReLU

Epoch 10
Batch Size 10

Validation split 15%

During the preliminary testing phase, it was observed that when convolution kernel
and Max-Pooling kernel sizes are set to 4 × 4, the resulting image becomes too small,
rendering the program unable to generate the required feature map. The convolution and
Max-Pooling kernel sizes are therefore set to 2 × 2 and 3 × 3, respectively.

Due to limitations in image resolution in this experiment, using only two layers
resulted in a CAR of less than 70%, while using four layers caused the CNN training
process to terminate due to the resulting image being too small for training. Therefore,
experiments were conducted using only three layers. This three-layer architecture was also
found in the study by Weimer et al. [34].

Each combination is subjected to three repetitions to mitigate the impact of uncontrol-
lable factors on the experimental results. Ultimately, based on these experimental results,
the best and the worst-performing combinations are identified and compared.

In this study, the experimental models of PGC, APSO, and CNN were developed
in-house utilizing Python as the development environment, with Jupyter Notebook as
the editor. The hardware specifications include a WIN10 computer equipped with an i5
1.8 GHz CPU, 12 GB RAM, and a GeForce MX150 NVIDIA GPU.

3. Experimental Results and Discussion

Section 3 presents the following four experimental results: 1. Determination of SEMU
threshold. 2. Comparison of the effectiveness of PGC. 3. APSO experimental results of
optimized training mode. 4. Experimental results of the CNN training model.

3.1. Determination of SEMU Threshold

Mura’s SEMU specifications at the panel factory are subject to changes in customer
product standards. It is important to note that the SEMU threshold is not a fixed absolute
value. A breakdown of the various region types and their SEMU value distributions is
shown in Table 5. Figure 8 illustrates the SEMU value distribution of the four types of Mura
regions identified in Table 5 using a box plot. The y-axis corresponds to the SEMU value,
while the x-axis displays the regions from left to right: No Mura, Dot Mura, Thin Mura,
and Area Mura.

In the box plot, the five horizontal lines within each of the groups represent, from
bottom to top, the minimum value, the first quartile (25%), the median (50%), the third
quartile (75%), and the maximum value of the SEMU. Points below the minimum value and
above the maximum value are considered outliers. Figure 8 shows that the distributions
of regions in the first group (No Mura) and the second group (Dot Mura) are relatively
close. Therefore, when selecting regions from the first group (No Mura), avoiding excessive
deletion of Dot Mura regions is essential, as this could result in excluding images containing
actual regions of Dot Mura. Regions with SEMU values below the SEMU threshold will be
removed, and so the selection of the SEMU threshold must align with the proportion of
Mura regions deleted by varying SEMU values.
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Table 5. Number of Various Types of Regions and Distribution of SEMU Values.

Image Type Region Number SEMU Avg. Min. Max. Median

A: No Mura 171 1.46 0.95 4.29 1.37
B: Dot Mura 216 2.01 1.31 3.02 1.92

C: Thin Mura 489 3.49 1.02 12.64 2.77
D: Area Mura 456 3.89 1.03 12.37 3.13
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Table 6 presents the proportion of deleted Mura regions with varying SEMU values.
As observed in Table 6, selecting an SEMU threshold of 1.7 results in deleting around 90%
of the pseudo-Mura regions in Group A (No Mura) while deleting less than 10% of actual
Mura regions from other groups. Therefore, setting the SEMU threshold at approximately
1.7 aligns with the intention to retain more genuine Mura regions from categories B–D
while eliminating more false Mura regions to improve DAR.

Table 6. Proportion of Deleted Mura Regions with Different SEMU Values.

Proportion of Deleted Mura Regions in Each Category (%)

SEMU A: No Mura B: Dot Mura C: Thin Mura D: Area Mura

1.37 50% 0.46% 3.27% 1.54%
1.47 60% 1.39% 4.91% 3.07%
1.52 70% 1.85% 4.91% 4.82%
1.59 80% 5.09% 7.16% 5.92%
1.7 90% 9.26% 10.02% 7.46%

4.29 100% 100% 76.07% 71.05%

3.2. Comparison of the Effectiveness of PGC

To explore the effectiveness of PGC, a comparison was made between the PGC and
CGC. Figure 9 illustrates the DAR obtained by inputting gamma values into the Mura
detection model on the y-axis, while the x-axis represents five distinct gamma groups. The
first group on the left corresponds to gamma = 1, and represents no gamma correction. The
second to fourth groups indicate single gamma values, specifically 6, 6.52, and 10. The
values 6 and 10 also represent gamma’s lower and upper limits within the optimization
process. The value 6.52 results from fitting the PGC using the nonlinear least squares
method, yielding a coefficient of determination R2 of 0.984. The fifth group employs
PGC, with the values representing experimental results from APSO: 6.53, 6.22, and 9.11,
respectively. The figure demonstrates that the PGC achieves the highest DAR, while
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the lowest DAR is observed when no power law is applied. This validates a significant
enhancement in the Mura detection accuracy of PGC compared to CGC.
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3.3. APSO Experimental Results of Optimized Training Model

APSO is employed to optimize the detection model as finding each segment size and
their associated gamma values in PGC represent an issue of derivative-free optimization.
Table 7 provides the results of experiments conducted over 10 iterations of APSO opti-
mization. This study involves three regions and two division points, denoted as P1 and
P2. Within the table, G1, G2, and G3 correspond to the gamma values utilized in these
three regions, namely 0 to P1, P1 to P2, and P2 to 1. Validation rate involves a comparison
with the original 400 images to determine if the detected regions adhere to the conditions
of the original image categories. DAR is evaluated using four different sets made up of
100 images each, all distinct from the training dataset, to assess the accuracy of the training
model. Notably, these 400 images used for testing are categorized in the same manner as
those employed in training.

Table 7. APSO Optimization Model Experimental Results.

Combination
Gamma Value Segmentation

Point Validation
Rate

DAR
G1 G2 G3 P1 P2

1 7.57 9.5 9.98 0.73 0.87 96.25% 92.50%
2 6.19 7.84 7.99 0.72 0.86 96.25% 92.25%
3 6.83 6.02 9.76 0.01 0.68 95.75% 91.00%
4 8.63 7.97 9.47 0.36 0.68 95.75% 91.50%
5 6.42 6 9.18 0.29 0.68 96.50% 93.25%
6 6.81 6.6 9.96 0.24 0.66 95.50% 91.25%
7 6.53 6.22 9.11 0.39 0.84 96.75% 93.75%
8 6.84 6.51 9.66 0.26 0.69 96.00% 93.25%
9 6.82 6 8.69 0.31 0.67 94.50% 90.75%
10 8.63 7.97 9.46 0.37 0.68 95.25% 91.75%

The parameters within Group 7 achieve the highest validation rate of 96.75%, as
indicated in Table 6. In this configuration, the gamma values for G1, G2, and G3 are 6.53,
6.22, and 9.11, respectively, with the segmentation points P1 and P2 positioned at 0.39
and 0.84. These results reveal that the gamma values in the first and second segments are
similar. In contrast, the gamma values in the third segment exhibit a relatively drastic
change. This also suggests that the Mura defects in this study’s 400 panel training samples
tend to be biased toward brighter colors. Consequently, assigning a larger gamma value to
the third segment effectively enhances the color contrast.
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Using this trained Mura detection model, the DAR of 93.75% is achieved, with a total
of 25 errors in region classification. A classification breakdown is presented in Table 8,
which includes 14 errors in Class A (No Mura), in line with the SEMU threshold of 1.7,
designed to preserve approximately 10% of regions related to pseudo-Mura. The remaining
three types of authentic Mura all surpass a DAR of 94%, underscoring the model’s ability
to effectively detect the majority of Mura defects.

Table 8. DAR of Each Category of Mura Region.

Image Type Number of Images Correct Quantity Incorrect Quantity DAR

A: No Mura 100 86 14 86%
B: Dot Mura 100 94 6 94%

C: Thin Mura 100 98 2 98%
D: Area Mura 100 97 3 97%

Average DAR 93.75%

Figure 10 illustrates the convergence status of the validation rate and the number of
iterations conducted during the training process. The training process converges at the
22nd iteration.
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The optimal Mura detection model was obtained after optimizing the PGC segment
positions and gamma values. Figure 11 displays the original image of Mura defect panels
and the resulting image after processing by the Mura detection model. The red rectangles
indicate the regions detected by the Mura detection model. Figure 11a includes both
Thin and Area types of Mura. Figure 11b is the resulting image after processing by the
detection model from the original Figure 11a. In Figure 11b, regions 1, 2, 4, and 5 belong
to the Area-type Mura, while region 3 is the Thin-type Mura. Although region 1 exhibits
both Thin and Area types, it can be classified as the Area type based on the Mura region
classification conditions. From the original images, it can be observed that Mura defects
have characteristics, such as low contrast, overall dimness, and diversity and coexistence.
The results of the DOM phase in this study can overcome these Mura characteristics.
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3.4. Experimental Results of the CNN Training Model

The CNN experimental procedure involves three runs, and then the average is taken.
Table 9 presents the 12-factor combinations used according to the L12 orthogonal table and
the CARs and their average values for the three repeated experiments.

Table 9. Three L12 Experimental Results of CAR.
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6 2 × 2 3 × 3 3 × 3 3 × 3 2 × 2 3 × 3 76.33% 93.67% 94.67% 88.22%
7 3 × 3 2 × 2 3 × 3 3 × 3 2 × 2 2 × 2 90.00% 96.67% 93.67% 93.45%
8 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3 3 × 3 91.67% 91.33% 93.67% 92.22%
9 3 × 3 2 × 2 2 × 2 3 × 3 3 × 3 3 × 3 94.33% 93.33% 84.00% 90.55%
10 3 × 3 3 × 3 3 × 3 2 × 2 2 × 2 2 × 2 94.67% 92.33% 91.67% 92.89%
11 3 × 3 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3 91.67% 75.00% 92.00% 86.22%
12 3 × 3 3 × 3 2 × 2 2 × 2 3 × 3 2 × 2 93.33% 93.00% 88.33% 91.55%

3.5. Evaluation of the Effect of Main Factors

The experimental results from Table 9 were subject to a main factor effect analysis, as
shown in Figure 12, which illustrates the relationship between each factor level and the
average CAR. The steeper the slope of each main effect, the greater the influence of that
factor level on the model’s average CAR. The main effect values for each factor can be
found in Table 10.
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Table 10. Average CAR of Main Factor-Level Response.

Kernel Size Main Factor A B C D E F

2 × 2 Average CAR 91.53% 92.76% 91.28% 92.59% 91.59% 92.50%
3 × 3 Average CAR 91.15% 89.93% 91.41% 90.10% 91.09% 90.19%

Difference −0.38% −2.83% 0.13% −2.49% −0.50% −2.31%
Rank (absolute) 5 1 6 2 4 3

Based on Figure 12 and Table 11, factor B (Max-Pooling layer kernel size) in the
first layer significantly impacts the average CAR. These results can also be explained by
observing the changes in image size after each layer, as shown in Table 11. When the
original input image passes through a convolution layer with a kernel size of 2 × 2 in
the first layer, the image size reduces from 200 × 200 to 199 × 199 pixels. Subsequently,
after passing through a Max-Pooling layer with a kernel size of 2 × 2, the image size
decreases from 199 × 199 to 99 × 99 pixels. If both the convolution and Max-Pooling
layers in the first layer use a 3 × 3 kernel size, the image size would be reduced to only
66 × 66. The substantial changes in image size highlight the significant impact of the first
layer’s Max-Pooling kernel size on the average testing rate. The results also indicate that
compared to using a 3 × 3 kernel size, a 2 × 2 kernel size in the Max-Pooling of the first
layer preserves more detailed Mura feature characteristics.

Table 11. Image Size Variation after Each Convolution and Max-Pooling Layer.

Original Image Size: 200 × 200 Kernel Size: 2 × 2 Kernel Size: 3 × 3

First layer size after convolution 199 × 199 198 × 198
First layer size after Max-Pooling 99 × 99 66 × 66

Second layer size after convolution 98 × 98 64 × 64
Second layer size after Max-Pooling 49 × 49 21 × 21

Third layer size after convolution 48 × 48 19 × 19
Third layer size after Max-Pooling 24 × 24 6 × 6

3.6. Recommended Combination and Contrast Combination

Based on the main factor effect analysis results in Figure 12, the recommended combi-
nation (A-1, B-1, C-2, D-1, E-1, and F-1) can be used to achieve a better CAR. A contrasting
combination (A-2, B-2, C-1, D-2, E-2, and F-2) is used for comparison, as shown in Table 12.
The recommended and contrasting combinations are subjected to five repeated tests. The
resulting CARs and their averages are presented in Table 13. The average test result for
the recommended combination is 95.13%, representing an improvement of approximately
6.4% compared to the contrasting combination’s 88.73%. The highest CAR value is about
96.67%. The detection of Mura types in each 200 × 382 pixel image takes approximately
3 milliseconds.

Table 12. Recommended and Contrast Combinations.

Combination A B C D E F

Recommended combination
(A1B1C2D1E1F1) 2 × 2 2 × 2 3 × 3 2 × 2 2 × 2 2 × 2

Contrast combination
(A2B2C1D2E2F2) 3 × 3 3 × 3 2 × 2 3 × 3 3 × 3 3 × 3
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Table 13. CAR of Recommended and Contrast Combinations.

Combination Test 1 Test 2 Test 3 Test 4 Test 5 Average

Recommended combination
(A1B1C2D1E1F1) 96.67% 94.67% 93.00% 96.00% 95.33% 95.13%

Contrast combination
(A2B2C1D2E2F2) 91.00% 86.00% 91.33% 84.00% 91.33% 88.73%

4. Conclusions

This study focuses on detecting and classifying different types of Mura defects in the
TFT-LCD manufacturing process. In the detection model, the SEMU scoring guideline is
used to adjust the Mura inspection criteria, with the reference SEMU threshold of 1.7 used
in this study. Furthermore, this study proposes a PGC segmentation method to enhance
the grayscale contrast in the images. The optimal segmentation proportions and associated
gamma values are obtained through the APSO algorithm. The highest DAR of ~93.75%
using a PGC model is achieved, surpassing that of around 82.25% obtained using a CGC
model. The results indicate the advantage of PGC in enhancing images with low contrast
and narrow bandwidth.

For the classification model, the Taguchi experimental method was employed to
identify the best combination of hyperparameters that enhance its classification capability.
Experimental results show that the three most important factors affecting the CNN are all
related to the kernel size in the maximum pooling layers, with importance decreasing from
the first to the third layer. The proposed optimal CNN classification model achieves an
average CAR of approximately 95.13%.

Combining the APSO-optimized PGC for the Mura defect detection model and the
optimized CNN model for classification effectively enhances the detection and CAR of
panel defects, with narrow bandwidth and low-contrast characteristics. This study can
achieve a CAR of about 96.67% within 3 milliseconds.

In future research, consideration could be given to incorporating more hyper-parameters
as experimental conditions to investigate whether a higher CAR can be achieved.
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