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Abstract: Inadequate air quality has adverse impacts on human well-being and contributes to the
progression of climate change, leading to fluctuations in temperature. Therefore, gaining a localized
comprehension of the interplay between climate variations and air pollution holds great significance
in alleviating the health repercussions of air pollution. This study uses a holistic approach to make
air quality predictions and multivariate modelling. It investigates the associations between meteo-
rological factors, encompassing temperature, relative humidity, air pressure, and three particulate
matter concentrations (PM10, PM2.5, and PM1), and the correlation between PM concentrations
and noise levels, volatile organic compounds, and carbon dioxide emissions. Five hybrid machine
learning models were employed to predict PM concentrations and then the Air Quality Index (AQI).
Twelve PM sensors evenly distributed in Craiova City, Romania, provided the dataset for five months
(22 September 2021–17 February 2022). The sensors transmitted data each minute. The prediction
accuracy of the models was evaluated and the results revealed that, in general, the coefficient of
determination (R2) values exceeded 0.96 (interval of confidence is 0.95) and, in most instances,
approached 0.99. Relative humidity emerged as the least influential variable on PM concentrations,
while the most accurate predictions were achieved by combining pressure with temperature. PM10
(less than 10 µm in diameter) concentrations exhibited a notable correlation with PM2.5 (less than
2.5 µm in diameter) concentrations and a moderate correlation with PM1 (less than 1 µm in diam-
eter). Nevertheless, other findings indicated that PM concentrations were not strongly related to
NOISE, CO2, and VOC, and these last variables should be combined with another meteorological
variable to enhance the prediction accuracy. Ultimately, this study established novel relationships
for predicting PM concentrations and AQI based on the most effective combinations of predictor
variables identified.

Keywords: air pollution; hybrid machine learning; low-cost sensors; PM sensor; urban monitoring

1. Introduction

Air pollution has gained significant attention as a prominent research topic due
to its substantial implications for public health and the environment [1]. On a global
scale, exposure to PM is responsible for 3% of cardiopulmonary-related deaths and 5%
of lung-cancer-related fatalities, as the World Health Organization (WHO) reported in
2013 [2]. Short-term exposure from hours to days to high concentrations of PM10 has
been observed to affect respiratory health adversely. However, it is essential to note that
long-term exposure over months to years to PM2.5 carries a higher health risk than PM10.
Extended exposure to PM2.5 has been linked to increased mortality rates due to respiratory
issues [3–5], heart diseases [6–8], lung cancer [3], and stroke [9]. On average, PM2.5 reduces
the population’s life expectancy by 8.6 months, as reported by the WHO in 2013 [2]. During
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the COVID-19 pandemic, PM2.5 emerged as one of the most significant pollutant agents
contributing to increased death rates associated with COVID-19 [10]. Some studies have
even suggested that PM1 mainly affects male residents in urban areas, who face a higher
risk of lung cancer incidence [3]. Vulnerable groups to air pollution exposure include
children, the elderly, and individuals with chronic illnesses [11]. Furthermore, low- and
middle-income communities tend to bear a more significant burden of exposure to elevated
PM concentrations than wealthier communities [12].

The alert threshold recommended by WHO in 2021 for PM2.5 is 15 µg/m3 for a 24 h
mean and 5 µg/m3 annual mean. The daily limit recommended for PM10 is 45 µg/m3,
and the annual limit is 15 µg/m3. Another important detail is that it should not exist for
more than 3–4 exceedance days per year [1]. The European Union air quality standards are
25 µg/m3 for PM2.5 and 40 µg/m3 for PM10 (one-year average). The European Environ-
ment Agency declared in November 2023 that Europe had 253,000 premature deaths in 2021
from chronic exposure to fine PM. Moreover, the World Quality Report 2021 emphasized
that only 3.4% of 6735 monitored cities met the standards in 2021.

The expansion of urban areas has made a notable contribution to the deterioration of
environmental quality, primarily owing to the dust generated by construction sites and the
development of transportation infrastructure. Given that transportation networks are vital
for a city’s economic progress, governmental bodies are faced with the imperative task of
seeking strategies to redirect a portion of road traffic through bypass routes. Additionally,
there is a concerning trend of diminishing green spaces in favor of urban expansion.

Table 1 presents a list of abbreviations and nomenclature. Some units are added
where necessary.

Table 1. Abbreviations and nomenclature.

Abbreviation Nomenclature Units

ANNs Artificial Neural Networks --
LCE Legate’s Coefficient of Efficiency Dimensionless
LSR Least Square Regression --

MAPE Mean Absolute Percentage Error In percentage
MBE Mean Bias Error µg/m3

EWT Ensemble Wavelet Transform --
VMD Variational Mode Decomposition --

NARX Network nonlinear Autoregressive Network with
Exogenous Inputs --

ARIMA Auto Regressive Integrated Moving Average Model --
MAEGA Multi-Agent Evolutionary Genetic Algorithm --

ELM General Neural Networks --
LSTM Deep Learning Neural Networks --

MODA Multi-objective Dragonfly Optimization Algorithm --
MOPSO Multi-objective Article Swarm Optimization Algorithm --
MOBO Multi-objective Bonobo Optimizer --

PM Particle Matter Concentration µg/m3

R2 Coefficient of Determination Dimensionless
ML Machine Learning --
RH Relative Humidity In percentage
P Pressure Pa

RMSE Root Mean Square Error µg/m3

SBF Slope of Best-Fit line Dimensionless
FS Feature Selections --
T Temperature ◦C

TS Test Statistic Dimensionless
WIA Willmott’s Index of Agreement Dimensionless
σ Standard Deviation µg/m3

φ Performance Score Dimensionless
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Table 1. Cont.

Abbreviation Nomenclature Units

MDA Mixture Discriminant Analysis --
Bagged CART Bagged Classification and Regression Trees --

RF Random Forest --
SA Simulated Annealing Method --

SVM Support Vector Machine --
DT Decision Tree --

GPR Gaussian Process Regression --
LR Linear Regression --

RF-ELM Random Fourier Extreme Learning Machine --
RF-ELM Random Fourier Extreme Learning Machine --
OS-ELM Online Sequential Extreme Learning Machine --

IVS Input Variable Selection --

In the realm of the literature, the application of Machine Learning (ML) models,
also referred to as data-driven models, for the modelling, prediction, and forecasting of
air quality, with a focus on atmospheric components such as PM1, PM2.5, and PM10
concentrations, has been explored to a limited extent. Researchers have combined various
ML techniques with Feature Selection (FS) methods to identify the most relevant predictor
variables and enhance prediction accuracy. This collectively sheds light on applying ML
techniques to air quality prediction and forecasting and underlines the significance of FS
and hybrid modelling approaches in achieving accurate predictions.

Table 2 provides an overview of the state-of-the-art air quality prediction and forecast-
ing methods, encompassing hybrid and non-hybrid FS-ML models over the past five years.
It includes a concise description of each method, the objective function it addresses, the
location and source of the data used, the predictor variables incorporated, the time-series
resolution (e.g., minute, hourly, and daily average), and the strengths and limitations
associated with each model.

For instance, in reference [13], the authors employed three distinct ML models—Mixture
Discriminant Analysis (MDA), Bagged Classification and Regression Trees (Bagged CART),
and Random Forest (RF)—for predicting PM10 hazards in Barcelona, Spain. Simulated
Annealing (SA) was applied as an FS technique to reduce the data dimension and select
appropriate predictor variables. The results showed accuracies exceeding 87% and precisions
surpassing 86% for all three ML models.

In [14], the focus was on accurately predicting PM2.5 concentrations. The authors
introduced a hybrid model comprising a deterministic prediction module and a Random
Fourier Extreme Learning Machine (RF-ELM), combined with an interval prediction mod-
ule. This approach effectively provided concentration intervals based on upper and lower
bounds derived during the deterministic prediction phase.

In [15], the researchers examined the impact of anthropogenic emissions and meteoro-
logical factors on PM2.5 concentrations in Hubei Province, China, using a random forest
model in conjunction with a meteorological normalization method. The findings indicated
that anthropogenic emissions increased PM2.5 concentrations by approximately 33.3%,
while meteorological conditions contributed to an 8.8% increase.

In [16], considering climate-influencing factors, the authors proposed an intelligent
hybrid air-quality-forecasting system. This system incorporated an FS technique (relief-F al-
gorithm), a multi-objective optimization algorithm (MOCBO), and a modified fuzzy neural
network. The Air Quality Index (AQI) was computed based on concentrations of several air
pollutants, including PM2.5, PM10, SO2, CO, NO2, and O3. The results demonstrated that
this proposed system outperformed eleven comparison models, which included two ML
models (general neural networks—ELM and deep learning neural networks—LSTM) com-
bined with five FS techniques and three multi-objective optimization algorithms (MODA,
MOPSO, and MOBO).
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Table 2. The state of the art on air quality forecasting research for the last five years.

Ref. A Brief Description Objective
Function Data Location and Source Predictors Time-Series Strengths Limitation

[17]

An automated air quality
forecasting system is developed
for daily forecasts based on five
various ML models: MLR, MLP,
RF, GBDT, and SVR, combined

with an FS technique.

PM2.5, PM10,
SO2, NO2,

O3, CO

Seven cities in China: Beijing,
Shanghai, Guangzhou,

Chengdu, Xi’an, Wuhan, and
Changchun.

(http://www.cnemc.cn)
(accessed on 15 January 2022).

Daily pressure, 2 m temperature,
relative humidity, precipitation,
visibility, and total cloud cover.

(http://data.cma.cn)
(accessed on 15 January 2022).

Daily
average

Development of an
automated air quality

forecasting system
based on five various

ML models.

Feature importance
scores were

calculated by the RF
model, in which the
predictor variables

were checked
individually.

[14]

Hybrid model based on a
deterministic prediction module

(RF-ELM) combined with an
interval prediction module.

PM2.5
Three major cities in China are
Guang Zhou, Shenzhen, and

Zhuhai.
---- Daily

average
The use of an interval
prediction module.

These are very
complex models.

[15]
RF model combined with a

meteorological normalization
method.

PM2.5
Hubei Province, China.

https://quotsoft.net/air/
(accessed on 15 January 2022).

Included 2 m temperature, 2 m
dewpoint temperature, 10 m
u-component of wind, 10 m

v-component of wind, surface
pressure, total precipitation,
boundary layer height, and

downward surface solar
radiation.

Hourly

The use of a
meteorological
normalization

method.

Only a quantification
of air pollution was

performed. No
forecasting and/or

modelling was made.

[16]

Hybrid air quality forecasting
system based on relief-F

algorithm combined with a
MOCBO and a modified fuzzy

neural network.

AQI
Shanghai, Hangzhou, and

Nanjing are three regions with
severe air pollution in China.

PM2.5, PM10, SO2, CO, NO2,
and O3 concentrations, average
temperature (◦C), cumulative

precipitation (CP, mm), average
wind speed (AWS, m/s), and

average relative humidity.

Daily
average

A comparison with
other ML models and

FS methods.

One combination of
inputs was found for

AQI forecasting.

[13] MDA, Bagged CART, and RF
combined with SA. PM10 A total of 75 stations over

Barcelona, Spain.

Minimum temperature,
maximum temperature,
normalized difference

vegetation index, precipitation,
wind speed, wind direction,

elevation, road density,
topographic wetness index, land

use, terrain roughness index,
distance from water body, land

use, and lithology.

Annually
average

The use of many
FS-ML models and
comparison with

others.

One combination of
inputs was found for

PM10 forecasting.

http://www.cnemc.cn
http://data.cma.cn
https://quotsoft.net/air/
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Table 2. Cont.

Ref. A Brief Description Objective
Function Data Location and Source Predictors Time-Series Strengths Limitation

[18]

An ANN model was used to
forecast daily pollutant

concentrations.
Real-time correlation (RTC) was
applied to improve the quality

of the forecasts.

PM10, PM2.5,
NO2, and O3

A total of 32 continuous
air-quality-monitoring stations

in Delhi, India.

CAVG_DAY0
CAVG_DAYM1

BLH_DAYN
T2M_DAYN
RH_DAYN

IS975_DAYN
IS950_DAYN
IS925_DAYN

U10_DAYNM1_DAYN
V10_DAYNM1_DAYN

TP_DAYN
FIRE_DAYNM3_DAYNM1.

Daily
average

Application of
Real-Time Correction

(RTC) technique.

ANN is a stochastic
method, which
means that one

cannot obtian the
same results for the

same dataset.
No FS was applied.

[19]

A hybrid early-warning artificial
intelligence framework

(ICEEMDAN-OS-ELM) was
proposed.

PM2.5, PM10,
and lower

atmospheric
visibility

Gladstone, Brisbane,
Mackay Region, Newcastle,

and Sydney, Australia.
--- Hourly

The results are
benchmarked with
many ML models.

The main common
weakness is that one

should have data
(measures) for
obtaining data

(forecasts).

[20]

Forecasting AQI using a long
short-term memory (LSTM)

neural network model combined
with a variational mode

decomposition (VMD) and a
sample entropy.

AQI

Beijing and Baoding, China.
https://www.aqistudy.cn/

historydata/
(accessed on 15 January 2022).

--- Daily
average

A comparison with
other models was

performed.
No FS was applied.

[21]

Air pollutant concentration
forecasting was performed by

combining an EWT
decomposition algorithm with

MAEGA and NARX neural
networks.

PM2.5, SO2,
NO2, CO Beijing in China. --- ---

A comparison was
made with the VMD-

MAEGA-NARX,
EWT-MAEGA-SVM,

MAEGA-NARX,
EWT-NARX, and

EWT-ARIMA-NARX
models.

No inputs and no FS
were applied.

[22] A dynamic multiple equation
(DME) model (a linear model). PM2.5 Santiago, Chile.

Temperature, wind speed,
relative humidity, wind

direction, and CO.

Hourly and
daily

average

A comparison with
SARI-MAX and
ANN models.

Complex model
structure.

https://www.aqistudy.cn/historydata/
https://www.aqistudy.cn/historydata/
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In all these studies, the researchers delved into various applications involving hybrid
and non-hybrid ML models for predicting AQI and/or other pollutant concentrations.
A common practice among these studies was integrating meteorological factors and an-
thropogenic emissions into their models. However, these studies generally adhered to a
single set of predictor variables, sometimes employing FS techniques and sometimes not, in
their analyses. What sets them apart is that none systematically compared all conceivable
combinations of predictor variables to discern the optimal ones regarding their correlations,
relationships, and approximations to the stated objective function.

In contrast to the prior research outlined in Table 2, the current study aims to identify
the most robust correlations by adopting a holistic approach considering all possible
variable combinations. This innovative research endeavors to assess atmospheric air
pollution using more advanced hybrid software. The key novelty and primary objectives
of this study are as follows:

i. Implementing an Autonomous Anomaly Detection method during data preprocessing
to identify and exclude anomalous data points.

ii. Identifying spatial and temporal hazards detected by the study’s sensors/stations.
iii. Clustering and decomposing data based on the significance of AQI in terms of

health implications.
iv. Analyzing partial dependence and estimating the importance of each predictor vari-

able considered.
v. Determining the optimal combinations of predictor variables for predicting AQI and

other related pollutant concentrations through a comprehensive FS approach.
vi. Evaluating the performance of five hybrid FS-ML models for predicting a one-minute

series of PM10, PM2.5, and PM1 and then AQI.
vii. Developing new physical models for estimating PM10, PM2.5, PM1, and AQI.
viii. Creating a new interface module to provide PM10, PM2.5, PM1, and AQI predictions

based on the provided predictor variables.

Incorporating all relevant factors into the process of air pollution prediction is crucial
for the accurate detection and assessment of air quality. This study aims to assess the added
value of hybrid FS-ML models in air pollution prediction. The primary objective of this
research is to examine the impact of three meteorological parameters—T, P, RH, noise levels,
and carbon dioxide emissions—on the PMs and AQI.

In the context of air quality monitoring, this study holds significance for the follow-
ing aspects:

i. Analyzing pollution episodes in Craiova in line with World Health Organization
(WHO) recommendations.

ii. Evaluating the correlations between meteorological parameters, AQI, and PM con-
centrations and interrelations among different PM fractions, such as PM1, PM2.5,
and PM10.

iii. Investigating the influences of noise and carbon dioxide (CO2) on PM concentrations.

This study aims to better understand the complex interplay between meteorological
factors and air quality, contributing to more accurate and insightful air pollution predictions.

2. Data and Statistical Analysis
2.1. Local Weather Information

The study was conducted in Craiova City (Figure 1), the capital of Dolj County and
the sixth-largest city in Romania by population number. According to the National Institute
of Statistics data and the 2022 census, Craiova has 243,765 inhabitants. The distribution
of the population by age category in Craiova city is as follows: 12.6% young population
(0–14 years), 61% adult population (15–60 years), and 16.4% elderly population (>60 years).
The city has a surface area of 81 km2 and is in continuous development. Craiova is in the
Oltenia Plain, near the east bank of the Jiu River. The climate is temperate continental with
some Mediterranean influences, having long, hot summers and short, mild winters. As a
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feature, five heat islands formed in paved areas and surrounded by buildings have been
identified in Craiova [23]. From an economic point of view, in 2022, the SW region was
placed in the sixth rank of Romania’s eight administrative regions, with a GDP per capita
equal to 58 pps (Eurostat). PM10 sources at the local level were identified as fixed sources
(industry and fossil fuel power stations) that produce 86.54 t/year, surface sources (slag
and ash deposits, vegetation fires, waste incineration, construction sites, demolition, and
infrastructure works) with a contribution of 59.1 t/year, and mobile sources (road and air
traffic) producing 0.48 t/year [23].
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Figure 1. Craiova localization.

The dataset used in this paper was provided by twelve monitoring PM sensors (16000207,
16000208, 16000209, 1600020A, 1600020B, 1600020C, 1600020D, 1600020E, 1600020F, 16000238,
1600023A, and 820002C3), which are evenly distributed over the entire surface of Craiova,
at a 100 m altitude (Figure 2). Eleven sensors are the PM Smoggie model, and one is the
A3 model (820002C3). The mentioned sensors are part of an independent network of
sensors, different from the official one. Smoggie PM provides PM concentrations (1 µg/m3

resolution, ±5% accuracy, and R2 = 0.99%, 81.6%, and 99.9% for all fractions’ coefficient of
correlation to reference gravimetric sampler) and three meteorological parameters like air
temperature (0.5 ◦C resolution and ±1 ◦C accuracy), relative humidity (1% resolution and
±2% accuracy), and pressure (±0.25% accuracy) at a higher spatial and temporal resolution.
In addition, A3 can track volatile organic compounds (±5% accuracy), formaldehyde
(10 ppb resolution and ±5% accuracy), ozone (10 ppb resolution and ±5% accuracy),
carbon dioxide (1 ppm resolution and ±5% accuracy), and noise level (1 dB resolution and
±10% accuracy).

The National Research and Development Institute for Industrial Ecology (INCD-
ECOIND), Romania, and the Observatoire de la qualité de l’air en Île-de-France (AIRPARIF),
France (from the EU) tested the A3 and Smoggie PM sensors in laboratory chambers condi-
tions (under known aerosol concentrations, controlled temperature of 20 ◦C, and relative
humidity conditions of 50%). Both laboratories stated that the checked sensors met the
variability conditions, and the correlation coefficients between the sensors and the reference
were good and very good. To verify the accuracy of the measurements of the sensors, the
results were analyzed using the Pearson statistical correlation method and compared with
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the results given by the reference instruments. Another important detail is that, after the
sensors are produced, they are introduced by the manufacturer into a particular chamber
and compared with a reference sensor. The differences between the devices and the refer-
ence are calculated. The corrections are included in the equipment’s software for automated
systems like A3 and Smoggie PM sensors, (according to the recommendations made by
the mentioned EU-accredited laboratories). The sensors indicate the corrected values, and
the trueness error is compensated. All sensors used in this study were in their first year
of life.
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These twelve sensors are part of an independent sensor network built during a vol-
unteering project for educational purposes. The sensors are in different high schools and
public institutions in Craiova, with one exception: a sensor located in a residential area.
Each high school “adopted a sensor” during an awareness campaign about the importance
of clean air for health. The sensors are evenly distributed in Craiova over its entire surface
area. Power or Wi-Fi failures can occur in high schools. For this reason, some sensors
recorded less data. The sensors work properly, but the dataset is incomplete for short
intervals for some sensors. Before starting everything, the dataset must be analyzed using
an Autonomous Anomaly Detection method. All sensors were produced by a Romanian
start-up focused on innovation and were calibrated by the manufacturer. Two interna-
tional independent laboratories stated that the PM Smoggie and A3 sensors under-evaluate
PM concentrations.

The official network has only four stations in Craiova and six in Dolj County. The
development of the independent network of PM sensors came about due to the lack of
measures taken by local authorities during air pollution episodes. Laser scattering is the
method used by the used sensors to measure PM concentrations. The official stations mea-
sure PM concentrations using the gravimetric method. According to the EU regulations, the
method used by the official stations from National Environment Agencies is the gravimetric
method. This method is based on the weight differences of filters pre- and post-sampling.
Regardless of the methods used, there are correlations between their results. Both methods
(laser scattering and gravimetric) are good, but each has its limitations.

The measurements started on 22 September 2021 and ended on 17 February 2022. The
PM Smoggie sensors measure three meteorological parameters (T, P, and RH) and three
particulate matter concentrations: PM1, PM2.5, and PM10. The 820002C3 sensor is more
complex and, additionally, can measure volatile organic compounds (VOC), noise, CO2,
formaldehyde, and ozone. All parameters are measured every minute. The locations of the
12 sensors are indicated in Figure 2.

The data are first analyzed by the Quartile Method as an Autonomous Anomaly
Detection method for eliminating or ignoring anomalous data items, and are subdivided
into training and validating datasets. The Quartile Method is a statistical approach for
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identifying outliers in a dataset. It involves calculating the interquartile range and setting
thresholds based on this range.

AQI reports the air quality daily, helping people to understand how the local air
quality affects their health. To calculate AQI, converting the measurement unit transmitted
by the sensor’s parts per million (ppm) into µg/m3 is necessary. The limit values of AQI are
presented in Table 3 (European Environment Agency), and the computed AQI versus PM
concentrations for all 12 stations are illustrated in Figure 3, where it shows how important
PM concentrations are in AQI and emphasizes pollution episodes.

Table 3. AQI significance in terms of health.

AQI Air Quality Conditions for Health

0–50 Good

51–100 Moderate

101–150 Unhealthy for sensitive groups

151–200 Unhealthy

201–300 Very unhealthy

301–500 Hazardous
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For the AQI computation, the formulas adopted by the US-EPA were applied, in which
the AQI ranges from 0 to 500, with 0 meaning a good environment and 500 meaning a
hazardous environment. The formulas used here are as given in Equation (1). Then, we
used the equation two times (for PM2.5 and PM10). The worst sub-index (the max value)
that communicates the AQI is given by the formula.

Indexp =

[
IHi–ILo

BPHi–BPLo

]
(Cp–BPLo) + ILo (1)

where Indexp is the index for the pollutant p; Cp is the truncated concentration of the
pollutant p; BPHi is the concentration breakpoint, i.e., greater than or equal to Cp; BPLo is
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the concentration breakpoint, i.e., less than or equal to Cp; IHi is the AQI value related to
BPHi; and ILo is the AQI value related to BPLo.

Figure 4 clusters the computed AQI values for the sensors studied between 22 Septem-
ber 2021 and 17 February 2022. For each sensor, the data are classified as Good, Moder-
ate, Unhealthy for sensitive groups, Unhealthy, Very Unhealthy, or Hazardous clusters
(Table 3). The sensor that registered remarkable AQI values for Hazardous was 1600020F
(4473 values), between 30 September 2021 at 12:00 and 6 October 2021 at 19:34. The sen-
sor with ID 1600020D registered 1094 Very Unhealthy and 9152 Unhealthy values for
AQI. Very Unhealthy values were recorded for 13 October 2021, and 17 November 2021,
25–26 September 2021. Unhealthy values were recorded between 1 October 2021 and
20 November 2021. Other sensors recorded very Unhealthy and Unhealthy AQI values,
but they may be overlooked by the 1600020D and 1600020F sensors. The sensor 1600020F
is near the airport and a busy entrance of the city. The sensor 1600020D is in a residential
area at the city’s outer edge, with many houses whose inhabitants use fossil fuels for house
heating. Electricity is not widely used in heating houses because of the price.
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In general, Figure 4 shows that, between 22 September 2021 and 17 February 2022, all
sensors provided a one-minute series for PM2.5 and PM10 over the recommended limit.
The official network of sensors (www.calitateaer.ro) did not indicate any active alert related
to exceeding the PM2.5 and PM10 concentrations. A monitored system might relate to a
datalogger device to detect unexpected AQI values and set alerts. Also, there is a need for
a device that can track the air mass trajectory between the source and the destination.

Table 4 presents the input and output parameters that will be used further when the
performances of the proposed hybrid FS-ML models are evaluated.

www.calitateaer.ro
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Table 4. The considered inputs and output parameters.

Input and Output Number Parameter Unit
Input 1 Temperature ◦C
Input 2 Pressure Pa
Input 3 Relative Humidity %
Input 4 NOISE ----
Input 5 CO2 µg/m3

Input 6 VOC ----
Output 1 PM1 µg/m3

Output 2 PM2.5 µg/m3

Output 3 PM10 µg/m3

2.2. Correlation between the PM1, PM2.5, and PM10 Concentrations

In Figure 5, the correlation between PM1, PM2.5, and PM10 was examined across the
12 studied stations/sensors. The observed correlation ranged from 0.95 to 1, highlighting
a robust correlation among the investigated PMs. This outcome suggests a significant
interdependence, signifying that a slight alteration in one of the PMs may influence the
others. Moreover, it implies the capability to predict one of these PMs with exceptional
accuracy and precision based on the provided values of the remaining PMs.
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2.3. Evaluation Criteria and Statistical Indices

The performance of the proposed models was assessed by a method suggested by
Badescu [24], in which a performance score (φ) for a model is defined as:

φ = rank(MBE) + rank(RMSE) + rank(TS) + rank(R2) + rank(WIA) + rank(SBF) (2)

Higher values of φ signify a poor model performance. The indicators used in Formula (2)
are, respectively, Mean Bias Error (MBE), Root Mean Square Error (RMSE), T-Statistic (TS),
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Coefficient of Determination (R2), Willmott’s Index of Agreement (WIA), and Slope of
Best-Fit line (SBF). They are given by Equations (3)–(8):

MBE =
1
K ∑

(
vi

p − vi
m

)
(3)

RMSE =

(
1
K ∑

(
vi

p − vi
m

)2
) 1

2
(4)

TS =

 (K − 1)MBE2(
RMSE2 − MBE2

)
1/2

(5)

R2 = 1 −
∑
(

vi
p − vi

m

)2

∑(vi
m − vm)

2 (6)

SBF =

[
∑
(

vi
p − Hp

)(
vi

m − vm
)]

∑(vi
m − vm)

2 (7)

WIA = 1 −

[
∑
(

vi
p − vi

m

)2
]

∑
[∣∣∣vi

p − vm

∣∣∣+ |vi
m − vm|

]2 (8)

Another analysis is based on Standard Deviation σ and Mean Absolute Percentage
Error (MAPE). These are given by Equations (9) and (10):

σ =

K
(

RMSE2 − MBE2
)

(K − 1)

1/2

(9)

MAPE =
100
K ∑

∣∣∣∣∣∣
(

vi
p − vi

m

)
vi

m

∣∣∣∣∣∣ (10)

In these formulas, K represents the total number of measures and vi
p, vi

m, and v are the
ith predicted value, ith measured value, and the mean value of the corresponding output
(AQI, PM1, PM2.5, or PM10), respectively.

3. Hybrid FS-ML Models

This work employed five different hybrid FS-ML models for predicting and modelling
the AQI and PMs concentrations over Craiova. Then, the performance of each model was
checked, and the best one was adopted. The ML models employed were Artificial Neural
Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), Gaussian process
regression (GPR), and Linear Regression (LR). They are briefly described below.

3.1. Machine Learning Models

i. Artificial Neural Network

ANN is a stochastic and nonlinear technique inspired by speculating the information
processing of brain neurons. An ANN consists of many nodes and their connections.
Each node corresponds to a unique function called the ‘activation objective function’. The
connection between the nodes represents the weight of the measure operating through,
which provides ANN a memory. The output of the ANN is fixed by the weight and the
activation objective function [25]. In addition, due to its strong nonlinear affinity potential,
ANN has been broadly utilized in many fields. For more information, the readers are
referred to the reference.
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ii. Support Vector Machine

SVM, originally recommended by [26], is a deterministic method and a generalized
classifier that groups data based on supervised learning. SVM is based on finding the
support vector to form the optimum taxonomy hyperplane in the training set. Generally,
SVM implements a pivot loss function to compute empirical threats by improving its
sparsity and strength [27].

iii. Decision Tree

Originally announced in [28], DT is a deterministic and supervised learning method.
DT indicates the benefits of randomization approaches, alternate analysis, and classifying
and grouping techniques. The main significant uses of DT include discovering data anoma-
lies, discovering data patterns, and providing accurate results [29]. Due to its reliability
and diversity, DT is one of the most employed ML models for prediction and modelling.

iv. Gaussian Process Regression

Based on Bayesian statistics, GR uses historical data and data-fitting approaches
to construct a robust model [30]. An appropriate kernel function can explicitly display
the nonlinear relationships between predictors and objective functions. Its average and
covariance functions can identify a Gaussian process f(x). Thus, the important point of
regression is to make the relationship between predictors and objective function meet:
yi = f(xi) + ϵi, where the objective function yi differs from the function values f(x) by
additive noise ϵ that is supposed to be an independent coefficient.

v. Linear Regression

LR was employed to find a linear equation that can describe the relationship between
the predictor variables xi and the response variable y (the objective function) through
known data and using a linear equation [31]. The most common form of regression
problem is linear regression, by which one should find the line that most closely fits the
data provided according to a particular criterion. The relationship between predictors x
and objective function y should meet the criterion: y = ax + b.

3.2. Feature Selection: Integral Feature Selection Method

Before using the datasets in any ML model, it is necessary to conduct a statistical
analysis and the pruning of sizable environmental datasets. In this work, an Integral
Feature Method was employed with an ML model to optimize the dataset to be used
in the prediction stage. This method, which was published in [32], belongs to Input
Variable Selection (IVS) and has been elaborated to provide the best possible combination
of predictor variables that can be employed for the prediction, forecasting, and modelling
of an objective function. According to this method, the number of possible combinations of
inputs can be computed by Equation (11).

Comb = ∑n
p=1 Cp

n = ∑n
p=1

n!
(n − p)!p!

(11)

where n is the total number of the predictor variables.

3.3. Modelling: Least Square Regression

Like the Gradient Descent method, LSR is based on a line that makes a vertical distance
from the data points to the regression line as small as possible. The best line of fit is given
as a function that should reduce the sum of squares of the errors [33,34]. LSR has been
widely used by researchers worldwide for both regression and modelling problems. In this
work, using LSR, new relationships between the considered objective function (AQI, PM1,
PM2.5, or PM10) and the best predictor variables were elaborated.
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4. Methodology

For evaluating the performances of the hybrid FS-ML models studied here, the main
steps in our methodology are summarized as follows (Figure 6):

1. Start the algorithm.
2. Import the inputs and outputs data.
3. First, the data are pre-processed by applying normalization and Autonomous Anomaly

Detection, are loaded to each studied ML model, and then are subdivided into training
(80% of data) and testing (the remaining data).

4. Compute the total number of combinations based on the data size loaded using
Equation (11).

5. Start a first loop based on the size of the provided data, K1.
6. Compute the number of combinations for each ith considered size and then start a

second loop for each value of K2.
7. Use the combnk(V, K) function for producing a matrix with K columns.
8. Load the ML model, load the data, and compute the considered output parameter.
9. Save the computed values and go to the next iteration.
10. After obtaining the predicted values by all considered combinations, the result is

imported by a second algorithm in which the statistical analysis is performed.
11. The best combinations of inputs are found and then the algorithm is ended.
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5. Results and Discussion

In this study, comprehensive air pollution prediction and modelling were carried
out by including many atmospheric variables with a holistic approach. For three input
meteorological variables here, there are seven possible combinations. The corresponding
values computed for each PM output were stored and statically compared to determine the
best combinations to provide the considered PM with the best possible accuracy.

All combinations can be expressed as:

- Comb1: Temperature
- Comb2: Pressure
- Comb3: Humidity
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- Comb4: Temperature and Pressure
- Comb5: Temperature and Humidity
- Comb6: Pressure and Humidity
- Comb7: Temperature, Pressure, and Humidity

Before applying the hybrid FS-ML model, the prediction capability of each ML model
was checked for predicting PM10 concentrations, and then the best model for each station
was chosen. The analysis used a single combination of inputs that included all predictor
variables. The ML models were compared and ranked based on their performance score φ

and then on their coefficient of determination R2 (confidence level is 0.95), MAPE, and σ.
These indicators are illustrated as dark blue for the rank, black for R2, yellow for MAPE,
and light blue for σ. The results of the comparison are shown in Figure 7.
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As is clearly shown, the best accuracy was for the DT model. With this model,
the predictions were statistically very significant. The corresponding R2 was closer to
1, indicating perfect correlation and relationships between the measured and predicted
values, whereas other dispersion indicators were closer to zero. More results can be
obtained from the same figure. Compared to those presented in Table 2, the correlations
found here indicate very accurate predictions and outperformed the results of the models
studied and applied by several researchers. For example, in [13], the authors found an
accuracy of >87% and a precision of >86% for the hazard prediction of PM10 in Barcelona.
Here, the accuracy and precision found by the DT model were close to 98% for almost all
stations/sensors studied.

5.1. The Hybrid FS-DT Model Applied for Predicting PM1 Concentrations

After conducting a thorough review of the existing literature, it was observed that no
papers were identified that focused on predicting and/or modeling PM1 concentrations.
Additionally, the WHO recommendations did not provide AQI classifications specifically
based on PM1 concentrations.

In response to this gap in research, our work employed hybrid FS-ML models to
predict PM1 concentrations. This decision was motivated by the belief that PM1, despite
being less explored, could adversely affect human health and the ecosystem.

In Figure 8, all possible combinations of meteorological variables to predict PM1
concentrations were examined across all studied stations/sensors. The results indicate a
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consistent pattern, with pressure emerging as the primary significant predictor for almost
all sensors, except for sensor 16000209. In the case of sensor 16000209, temperature took
precedence as the first significant predictor, followed by pressure and humidity. This
divergence could be attributed to the geographical coordinates or climate characteristics
unique to the location of sensor 16000209.
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Figure 8. The results were found by applying the hybrid FS-DT model to the PM1 concentrations for
all studied stations/sensors.

The results found here indicate that humidity has a lower influence on PM1 concentra-
tions. Generally, the R2 was between 0.5 and 0.9, 0.7 and 1, and 0.4 and 0.7 for temperature,
pressure, and humidity, respectively. The best accuracy was discovered by combining
pressure with temperature and slightly with humidity. This accuracy is justified by the R2

correlation between 0.9 and 1 and by the indication of dispersion, the MAPE, and the σ

being closer to zero.
Moreover, excluding sensors 1600020A and 16000238, the best accuracy was shown

by combining pressure with temperature, while for other sensors, humidity was added to
slightly enhance the prediction’s accuracy. The statistical results indicated almost perfect
correlation and approximations between the measured values and the PM1 predicted by
these two combinations. R2 was found to be closer to 1 and MAPE and σ to 0. Other results
can be extracted from the same figure.

5.2. Hybrid FS-DT Model Applied for Predicting PM2.5 Concentrations

In most articles that have been read, the authors have tried to predict PM2.5 and/or
PM10 concentrations based on various sets of meteorological variables and by employing
several machine learning methods. In most cases, correlations between these objective
functions and the meteorological variables studied in this study do not reach the confidence
interval of 0.95 for R2. The readers are referred to the references summarized in Table 2 to
obtain this information. The result found here in this study shows correlations closer to 1
(accuracy close to 100%) for almost all stations/sensors studied (see Figure 9).
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5.3. Hybrid FS-DT Model Applied for Predicting PM10 Concentrations

The coarse particulate matter PM10, known as atmospheric particles with a diameter
between 2.5 and 10 µm, has a broad negative impact on human health, mortality level, and
illness, as well as on the environment and ecosystems [35]. Researchers worldwide have
widely investigated the possible relationship between local meteorological patterns, PM10,
and air pollution. Several ML models were employed to accurately predict PM10 using
numerous meteorological inputs. This subsection is coming from this context.

Like the above subsections, in Figure 10, all possible combinations of the meteorolog-
ical variables considered here are checked for predicting the PM10 concentrations at all
studied stations/sensors. Like for PM1 and PM2.5 concentrations, pressure is the main
significant predictor, followed by temperature and humidity, respectively. For the sensor
16000209, temperature is the first key predictor, followed by pressure and humidity. This
is to say that humidity has a more minor influence on PM10 concentrations. In addition,
except for the sensor 1600020F, the best accuracy for all other stations/sensors was ob-
served by combining pressure with temperature and a little with humidity. For the sensor
1600020F, the best accuracy was only given by combining pressure with temperature. This
may be because this sensor is the sole one that registered outstanding Hazardous AQI
values (4473 values). These remarks suggest we perform another study on the possible
relationship between AQI or PM concentrations and the predictor variables studied for
each station/sensor and each AQI category (Good, Moderate, Unhealthy for sensitive
groups, Unhealthy, Very Unhealthy, and Hazardous categories).
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all studied stations/sensors.

5.4. Influence of VOC, Noise, and CO2 on PM Concentrations

The sensor 820002C3 was the sole sensor that, plus the three meteorological variables,
measured noises, CO2, and VOC. In this case, the number of possible combinations was 63,
and in Figure 11, the variables, given these combinations, are shown.
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The impact of these added variables on PM1, PM2.5, and PM10 was thoroughly ex-
amined, and the summarized results are presented in Figure 12. As depicted, several
combinations exhibited a near-perfect correlation (R2 close to 1) for all particulate matter.
The optimal combination identified for PM1 was Comb44, comprising Pressure, Humidity,
CO2, and VOC. For PM2.5, the most effective combination was Comb61, involving Tem-
perature, Pressure, NOISE, CO2, and VOC. Likewise, the best combination for PM10 was
Comb58, which included Temperature, Pressure, Humidity, NOISE, and VOC.

Based on these findings, the conclusion was that, in addition to the three meteoro-
logical variables previously examined, NOISE, CO2, and VOC exerted minor influences
on predicting PM concentrations. However, their inclusion can contribute to a slight im-
provement in prediction accuracy. This conclusion indicates that PM concentrations are not
strongly related to these measured variables, and they should be combined with another
predictor variable to enhance the prediction accuracy. Other remarks can be revealed from
the same figure.
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5.5. Modelling of PMs and AQI

The optimal combinations of variables for each PM, identified through this study and
using the LSR method, led to the establishment of new relationships between PMs and
the studied meteorological variables (refer to Table 1 in Appendix A). Furthermore, a novel
interface was developed based on the study’s findings, as illustrated in Figure 13. This interface
serves as a tool for predicting the PM concentrations and AQI for a given sensor/location,
leveraging the meteorological variables investigated in the study. By utilizing this interface,
it is possible to efficiently predict PM concentrations and subsequently determine the AQI
using the most effective combination of predictor variables for each station/sensor.
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6. Conclusions

The conclusions drawn from this study can be summarized as follows:
(1) By applying different ML models and using the LSR method, the PM concentrations

and AQI were predicted with an excellent correlation and approximation. Here, the
values of R2 can exceed, in general, 0.96, and, in most cases, can reach 0.99 for the twelve
stations/sensors studied.

(2) Among all employed ML models, the FS-DT model proved to be the best model
for predicting the PM concentrations with very high correlation and approximations.

(3) The humidity was the least significant variable in the PM concentrations, while the
best accuracy was found by combining pressure with temperature.
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(4) It was found that there were strong correlations between PM2.5 and PM10 (close to
0.99) and between PM1 and PM10 (R2 was between 0.89 and 0.98).

(5) With the approach methodology applied in this study, data-driven models offer
the potential to achieve a correlation closer to 1 and a better approximation to real values.
However, their performance is dependent on the availability of training and validating data.

(6) NOISE, CO2, and VOC exert minor influences on predicting PM concentrations,
and they should be combined with another predictor variable to enhance the prediction
accuracy. Noise reflects only the rhythm of the city. This indicates we cannot build
relationships between PM10 concentrations and these measured data.

(7) The modelling in this study, which provides real-time inputs within the scope of
the continuity of air pollution monitoring in any environment, is quite reliable as an early
warning with complete accuracy.

(8) The findings of this study will inspire work in this area to validate these models by
other sensors to predict PMs and other missing variables given by the sensors.

(9) For local communities, it is essential to find out the level of pollutants in the air, both
from official and independent networks of sensors/stations, helping decision makers to
develop programs and implement proper measures and regulations to reduce air pollution.

(10) To enhance the developed models’ performance, at least one of the other meteoro-
logical parameters (solar radiation, wind speed, direction, and cloudiness, etc.) should be
considered in the optimization process and inserted in the modelling steps.

(11) For sensitive people, checking the air quality before deciding to spend time outside
is helpful. Also, it is useful for tourists to know the air quality when choosing a vacation
destination. The monitored system might relate to a datalogger device to detect high AQI
values and set alerts. These alerts can be launched on a platform dedicated to air pollution
or a mobile application for the public.

(12) Considering the future decline in air quality, modelling air pollution is important
for everyone, because each life is impacted by air pollution. There are still unknown local
factors that influence air pollution. In perspective, if more datasets are accessed simultane-
ously from Environmental National Agencies, independent sensor networks, and satellites
(Copernicus Atmosphere Monitoring Service), the quality of the prediction will significantly
increase, even if they use different measurement methods. The complementarity of the
datasets is vital. Sources of air pollution will be identified more easily if sensor networks for
air pollution monitoring are developed and the sensors have a higher density. Considering
the complementarity of the data from different institutions that monitor air pollution might
help to improve the quality of prediction in this field.

Finally, undoubtedly, the findings of this study will contribute to increasing the current
level of knowledge on the prediction of air pollution and will add significant richness to
the literature within the scope of studies in this field. In addition, the findings of this study
might be an essential evaluation tool for decision making.
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Appendix A

Table 1. Best Models for computing PM concentrations: PM concentration = a1T + a2P + a3H + a0.

Station
PM1 (µg/m3) PM2.5 (µg/m3) PM10 (µg/m3)

a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 a0

820002C3 0 2.59 × 10−3 −0.11 −12.54 0 3.43 × 10−3 −0.13 −17.13 0 3.85 × 10−3 −0.16 −18.09

1600020A 0.14 6.65 × 10−6 0 1.48 0.26 −1.7 × 10−5 0.03 0.72 0.27 8.14 × 10−6 0 0.87

1600020B 0 −3.01 × 10−5 0.06 4.98 0 −1.02 × 10−3 0.19 6.07 0 −1.42 × 10−3 0.27 6.13

1600020C 0 1.06 × 10−5 −0.05 9.64 0 3.03 × 10−5 −0.10 13.41 0 3.66 × 10−5 −0.12 14.50

1600020D 0 5.02 × 10−6 −0.03 9.63 1.07 × 10−2 1.2 × 10−5 −0.06 13.69 0 2.05 × 10−5 −0.09 16.02

1600020E 1.69 −7.59 × 10−3 0.93 −0.70 2.84 −1.26 × 10−2 1.57 −4.61 3.27 −1.39 × 10−2 1.67 −2.58

1600020F 0.22 2.25 × 10−5 0 −1.46 1.83 −1.17 × 10−2 1.43 0.13 2.08 −1.36 × 10−2 1.66 0.23

1600023A 0.48 1.56 × 10−6 0 −0.24 1.9 −6.21 × 10−3 0.75 0.33 0 5.53 × 10−3 −0.20 −33.02

16000207 0 −1.37 × 10−3 −0.12 33.86 0 −9.95 × 10−5 −0.25 36.49 0 −3.10 × 10−5 −0.24 30.10

16000208 0 −5.64 × 10−5 0.19 −1.26 0 −1.66 × 10−3 0.39 −1.65 0 −2.13 × 10−3 0.48 −1.87

16000209 0 3.21 × 10−3 −0.19 −14.23 0.61 1.83 × 10−3 −0.19 −6.74 0 5.81 × 10−3 −0.34 −27.24

16000238 1.41 −4.75 × 10−3 0.56 1.45 0.91 −5.60 × 10−5 0.12 −1.59 2.80 −1.03 × 10−2 1.27 1.51

where: T in ◦C, P in Pascal, and H in percentage %.
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