
Citation: Zhang, E.; Jiang, T.; Duan, J.

A Multi-Stage Feature Aggregation

and Structure Awareness Network for

Concrete Bridge Crack Detection.

Sensors 2024, 24, 1542. https://

doi.org/10.3390/s24051542

Academic Editor: Mohammad Noori

Received: 19 December 2023

Revised: 7 February 2024

Accepted: 21 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multi-Stage Feature Aggregation and Structure Awareness
Network for Concrete Bridge Crack Detection
Erhu Zhang 1,*, Tao Jiang 1 and Jinghong Duan 2

1 Department of Information Science, Xi’an University of Technology, Xi’an 710048, China;
2210821086@stu.xaut.edu.cn

2 School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
jh-duan@xaut.edu.cn

* Correspondence: eh-zhang@xaut.edu.cn

Abstract: One of the most significant problems affecting a concrete bridge’s safety is cracks. However,
detecting concrete bridge cracks is still challenging due to their slender nature, low contrast, and
background interference. The existing convolutional methods with square kernels struggle to capture
crack features effectively, fail to perceive the long-range dependencies between crack regions, and
have weak suppression ability for background noises, leading to low detection precision of bridge
cracks. To address this problem, a multi-stage feature aggregation and structure awareness network
(MFSA-Net) for pixel-level concrete bridge crack detection is proposed in this paper. Specifically, in
the coding stage, a structure-aware convolution block is proposed by combining square convolution
with strip convolution to perceive the linear structure of concrete bridge cracks. Square convolution is
used to capture detailed local information. In contrast, strip convolution is employed to interact with
the local features to establish the long-range dependence relationship between discrete crack regions.
Unlike the self-attention mechanism, strip convolution also suppresses background interference near
crack regions. Meanwhile, the feature attention fusion block is presented for fusing features from the
encoder and decoder at the same stage, which can sharpen the edges of concrete bridge cracks. In
order to fully utilize the shallow detail features and deep semantic features, the features from different
stages are aggregated to obtain fine-grained segmentation results. The proposed MFSA-Net was
trained and evaluated on the publicly available concrete bridge crack dataset and achieved average
results of 73.74%, 77.04%, 75.30%, and 60.48% for precision, recall, F1 score, and IoU, respectively,
on three typical sub-datasets, thus showing optimal performance in comparison with other existing
methods. MFSA-Net also gained optimal performance on two publicly available concrete pavement
crack datasets, thereby indicating its adaptability to crack detection across diverse scenarios.

Keywords: concrete bridge crack detection; structure awareness; feature attention fusion; multi-stage
feature aggregation; strip convolution

1. Introduction

As an important transportation infrastructure, the safety of bridges is crucial to peo-
ple’s social lives and economic activities [1]. The main objective of structural health
monitoring (SHM) of concrete bridges is to ensure their safety, reliability, and long-term
performance. Thus, the monitoring of the structural conditions of bridges is essential. When
performing SHM, a variety of factors need to be considered that have the potential to affect
the structural integrity and service life of bridges, such as crack and damage monitoring,
corrosion assessment, load and stress analysis, material property degradation, the influence
of environmental factors (e.g., wind, temperature, humidity, etc.), and vibration characteri-
zation [1]. While cracks are one of the most common bridge defects and the earliest sign of
bridge surface deterioration [2], timely detection and repair of cracks would be beneficial
to greatly reduce bridge maintenance costs and avoid disastrous consequences. In the
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early days, crack detection on bridges relied heavily on manual labor using measuring
tools and the human eye. This method was difficult to operate, had a high risk factor,
and was highly subjective. The use of computer vision has made it common practice to
capture images of every part of a bridge structure using a robotic arm or drone equipped
with a camera. The data are then processed to detect cracks. However, detecting bridge
cracks is still challenging due to their thin and long shape, low contrast between cracks
and backgrounds, and many noisy interferences.

In previous studies, many traditional methods have been proposed for crack de-
tection [3–8]. The traditional methods mainly include edge detection [3,4], threshold
segmentation [5,6], and machine learning [7–12] methods. The methods based on edge
detection and threshold segmentation are sensitive to background noise interference and re-
duce the precision of crack detection under complex backgrounds. While approaches based
on machine learning are used to improve the effectiveness of crack detection by selecting
expertly handcrafted features, [10] proposed a road crack detection algorithm based on
scale invariant feature transform (SIFT) and backpropagation (BP) neural networks. SIFT
is used to extract the feature point information of the crack image, and then a BP neural
network is used for training and identification. The authors of [11] proposed a method
for detecting concrete surface cracks using the histogram of oriented gradients (HOG).
HOG features identify cracks by analyzing the direction and intensity of local gradients in
the image, which has the advantages of high computational efficiency and insensitivity to
changes in illumination. The authors of [12] proposed a crack detection method based on
random structured forest, which utilizes integral channel features to capture the inherent
structured information of cracks and combines this representation with random structured
forest to generate a crack detector capable of identifying complex cracks. These methods
have proven to be effective in detecting cracks with high contrast, a single shape, and a clear
textured background. However, these methods struggle to extract robust features under
various conditions and cannot be adapted for crack detection in different environments.

In recent years, deep learning techniques have gained widespread popularity and
demonstrated powerful performance in image classification, object detection, and image
segmentation [9,13] and have been widely applied to crack detection. Many previous
studies [14–18] mainly used segmentation networks (e.g., FCN [15], UNet [16], SegNet [17],
etc.) for pixel-level crack detection, and the crack detection precision of these approaches
was greatly improved compared with traditional approaches. However, these approaches
are poorly adapted to crack detection with complex background noise. Subsequently,
numerous crack detection methods [19–28] have been proposed to further enhance the
capability of crack detection, focusing on three major aspects: enlarging the receptive field,
fusing multi-scale features, and adopting attention mechanisms. For example, [2,19,21,27]
used dilated convolutions to increase the receptive field. In [20–22,25,26], the authors
constructed a feature pyramid to obtain multi-scale features and leverage deep supervision
learning. The authors of [22–24,28] introduced attention mechanisms to emphasize the
semantic features of cracks. All of these approaches have led to a certain improvement
in the precision of crack detection, but they are mainly for detecting pavement cracks.
When they are migrated to detect bridge cracks, the detection performance drastically
reduces due to the slender nature of bridge cracks; the low contrast between cracks and
backgrounds; and the presence of various interfering factors, such as mud stains and
water stains. Therefore, detecting bridge cracks in real-life scenarios is still challenging.
Previous CNN-based crack detection methods did not consider the slender nature of bridge
cracks and were strongly affected by noisy backgrounds, resulting in limited capability to
simultaneously capture global and local crack features. Consequently, the overall crack
detection performance of these methods is compromised, especially for the detection of
fine-grained cracks.

In this work, a multi-stage feature aggregation and structure awareness network for
bridge crack detection is proposed. Because square convolution kernels are employed in
most CNN architectures, they are not suitable for capturing the linear features of cracks.
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However, strip convolution is more concerned with the shape of cracks. Inspired by this, a
structure-aware convolution block is proposed in MFSA-Net by integrating square convo-
lution with strip convolution, which can perceive the linear structure of cracks. To further
sharpen the edges of bridge cracks and suppress interference from irrelevant background
regions, this paper proposes a feature attention fusion block to fuse features from the
encoder and decoder at the same stage. In the crack detection stage, the features from
different stages are aggregated to form a fine-grained segmentation map. In the training
stage, due to the impact of batch size on training results and the limited memory resources,
group normalization (GN) [29] is also used as an alternative to batch normalization (BN) for
the normalization layer in MFSA-Net. In brief, the proposed MFSA-Net has the advantages
of capturing the linear features of cracks, fusing local detailed features and global semantic
features of cracks, and establishing long-range dependencies between discrete crack regions.
The main contributions of this paper are summarized as follows:

(1) A multi-stage feature aggregation and structure awareness network is proposed
for bridge crack detection. The proposed MFSA-Net can effectively perceive the
elongated structure of bridge cracks and obtain fine-grained segmentation results in a
multi-stage aggregation manner.

(2) A structure-aware convolution block (SAB) is proposed, where the square convolution
can extract local detailed information and the strip convolution is employed to refine
the thin and long features of cracks for establishing long-range dependencies between
discrete regions of cracks.

(3) A feature attention fusion block (FAB) is designed for fusing local context information
and global context information with the attention mask, which can suppress interfer-
ence from irrelevant background regions and sharpen the edges of bridge cracks.

Compared with the traditional models, strip convolution can fit the linear structural
features of cracks, capture the global features, and also suppress background interference.
The traditional models mainly use CNN architecture, which cannot fit the linear structural
features of cracks well. It also increases the receptive field by increasing the convolution
kernel to obtain global information, which introduces more background interference for
crack detection.

2. Related Works
2.1. Crack Segmentation

Since Yang et al. [15] used FCN networks for pixel-level crack detection, many se-
mantic segmentation models (e.g., SegNet [17], U-Net [16], and DeepLab [18]) have been
employed for pixel-level crack detection. Han et al. [30] proposed a skip-level round-trip
sampling block to improve the pooling and upsampling methods of U-Net, which can
combine the properties of different receptive fields. Lin et al. [31] used a full-attention
strategy in U-Net, combining the attention mechanism and the output of skip connections
at each coding layer. These approaches did not take into account the imbalance between
foreground and background pixel samples in crack segmentation. Li et al. [32] proposed
a combination of pixel-based adaptive weighted cross-entropy loss and Jaccard distance
based on U-Net to reduce the imbalance between cracked and non-cracked pixels in crack
images. The authors of [33,34] captured global contextual information using dilated convo-
lution blocks to expand the receptive field. Multiple dilation (MD) blocks were proposed
in [21,27] to extract crack features with multiple context sizes and detect cracks of different
widths and topological structures. The authors of [2,19] utilized hybrid dilated convolution
blocks to alleviate the grid effect caused by dilated convolutions. In [20,25,26], the au-
thors employed hierarchical multi-scale feature fusion to integrate contextual information
into low-level features for crack detection and used deep supervision to take advantage
of feature information from different scales. The method can combine high-level and
low-level semantic information for accurately detecting or segmenting the object. Chen
et al. [35] incorporated the rotational invariance property of cracks and introduced active
rotational filters (ARF) [36] to encode the rotation invariance into the network. While these
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segmentation-based crack detection methods have shown promising results, they still fall
short of satisfactory performance in terms of pixel-level segmentation precision and lead to
blurry and coarse segmentation results.

2.2. Attention Mechanisms

To make the network focus more on the semantic features of cracks while suppressing
non-semantic features, [21,34,37] introduced attention mechanisms into the network to pay
more attention to the semantic information of cracks. Due to the excellent performance
of transformers [38] in modeling long-range dependencies, Zhang et al. [24] proposed the
UTCD-Net model for dam crack detection, which utilizes a dual-branch structure to fuse
the global features extracted by the transformer branch and the local features extracted
by CNN via the fusion module. Liu et al. [23] proposed a fine-grained crack detection
network, CrackFormer, using a self-attention module to construct the network and extract
global features of cracks. Xu et al. [39] proposed a locally enhanced transformer network
(LETNet) to completely and efficiently detect road cracks. Transformer is employed to
model long-range dependencies and compensate for low-level and high-level local features
by designing a convolution stem and a local enhancement module. The squeeze-and-
excitation (SE) [40] module uses global average pooling and a linear layer to calculate a
scaling factor for each channel and then scales the channels accordingly. Visual attention
(VAN) [41] decomposes the large convolution kernel into spatial depth convolution, spatial
depth dilated convolution, and pointwise convolution, which addresses the increased
computational cost caused by enlarging the convolution kernel and replaces self-attention
with large kernel attention. The introduction of attention modules aims to model long-
range dependencies and capture global contextual information. However, these approaches
introduce more noise interference information while modeling long-range dependencies
between crack regions.

2.3. Strip Convolution

The authors of [42] proposed strip pooling (SPNet). Different from traditional spa-
tial pooling, this method considers a long but narrow kernel, i.e., 1 × N or N × 1. As a
result, it can capture long-range dependencies between discretely distributed regions and
improve the network’s effectiveness at segmenting strip objects. SegNeXt [43] decomposes
a large convolution kernel into strip convolution in two directions by employing multiple
large kernels to extract and fuse multi-scale information. The authors of the work demon-
strated that strip convolution is effective in detecting strip-like objects, such as humans
and telephone poles, in the segmentation scenes. The authors of [44,45] employed strip
convolution for road extraction from aerial and satellite imagery. Because roads have
elongated features, strip convolution is more consistent with the shape of roads and is able
to extract strip-like features. SpinNet [46] used strip convolution for lane line detection and
extracted the linear features of lane lines from different directions by rotating the feature
maps. HCSCNet [47] involves a hierarchical correlation strip convolution network for
text recognition that extracts narrow stroke features in text using strip convolution. These
methods have demonstrated that strip convolution can extract long-term and narrow linear
features and effectively capture long-range contextual information, which is suitable for
the detection of objects with long strip-like features. As bridge cracks typically have long
strip-like characteristics, we introduced strip convolution into the bridge crack detection
network and captured the direction information of bridge cracks through strip convolution
in four directions.

3. The Proposed Method
3.1. Network Architecture

As shown in Figure 1, the overall architecture of the proposed MFSA-Net is an encoder–
decoder structure similar to that of CrackFormer [23]. Unlike [23], the encoder is carefully
designed in a hybrid convolution manner, where a structure-aware convolution block
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(SAB) is proposed. CrackFormer primarily utilizes self-attention to construct the encoder,
enabling it to model the long-distance dependence of cracks. However, it ignores the
local features of cracks. This paper proposes the use of strip convolution to model the
long-distance dependence of cracks according to the long and thin characteristics of cracks
and suppress the background interference near the crack regions while maintaining the
convolution operation and obtaining the local features.
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Figure 1. The architecture of the proposed MFSA-Net.

The proposed SAB is constructed by a traditional 3 × 3 convolution and a strip
convolution, where the strip convolution is employed to efficiently capture the elongated
features of cracks. On the decoder side, strip convolution is employed exclusively, which is
able to recover the global features of cracks in a phased manner and establish the long-term
dependencies between crack regions. The multi-stage feature aggregation module uses
the proposed feature attention fusion block to fuse the local and global context features of
cracks and then aggregate features from different stages to generate the final fine-grained
segmentation results.

3.2. Encoder

Currently, most CNN network architectures usually use square convolution kernels
to extract features within a local square window. For general semantic segmentation
scenarios, most of the detection subjects are natural objects with chunk shapes, so the
conventional square convolution can achieve great detection results. However, cracks have
characteristics such as being long but narrow, having a large span, etc., which means the
square convolution is not able to capture the linear features of cracks well and model long-
distance dependencies between discretely distributed regions of cracks. On the contrary,
strip convolution uses a long but narrow convolution kernel shape, which is more consistent
with the shape of bridge cracks. Thus, it is easy to capture the enlarged features of cracks
and model long-range dependencies between regions with discrete distributions of bridge
cracks. In view of this, a structure-aware convolution block is proposed in MFSA-Net. As
shown in Figure 1, the last three stages of the encoder are constructed by the proposed SAB.
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The SAB consists of two square convolution modules and one strip convolution module
(SCM), where the square convolution is used to extract local detailed information and the
strip convolution is employed to refine the enlarged features of cracks.

Different from ordinary convolution modules, the SCM [45] can utilize multidirectional
strip convolution to capture long-range context information from different directions. In
this paper, strip convolution in four directions, namely, horizontal, vertical, left diagonal,
and right diagonal, is used to construct the strip convolution module, as shown in Figure 2.
Let X ∈ RH×W×C denote the input tensor of the SCM, where H, W, and C are the height,
width, and number of channels of the input tensor, respectively. In order to keep the total
number of network parameters and computational cost constant, X is first reduced to C/4
channels after a 1 × 1 convolution. Then, it is fed into four parallel strip convolutions of
different orientations for feature extraction, and the extracted features are concatenated.
Finally, the feature map size and the number of channels output from the SCM are adjusted
by upsampling and a 1 × 1 convolution.
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Let w ∈ R2k+1 denote the strip convolution filter of size 2k + 1 and yD ∈ RH×W×C′

denote the output result of strip convolution. x ∈ RH×W×C is the input to the strip
convolution, and D = (Dh, Dw) represents the direction of the filter w. Then, the strip
convolution can be formulated as Equation (1):

yD[i, j] = (x ∗ w)D[i, j] =
k

∑
l=−k

x[i + Dhl, j + Dwl] · w[k − l], (1)

where x ∗ w denotes the strip convolution operation; D is the direction vector of the
strip convolution; and the direction vector (Dh, Dv) is (0, 1), (1, 0), (1, 1), and (−1, 1) for
horizontal, vertical, left diagonal, and right diagonal strip convolutions, respectively. For
the filter w, we set k = 4 to make each strip convolution have 9 parameters, which is the
same as a 3 × 3 convolution filter. Instead of a 3 × 3 convolution, a 4-direction parallel
strip convolution is used in the strip convolution module. The four directions in the strip
convolution are consistent with the distribution of most cracks in bridge crack images and
are relatively easy to implement.

As shown in Figure 1, the encoder consists of five stages. The 1st stage consists of
two ordinary convolutional layers (3 × 3 Conv-GELU and 3 × 3 Conv-GN-GELU) and
one maximum pooling layer. The 2nd stage consists of two convolutional layers (3 × 3
Conv-GN-GELU) and one maximum pooling layer. To enlarge the effective receptive field
of the network [44] and perceive the slender nature of bridge cracks, the third, fourth,
and fifth stages were constructed by the SAB. Specifically, the SAB is composed of two
ordinary convolutions (3 × 3 Conv-GN-GELU), one SCM (Strip Conv-GN-GELU), and one
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maximum pooling layer. For the maximum pooling layer, 2× downsampling is performed
using a 2 × 2 window and a stride of 2 is used to obtain multi-scale feature maps.

It is worth noting that, due to memory consumption constraints, the GN layer is used
instead of the BN layer in the proposed MFSA-Net. This is because when the batch size
becomes smaller, it is easy to cause inaccurate batch statistic estimation, which leads to an
increase in the BN’s error. Moreover, the GN layer divides the channels into groups and
computes the mean and variance for normalization within each group, so the GN layer is
not affected by batch size, and its accuracy is stable over a wide range of batch sizes.

3.3. Decoder

As shown in Figure 1, the decoder also consists of five stages, each of which is
composed of an upsampling operation and two or three SCMs. The decoder is built using
SCM, which is capable of extracting the long and narrow features of cracks, modeling the
long-distance dependencies between isolated regions of cracks from multiple directions,
and capturing the global contextual information of cracks. In particular, at each stage,
the feature map is first upsampled by a factor of 2 using bi-linear interpolation, while the
feature dimension is reduced by half. Then, the crack features are purified using three
SCMs to establish the regional relationships between different cracks.

3.4. Multi-Stage Feature Aggregation

To fully utilize the local features in the encoder while retaining the global features in
the decoder, a feature attention fusion block is proposed, which can sharpen crack edges
and suppress interference from non-crack regions. As shown in Figure 1, there are five
stages in the encoder and decoder parts. Therefore, a multi-stage feature aggregation
strategy is used to form the final crack segmentation results. Specifically, at each stage, the
FAB is used to fuse the local features extracted from the encoder with the global features
extracted from the decoder. Then, the fused features of each stage are upsampled to the
same size as the original image, and the segmentation mask is obtained through a 3 × 3
convolution to form the prediction segmentation map of each stage. Finally, the prediction
segmentation maps of the five stages are concatenated together and passed through a 1 × 1
convolution to obtain the final fine-grained segmentation mask.

As shown in Figure 3, the FAB first forms an attention mask using the local features in
the encoder and the global features in the decoder, which makes it possible to highlight the
local detail information of the cracks as well as focus on the global information of the cracks.
This attention is then applied to the features formed by the concatenation of the encoder
and decoder to activate crack features and suppress the non-crack ones for the purpose
of sharpening the crack edges. Further, the fused features are sampled to the input image
size by upsampling and converted into a crack segmentation prediction map using a 3 × 3
convolution. Finally, the segmentation prediction maps at each stage are concatenated to
output the final crack segmentation map by a 1 × 1 convolution.
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The kth stage is taken as an example to describe how the feature attention fusion
block performs feature fusion to form the segmentation map. As shown in Figure 3,
let {X k

1, Xk
2, Xk

3

}
and

{
Yk

1 , Yk
2 , Yk

3

}
be the feature maps from the encoder and decoder,

respectively. Then, the generated attention mask map Ak
mask is shown in Equation (2):

Ak
mask = σ(GN(⊗3×3 ⊕ (Xk

1, Xk
2, Yk

2 , Yk
3 ))), (2)

where ⊕(·) denotes the element-wise addition of the tensor, ⊗3×3 represents a 3 × 3
convolution operation, GN(•) means group normalization, and σ(·) is a Sigmoid activation
function.

Next, the side output Sk
side of the kth stage is formed by the attention mask map and

skip connection, as shown in Equation (3):

Sk
side = ⊗3×3(UpH×W(Ak

mask ⊙ (⊗3×3Γ(Xk
3, Yk

1 )))), (3)

where Γ(·) denotes a tensor concatenation operation, ⊙ represents an element-wise multipli-
cation operation., and UpH×W(·) denotes the upsampling to the input image size. Through
upsampling the features of each stage to the input image size, the predicted segmentation
result is obtained through a 3 × 3 convolutional layer. In this way, five predicted results,
Sk

side, k = 1, 2, . . . , 5, can be obtained.
Finally, the predicted results of all stages are concatenated together and fused by a

1 × 1 convolution to generate the final fine-grained segmentation result S f use, as shown
in Equation (4). Similar to FPHBN [26], DeepCrack [20] and HCNN [25], etc., all side and
fused outputs are supervised learning conducted from the crack ground truth labels using
deep supervision.

S f use = σ(⊗1×1Γ(S1
side, S2

side, S3
side, S4

side, S5
side)) (4)

3.5. Loss Function

In bridge crack segmentation, because the number of pixels in the cracks is much lower
than the number of pixels in the background (non-cracks), network training using such
unbalanced data may lead to segmentation results that are heavily biased towards high
precision and low recall. For bridge crack detection, false negatives are more intolerable
than false positives. Therefore, in order to alleviate the imbalance between crack and
background (non-crack) pixels in bridge crack images and to achieve a better trade-off
between precision and recall, this paper adopts a weighted combination of the balanced
weighted cross-entropy loss, which has been used in the RCF network [48], and the Tversky
loss [49] as the training loss function for the proposed network.

Let P and G denote the predicted segmentation result and the ground truth binary
labels, respectively, and N is the total number of pixels. Then, the balanced weighted
cross-entropy loss can be given by the following Equation (5):

LBWCE(W) = − 1
N

N

∑
i=1

(α · ((1 − G)⊙ log(1 − P)) + β · (G ⊙ log(P))), (5)

in which
α = λ · |Y+|

|Y+ |+|Y− |

β =
|Y−|

|Y+ |+|Y− |

, (6)

where |Y+| and |Y−| represent the number of positive and negative samples, respectively,
and the hyperparameter λ is the loss ratio to balance the positive and negative samples. W
is the weight of the network model.
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The Tversky loss is shown in Equation (7):

LTversky(W) =
|P ∩ G|

|P ∩ G|+ α1|P − G|+ β1|G − P| , (7)

where |P − G| and |G − P| denote the total number of false positives and false nega-
tives, respectively, and α1 and β1 are hyper-parameters that control the trade-off between
false positives and false negatives, affecting both recall and precision. Larger β1 values
weigh recall higher than precision. Therefore, we set β1= 0.7 and α1= 0.3 to improve the
performance of unbalanced data, which effectively reduces precision and improves recall.

By weighing the above two losses, the total loss is obtained as in Equation (8):

L(W) = η · LBWCE(W) + (1 − η) · LTversky(W), (8)

where η denotes the weight of loss LBWCE(W). The side outputs of each stage are reweighed
in the training process, increasing the weights on the fusion side. The final total loss function
is shown in Equation (9):

Ltotal(W) =
5

∑
k=1

wk
sideL(W) + w f useL(W), (9)

where wk
side, k ∈ {1, 2, 3, 4, 5} denotes the loss weight of the kth stage, and w f use is the loss

weight of the final fusion stage.

4. Experiments
4.1. Experimental Setup

The proposed network is based on the Pycharm 2021.2.1 software platform and is
implemented using the open source framework PyTorch. The experiments were imple-
mented on a NVIDIA RTX 2080Ti GPU with 8 G of RAM. The proposed network uses
the Adam optimizer for parameter updating. In this study, the parameter beta1 was set
to 0.5 and beta2 to 0.999. The initial learning rate was set to 1 × 10−4, the batch size to 1,
and the number of training iterations to 500. A StepLR learning rate decay strategy was
used, where the learning rate was decayed to 1/10 of the original rate for every 50 epochs.
Data augmentation methods such as random rotation, horizontal flipping, rescaling, and
Gaussian blurring were used to expand the training data and improve the generalization
performance of the model.

4.2. Datasets

The network proposed in this paper was trained and evaluated using the publicly
available bridge crack dataset BlurredCrack [2]. To further validate the adaptability of the
model, two publicly available pavement crack datasets, CrackLS315 [20] and CFD [9], were
used to verify the generalization ability of the network in this paper. The BlurredCrack,
CrackLS315, and CFD datasets contain 2350, 315, and 118 crack images, respectively. For
the BlurredCrack dataset, 1880 crack images were used for training and the remaining 470
for testing. For the CrackLS315 dataset, 275 crack images were used for training and the
remaining 40 for testing. For the CFD dataset, 90 crack images were used for training and
the remaining 28 for testing.

BlurredCrack: This dataset contains five sub-datasets collected from 10 bridges in
Hunan and Guangdong provinces of China, totaling 189 high-resolution blurry crack
images with 5120 × 5120 pixels, where the cracks mainly come from the surfaces of
abutments, piers, and box girders in concrete bridge structures. The performance of the
proposed network was evaluated on three typical sub-datasets. Due to the limitation of
computational resources, the high-resolution images were cropped to obtain a total of
2350 crack images with 512 × 512 pixels, of which 1880 were used for training the proposed
network and the remaining 470 for testing.
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CrackLS315: This dataset contains 315 fine-grained images of pavement cracks,
which were captured using a line-array camera under laser illumination. Each image
has 512 × 512 pixels. The dataset was divided into training and test sets, with 275 selected
as the training set and the rest 40 as the test set.

CFD: This is a publicly available pavement crack dataset widely used for crack detec-
tion. It contains 118 crack images with a resolution of 480 × 320. The images were resized
to 512 × 512, and the output predicted segmentation image was adjusted to 480 × 320 for
evaluating crack segmentation precision. The dataset was divided into 90 for training and
28 for testing.

4.3. Evaluation Metrics

Due to a significant category imbalance in the crack detection task, where the number
of non-cracked samples greatly exceeds the number of cracked samples, accuracy alone
may not accurately reflect the model’s performance. This is because it is insensitive to false
predictions of non-cracks. To address this issue, the model’s performance was measured
using recall and precision. Recall measures the model’s ability to correctly identify all
cracks, while precision measures the proportion of predicted cracks that are actually cracks.
In crack detection, it is crucial to ensure high recall to recognize all potential cracks, even
if it means accepting some false positives with low precision. Therefore, using recall and
precision better reflects the model’s practical application. To comprehensively evaluate the
detection performance of the proposed network, four commonly used evaluation metrics
were used, i.e., precision (Pr), recall (Re), F1 score, and intersection over union (IoU), to
measure the performance of the proposed network for crack segmentation. Precision is
defined as the ratio between the number of pixels correctly predicted to be cracks and the
number of pixels predicted to be cracks, and it is given by Equation (10):

Pr =
TP

TP + FP
(10)

Recall is defined as the ratio between the number of pixels correctly predicted to be
cracked and the number of pixels in the ground truth that are cracked, and it is given by
Equation (11):

Re =
TP

TP + FN
(11)

The F1 score, which is a metric that takes both precision and recall into account, gives
a balance between the two, as shown in Equation (12):

F1 =
2 · Pr · Re
Pr + Re

(12)

IoU is a frequently used metric to measure the segmentation effect. In crack segmen-
tation, IoU denotes the intersection ratio of the crack segmentation result and the ground
truth of crack regions, which is given by Equation (13):

IoU =
TP

TP + FP + FN
(13)

In the above equation, TP denotes the number of pixels whose pixels are correctly pre-
dicted to be cracked, FP denotes the number of non-cracked pixels predicted as cracked pix-
els, and FN denotes the number of cracked pixels incorrectly predicted as non-cracked pixels.

4.4. Comparison with the State-of-the-Art (SOTA) Methods

This section compares the performances of MFSA-Net on three datasets with several
state-of-the-art crack detection methods, including U-Net [16], RCF [48], DeepCrack [20],
HDCBNet [2], and CrackFormer [23].
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4.4.1. The Results on BlurredCrack

For the BlurredCrack dataset, experiments were conducted on three sub-datasets,
namely, Bridge88, BridgeTL58, and BridgeDB288, and the visual comparisons of the pro-
posed method with other crack segmentation methods are shown in Figure 4, Figure 5, and
Figure 6, respectively.
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Figure 5. Comparison of different segmentation methods on the BridgeTL58 sub-dataset. (a) Original
image; (b) ground truth; (c) U-Net [16]; (d) RCF [48]; (e) DeepCrack [20]; (f) CrackFormer [23];
(g) HDCBNet [2]; (h) MFSA-Net.
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Figure 6. Comparison of different segmentation methods on the BridgeDB288 sub-dataset. (a) Origi-
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From Figures 4–6, it can be seen that the proposed method was able to detect the
slender cracks well and also the local details of cracks, especially the tiny cracks that could
not be detected by other methods. As shown in Figure 4, U-Net [16] segmented the cracks
incompletely (column 2) and imprecisely (columns 1 and 3), RCF [48] barely segmented
the cracks as shown in column 3, DeepCrack [20] showed discontinuous segmentation
results (columns 1 and 3) with a lot of noise (columns 1 and 2), CrackFormer [23] was
not precise enough to segment the details (column 2), and HDCBNet [2] lost small cracks
(column 1). In contrast, MFSA-Net could segment different kinds of cracks more precisely.
As shown in Figure 5, by observing the segmentation details marked in columns 2, 3, and 4
in Figure 5b, it can be seen that our method segmented the details more precisely, while the
other methods missed them or showed false detection results. In particular, in column 3 of
Figure 6, it can be observed that the cracks that could not be detected by other methods
could still be detected by the proposed method.

The objective performance metrics are shown in Table 1. As can be seen from the
comparison with other methods, MFSA-Net strikes a good balance between precision
and recall. Specifically, MFSA-Net achieved the best performance on the BridgeTL58 and
BridgeDB288 datasets. The F1 and IoU values on BridgeTL58 were 2.24% and 2.66% higher
than the second-best result on BridgeDB288 of 6.04% and 7.78%, respectively. The best Pr
was achieved on Bridge88, with the second-best F1 and IoU.

Table 1. Comparison of different methods in three bridge sub-datasets.

Methods

Bridge88 BridgeTL58 BridgeDB288

Pr
(%)

Re
(%)

F1
(%)

IoU
(%)

Pr
(%)

Re
(%)

F1
(%)

IoU
(%)

Pr
(%)

Re
(%)

F1
(%)

IoU
(%)

U-Net [16] 58.01 77.80 66.46 49.77 71.43 66.71 68.99 52.66 66.30 61.46 63.79 46.83
RCF [48] 60.38 69.50 64.62 47.74 62.87 62.79 62.83 45.80 64.54 58.48 61.36 47.13

DeepCrack [20] 57.69 72.67 64.32 47.40 61.10 62.68 61.88 48.66 61.03 56.78 58.83 47.47
CrackFormer [23] 71.07 86.78 78.14 64.13 63.10 71.81 67.17 50.57 73.68 71.09 72.36 56.69

HDCBNet [2] 72.47 64.58 68.30 51.86 66.81 60.25 63.36 46.37 60.42 63.54 61.94 50.40

MFSA-Net 76.21 76.35 76.28 61.65 67.17 75.81 71.23 55.32 77.83 78.97 78.40 64.47

4.4.2. The Results on CrackLS315

The challenge with this dataset is that the images have extremely low contrast. The
detection results are given in Table 2, where it can be seen that MFSA-Net achieved optimal
performance on all evaluation metrics on the CrackLS315 dataset. This indicates that
the proposed network is not only adaptable to the detection of bridge cracks in complex
backgrounds but also effective enough to detect road cracks. Compared with the suboptimal
CrackFormer [19], it obtained a gain of 4.98% on Pr, 1.59% on Re, 3.68% on F1, and 5.95%
on IoU, respectively. The F1 and IoU metrics of U-Net [16], RCF [48], DeepCrack [20], and
HDCBNet [2] were 23.30% and 31.77%, 12.68% and 18.77%, 5.21% and 8.22%, and 3.73%
and 5.95% lower than MFSA-Net, respectively. As can be seen from the visualization results
in Figure 7, MFSA-Net could detect more detailed and complex thin cracks on low-contrast
pavements with more accurate and complete results.

Table 2. Comparison of different methods on the CrackLS315 dataset.

Methods Pr (%) Re (%) F1 (%) IoU (%)

U-Net [16] 65.33 68.05 66.67 49.99
RCF [48] 69.52 87.02 77.29 62.99

DeepCrack [20] 74.66 98.00 84.76 73.54
CrackFormer [23] 77.39 97.51 86.29 75.89

HDCBNet [2] 76.79 98.34 86.24 75.81
MFSA-Net 82.37 99.10 89.97 81.76
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(g) HDCBNet [2]; (h) MFSA-Net.
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4.4.3. The Results on CFD

The CFD dataset is a popular public dataset for pavement crack detection, for which
quantitative and qualitative comparison analysis with crack segmentation methods was
performed. It can be seen from the quantitative evaluation indicators in Table 3 that the
proposed method achieved the best results in all the evaluation indexes, which means the
proposed method is obviously better than other methods. Figure 8 shows some of the
segmentation results of the proposed method and other crack segmentation methods. From
the visual effect, it can be seen that the proposed method could precisely detect all crack
defects and suppress a lot of background interference information, while other methods
were affected by the interference information and had a lot of noise in the detection results.

Table 3. Comparison of different methods on the CFD dataset.

Methods Pr (%) Re (%) F1 (%) IoU (%)

U-Net [16] 71.82 75.97 73.83 58.52
RCF [48] 67.00 70.86 68.88 52.53

DeepCrack [20] 60.42 66.52 63.32 46.33
CrackFormer [23] 83.57 83.93 83.75 72.04

HDCBNet [2] 66.70 61.29 63.88 46.93
MFSA-Net 88.60 85.61 87.08 77.12
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Figure 8. Comparison of different segmentation methods on the CFD dataset. (a) Original image;
(b) ground truth; (c) U-Net [16]; (d) RCF [48]; (e) DeepCrack [20]; (f) CrackFormer [23]; (g) HDCB-
Net [2]; (h) MFSA-Net.
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4.5. Ablation Study

As a further check on the gain of each module in the proposed model, the ablation
study was performed on the Bridge88 dataset.

4.5.1. Verifying the Validity of the Strip Decoder

The ablation study was conducted to verify the effectiveness of the strip decoder while
keeping the proposed encoder fixed. The experimental results are shown in Table 4.

Table 4. Ablation study on the decoder. Square convolution: a 3 × 3 convolutional block was used to
build the decoder. Self-attention: a self-attention block was used to build the decoder. SCM: the strip
convolutional module was used to build the decoder.

Decoder Pr (%) Re (%) F1 (%) IoU (%)

Square convolution 67.39 73.54 70.62 54.23
Self-attention 76.62 72.08 74.28 58.66

SCM 76.21 76.35 76.28 61.65

Table 4 shows the ablation experiments on the decoder in Figure 1. As can be seen from
Table 4 (row 2), the decoder built using the 3 × 3 convolution had the worst performance in
all metrics. Table 4 (row 3) indicates that the decoder built using the self-attention module
in Crackformer [23] performed slightly better than the SCM decoder in terms of Pr, but in
all other metrics, the performance was lower than the SCM decoder, thus validating the
effectiveness of the SCM decoder. The reason is that the SCM decoder is able to acquire
global and local information, while the 3 × 3 convolution decoder can only obtain local
information, which is poor in detecting long and thin cracks, and the self-attention decoder
only focuses on global information and ignores the local detail features, which is weak in
the detection of short cracks.

4.5.2. Impact of the SCM’s Position in the Encoder on the Results

At different stages of the encoder, conventional square convolution and strip convo-
lution are employed to construct the encoder. The proper use of strip convolution in the
encoder has a large impact on the results of the detection. In this experiment, the basic
SegNet encoder was used as a baseline (row 1 of Table 5) and considered in four scenarios,
as shown in Table 5. First, using SCM in the last building block of each stage, we obtained
73.37% on the F1 score (row 2 of Table 5). Secondly, we tried to use SCM in all the building
blocks of the last stage and obtained 73.12% on the F1 score (row 3 of Table 5), with a
slight decrease in performance. Next, when SCM was employed in the last building block
of the last three stages, an F1 score of 76.28% was yielded (row 4 of Table 5). However,
when trying to use SCM for all the building blocks of the encoder, there was nearly no
performance gain (row 5 of Table 5). The above results illustrate that using SCM in the
last building block of the last three stages of the encoder can improve the segmentation
performance of the network.

Table 5. Ablation analysis of SCM’s position. (L: last building block in each stage, A: all building
blocks in the last stage, and LLT: last building block in the last three stages).

Encoder SCM Position Pr (%) Re (%) F1 (%) IoU (%)

Base SegNet - 66.89 70.44 68.62 52.07
Base SegNet + SCM L 72.04 74.75 73.37 56.78
Base SegNet + SCM A 71.96 74.32 73.12 56.14
Base SegNet + SCM LLT 76.21 76.35 76.28 61.65
Base SegNet + SCM A + L 66.92 70.70 68.76 52.41
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5. Conclusions

This paper focuses on concrete bridge cracks, which are characterized by long and
narrow spans, and proposes MFSA-Net, a pixel-level concrete bridge crack detection
network with multi-stage feature aggregation and structure-aware convolutional blocks
that realizes the structure awareness of concrete bridge cracks by interactively combining
square convolution and strip convolution. The proposed network was trained and tested on
the publicly available concrete bridge crack dataset BlurredCrack, and the average results
of the proposed method on the evaluation metrics were 73.74%, 77.04%, 75.30%, and 60.48%
for precision, recall, F1 score, and IoU, respectively, which are satisfactory results. At the
same time, MFSA-Net was found to be capable of detecting clearer crack boundaries as well
as local details of the cracks. The proposed method was tested on the concrete pavement
crack datasets CrackLS315 and CFD, and the proposed method achieved satisfactory results
in all evaluation metrics on both CrackLS315 and CFD datasets with precision of 82.37%
and 88.60%, recall of 99.10% and 85.61, F1 score of 89.97% and 87.08, and IoU of 81.76%
and 77.12%. Meanwhile, the proposed method has obvious advantages in the detection
of slender and tiny cracks. The experimental results show that the proposed method has
significant generalization ability and ensures robustness of detection.

According to the research methods and results, the following conclusions can be
drawn: (1) Both local detail features and global semantic features are very important to the
crack segmentation of concrete bridges. Different from the existing methods for detecting
thin cracks, which mainly obtain global features by increasing the receptive field, the
proposed MFSA-Net mainly combines the advantages of square convolution and strip
convolution, which can not only increase the receptive field to obtain global features but
also suppress the background interference information brought by it, which helps detect
thin and long cracks. (2) Effective feature fusion methods can enhance crack features. The
feature attention fusion module designed in this study can fuse local and global features
to enhance the feature representation ability of cracks. At the same time, the module
is embedded in different stages of MFSA-Net to gradually refine the crack segmentation
results and improve crack detection precision. (3) The method has a reasonable loss function
design. In bridge crack detection, there is a serious imbalance between foreground (crack)
and background (non-crack), which easily leads to network bias, and the segmentation
results are heavily biased towards high precision and low recall. Tversky loss was used in
this study, which can adjust this imbalance bias according to the ratio of foreground and
background in the sample so that the prediction results are in line with expectations.

However, there are still some shortcomings in this study. Some cracks still could not be
accurately detected when subjected to severe interference, and some crack discontinuities
were also observed. In the future, a priori information about cracks should be considered
being added to the network to improve the precision of detection. Secondly, this research
was focused on the segmentation of cracks in concrete bridges. Future studies should
expand this to include surface crack detection in other materials (e.g., steel or composites,
etc.) as well as other structures (e.g., houses, tunnels, dams, etc.) to broaden the scope
of the proposed network and enhance its applicability in the real world. In addition, this
study focused on the detection of bridge crack images without considering the crack depth
problem that exists in practice. In the future, research can focus on the 3D reconstruction of
cracks, which is more in line with the actual engineering needs, which is also a hot research
topic at present.
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Glossary

Symbols Description
R real number space
X input tensor
Ak

mask attention mask map of the kth stage
Sk

side side output of the kth stage
Γ tensor concatenation operation
σ Sigmoid activation function
UpH×W upsampling to the input image size H × W
S f use Output prediction map after multi-stage fusion, i.e., the final prediction result map
⊗ convolution operation
⊕ element-wise addition operation
⊙ element-wise multiplication operation
P the predicted segmentation result
G the ground truth binary label
N the total number of pixels in a crack image
α predicting the error weights
β predicting the correct weights∣∣Y+

∣∣ the number of positive samples in a crack image∣∣Y−∣∣ the number of negative samples in a crack image
λ the loss ratio to balance the positive and negative samples
LBWCE(W) the balanced weighted cross-entropy loss
α1 false positive weights
β1 false negative weights
LTversky(W) Tversky loss
L(W) LBWCE(W) and LTversky(W) weighted losses
η the weight of loss LBWCE(W)

Ltotal(W) The final total loss function
wk

side the loss weight of the kth stage
w f use the loss weight of the final fusion stage
∑ Summation
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