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Abstract: Accurate extraction of crop acreage is an important element of digital agriculture. This
study uses Sentinel-2A, Sentinel-1, and DEM as data sources to construct a multidimensional feature
dataset encompassing spectral features, vegetation index, texture features, terrain features, and radar
features. The Relief-F algorithm is applied for feature selection to identify the optimal feature dataset.
And the combination of deep learning and the random forest (RF) classification method is utilized to
identify lilies in Qilihe District and Yuzhong County of Lanzhou City, obtain their planting structure,
and analyze their spatial distribution characteristics in Gansu Province. The findings indicate that
terrain features significantly contribute to ground object classification, with the highest classification
accuracy when the number of features in the feature dataset is 36. The precision of the deep learning
classification method exceeds that of RF, with an overall classification accuracy and kappa coefficient
of 95.9% and 0.934, respectively. The Lanzhou lily planting area is 137.24 km2, and it primarily
presents a concentrated and contiguous distribution feature. The study’s findings can serve as a solid
scientific foundation for Lanzhou City’s lily planting structure adjustment and optimization and a
basis of data for local lily yield forecasting, development, and application.
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1. Introduction

Agriculture constitutes the lifeblood of a nation, and precise information regarding
crop planting structure is imperative for assessing crop yields. With the evolution of
computer-related technologies, remote sensing technology is pivotal in extracting crop
planting structures due to its advantages, including wide coverage, high efficiency, and
cost-effectiveness [1]. Consequently, the adjustment of local crop planting structures, crop
management, and the sustainable development of agriculture significantly benefit from
utilizing remote sensing technologies to extract crop planting structure information [2].

Currently, research by both domestic and foreign scholars aimed at identifying and
extracting different crop planting areas predominantly relies on medium spatial resolution
optical remote sensing images such as Landsat and MODIS [3,4]. However, the limitations
of sensor performance render it challenging to ensure classification accuracy in areas with
complex terrain [5]. Sentinel-2 imagery offers a novel data source for crop identification,
featuring advantages like high spatial resolution, multiple spectral bands, and dual-satellite
synchronous operation. In a study by Han et al. [6], the spectral characteristics and
vegetation index information of Sentinel-2A images were employed to extract rapeseed
planting areas, revealing that, in comparison with Landsat-8, Sentinel-2A images exhibit
superior precision in extracting crop distribution information within complex planting
areas. Similarly, Tian et al. [7] utilized Sentinel-2A images to delineate extensive winter
wheat planting areas, emphasizing the pivotal role of its red-edge band in extracting winter
wheat planting information. While optical remote sensing technology is well established,
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its practical applications are susceptible to the effects of time and weather conditions [8],
leading to the diminished classification accuracy of ground objects. In contrast, radar
images provided by the Sentinel-1 satellite operate continuously, overcoming temporal
constraints and capturing ground feature information distinct from optical images [9,10].
The synergistic combination of optical and radar images maximizes their respective benefits,
enhancing the ability to identify ground objects and improving information extraction
accuracy. Notably, scholars [11–14] have validated that the integration of Sentinel-2 and
Sentinel-1 images yields higher classification accuracy in surface information extraction,
including wetland and agricultural land. Additionally, Zhang Hao et al. [15] incorporated
topographic data into the western region of the Loess Plateau to obtain relatively precise
information about abandoned land, underscoring the importance of topographic data in
classifying areas with complex topography.

In recent years, deep learning has emerged as a focal point in remote sensing image
classification research. Its superior learning and generalization capabilities, particularly
in intricate feature extraction, surpass traditional machine learning methods, leading to
heightened classification accuracy [16,17]. Research indicates that the application of deep
learning to fine crop classification has yielded promising results. For instance, Liu et al. [18]
employed the convolutional neural network method on Sentinel-2 remote sensing images
to identify primary crops in Yuanyang County, Henan Province, achieving a classification
accuracy of 96.39%. Similarly, Li et al. [19] compared and analyzed the extraction effect
of five deep learning models in fine crop distribution applications based on Sentinel-2
multi-temporal remote sensing images, revealing that all five models yielded accuracy rates
exceeding 90%. Although deep learning methods have achieved high accuracy on a single
data source, combining deep learning classification methods with multi-source data for
crop information extraction has yet to be thoroughly investigated. Therefore, this paper
aims to explore how to combine deep learning methods with multi-source data to improve
the accuracy and reliability of crop information extraction.

To address the above issues, we used the U-Net architecture in the deep learning
method based on Sentinel-2A, Sentinel-1, and DEM multi-source image data, along with
the best index, spectrum, texture, terrain, and radar feature dataset selected by the Relief-F
algorithm, to identify lilies in Qilihe District and Yuzhong County of Lanzhou City, obtain
their planting structure, and analyze their spatial distribution characteristics. In addition,
a comparative analysis was conducted between the random forest classification method
and the deep learning classification method. This study provides basic data support for
planting structure adjustment, growth monitoring, yield estimation, and pest and disease
monitoring of lilies, which helps to achieve sustainable agricultural development.

2. Overview and Data of the Study Area
2.1. Overview of the Study Area

The research area is located in Qilihe District and Yuzhong County, Lanzhou City,
Gansu Province. Qilihe District is situated between 35◦50′25′′ N and 36◦06′09′′ N and
between 103◦36′43′′ E and 103◦54′28′′ E, with a width of 21 km from east to west and
a length of 33 km from north to south, covering a total area of 397.25 km2; Yuzhong
County is situated between 35◦34′20′ ′ N and 36◦26′30′ ′ N and between 103◦49′15′ ′ E and
104◦34′40′ ′ E, and has a width of 66 km east to west and a length of 96 km north to
south, covering a total area of 3301.64 km2. Both regions fall within a temperate semi-
arid climate zone characterized by an average annual temperature of 9.3 ◦C and annual
precipitation of 324.8 mm. The soil is not only loose and fertile but also has an exceptionally
rich microbiological community, including various types of bacteria, fungi, and protozoa,
rendering them ideal lily planting bases in Gansu Province.

The “Lanzhou Lily” is a product of China’s National Geographical Indication, and the
research area covers Xiguoyuan Town, Huangyu Township, Weiling Township in Qilihe
District, Yinshan Township, Shanghuacha Township, and Yuanzicha Township in Yuzhong
County. Lilies typically emerge in late April, flower from late June to early August; the
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stems and leaves on the ground wither gradually in September, and lilies hibernate in late
October. After 2 years of lily planting, the lily needs to be re-transplanted for another 3 years,
making the period from planting to harvesting 5 to 6 years. The ground data of this study
comes from field experiments and survey-visit data in Xiguoyuan Town, Qilihe District in
September 2021. This study’s ground data came from field investigations and survey-visit
data in September 2021 in Xiguoyuan Town, Qilihe District, where a total of 22 lily sample
points were collected using hand-held GPS, and the crop’s phenological period, planting
mode, acreage, and fertilizer application, among other things, were recorded. The following
Figure 1 is the spatial distribution of the sampling points in the study area.
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2.2. Data

Sentinel-1 is equipped with a synthetic aperture radar sensor, endowing it with the
capability to penetrate clouds and fog. Sentinel-2 covers 13 spectral bands within a width
of 290 km, featuring a revisit period of 10 days, with the A and B satellites providing a
complementary revisit duration of 5 days. The lily has luxuriant stems and leaves and
high vegetation coverage during the flowering period, which is useful for extracting crop
spatial distribution and planting information. Therefore, three Sentinel-2A L2A remote
sensing images and two GRD-level Sentinel-1 images with wide mode (IW) were selected
from early August, and the polarization method was VV + VH dual polarization to extract
the planting structure of lilies. The image data were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home) (accessed on 7 and 9
August 2021), and the Sentinel-1 image was preprocessed for orbit correction, thermal noise
removal, radiometric calibration, and terrain correction using the SNAP (version number:
9.0) software from the European Space Agency to obtain VV and VH backscatter coefficient
maps. The nearest-neighbor method [20] was adopted to resample the Sentinel-1/2 image
to 10 m for cropping and embedding. DEM data from GDEMV3 with a resolution of
30 m from the Geospatial Data Cloud Platforms (https://www.gscloud.cn) (accessed on 7
August 2021) were resampled to 10 m for slope, aspect, and elevation extraction.

In this study, we classified ground objects into five categories based on Google Earth
18-level high-resolution image data and field survey data, taking into account the texture
and phenological properties of the image. These categories are artificial land, natural land,

https://scihub.copernicus.eu/dhus/#/home
https://www.gscloud.cn
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other crops, bare soil, and lilies. Artificial surfaces encompass man-made structures such
as buildings, roads, and greenhouses, while natural surfaces refer to natural elements like
woodlands and mountains. Additionally, other crops, such as potatoes and corn, are also
considered. Existing research results have indicated that when the number of training
samples reaches 10–30 times the number of classification features and the ratio of training
samples to verification samples is 7:3, classification accuracy improves [21]. Therefore,
1177 training samples and 507 verification samples were uniformly and randomly selected
in the study area using Google Earth and ENVI (version number: 7.3.2.5776) software,
and their classification and quantity are displayed in Table 1. At the same time, this study
generated a total of nine labeled raster images for deep learning model training.

Table 1. Training samples and validation samples.

Ground Object Code Ground Object
Name Training Sample Size Verification Sample

Size

0 Lily 244 105
1 Bare soil 205 88
2 Other crops 226 97
3 Natural land 175 75
4 Artificial land 164 71

Total 1014 436

3. Methods
3.1. Technical Process

The technical workflow of this study, as depicted in Figure 2, encompasses the acquisi-
tion and preprocessing of Sentinel-2, Sentinel-1, and DEM data. Various spectral features,
texture features, vegetation indices, radar features, and terrain features are extracted from
the diverse data sources. Feature optimization using the Relief-F algorithm, sorting and
grouping the features according to their importance, was combined with deep learning
methods to filter the best feature dataset. Random forest and deep learning algorithms were
used to classify the images, respectively, and the classification results were evaluated for
accuracy and discussed and analyzed to determine the most suitable classification method
for the information extraction of lilies in Lanzhou.

3.2. Feature Variable Selection

The visible light spectrum is commonly utilized for target extraction, and the unique
red-edge band of Sentinel-2A presents a significant advantage in the extraction of agri-
cultural information. In light of this, nine original bands, including red, green, blue,
three red-edge bands, a wide near-infrared band, and two shortwave infrared bands
from Sentinel-2A, were selected to construct spectral features for experimentation. To
enhance crop information extraction and identification, four widely used vegetation indices
were chosen. Additionally, six red-edge vegetation indices were constructed based on
the red-edge bands of Sentinel-2 images for classification purposes. Building on previous
research [22,23], the utilization of the backscattering coefficients (VV and VH polarization)
from Sentinel-1 SAR images has been shown to improve classification accuracy. Consider-
ing the topographical conditions of crop cultivation areas, variables such as elevation, slope,
and aspect were included as features in the classification. Simultaneously, recognizing that
texture features can reflect image tone variations and clarity [24], thereby mitigating the
“same object, different spectrum” and “different object, same spectrum” phenomena, this
study employed the gray-level co-occurrence matrix to extract image texture features. In
summary, 48 feature variables, including spectral, vegetation index, texture, radar, and
terrain features, were selected for this study, as shown in Table 2.
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Table 2. Overview of Feature Variable Sets.

Feature Variable Abbreviation Explanation or Calculation Formula

Spectral Index Band B2, B3, B4, B5, B6, B7, B8, B11, B12

Vegetation Index

NDVI (B8−B4)/(B8 + B4)
DVI B8-B4

GNDVI (B8−B3)/(B8 + B3)
RVI B8/B4

NDVIre1 (B8−B5)/(B8 + B5)
NDVIre2 (B8−B6)/(B8 + B6)
NDVIew3 (B8−B7)/(B8 + B7)

NDre1 (B6−B5)/(B6 + B5)
NDre2 (B7−B5)/(B7 + B5)
RNDVI (B5−B4)/(B5 + B4)

Texture Features

MEA Mean
VAR Variance
ENT Entropy
COR Correlation
CON Contrast
DIS Dissimilarity

HOM Homogeneity
ASM Angular Second Moment

Radar Signature VV VV polarization backscatter coefficient
VH VH polarization backscatter coefficient

Terrain Features
DEM Elevation
Slope Slope of ground

Aspect The direction the slope faces
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The gray level co-occurrence matrix (GLCM) is an extensive statistical technique pro-
posed by Haralick and others to process remote sensing data [25,26]. It describes the texture
features of an image by calculating the occurrence frequency of pixel pairs with certain
numerical and spatial relationships [27]. If texture features are extracted from all bands
of Sentinel-2A images separately, this will cause data redundancy. Referring to existing
research results [28,29], we performed the principal component analysis (PCA) on Sentinel-
2A images to synthesize multiple bands into a few to eliminate extraneous information
between bands. The first principal component contains 94.07% of the information in all
bands. At the same time, the mean values in four directions (0◦, 45◦, 90◦, and 135◦) were
selected to calculate eight texture features on three different texture window sizes: 7 × 7,
9 × 9, and 11 × 11 [30].

3.3. Feature Preference

Integrating multiple-dimensional feature variables for crop classification can enhance
classification accuracy to a certain extent. However, excessively high feature dimensions
may introduce low-contributing and weakly correlated features, leading to the curse of
dimensionality and data redundancy, ultimately diminishing classification accuracy [31].
Therefore, it is crucial to select the optimal feature set, exclude irrelevant variables, and
improve classification accuracy.

Relief is a feature selection algorithm designed for binary classification problems,
but it solely considers the classification capability of individual features for neighboring
samples, overlooking the interaction between features. To address this limitation, in 1994,
Kononenko [32] extended the Relief algorithm and proposed the Relief-F algorithm capable
of feature selection for multi-class problems. This algorithm is not only applicable to
multi-class classification but also exhibits robustness in handling missing data. Its principle
involves selecting a sample K from the dataset, calculating the distances between K and
the nearest neighbors in q feature sets of the same class, as well as the distances between
K and the nearest neighbors in q feature sets of different classes. The closer the distance,
the higher the correlation, and the greater the weight assigned. This process is iteratively
repeated m times to determine the weights for each feature [33]. The weight calculation
formula is as follows:

W(A) = W(A)−
q
∑

j=1
di f f (A, K, Rj)/(m × q) + ∑C/∈class(K)[

p(C)
1−p(class(K))

q
∑

j=1
di f f (A, K, Nj(C))]/(m × q)

where W(A) stands for weight of the feature A; di f f (A, K, X) is the difference value
between samples K and X on feature A; Rj denotes the nearest-neighbor sample in the
same sample set as K; Nj(C) represents the jth nearest-neighbor sample in the sample set
C /∈ class(N) different from K; P signifies the probability of the category.

3.4. Methodology

This study conducted a comparative analysis of the classification performance between
the random forest and deep learning methods. A typical representative of the bagging
strategy is random forest [34,35]; it is an efficient machine learning algorithm that uses
a decision tree as the basic classifier and assembles multiple decision trees together. The
construction of the random forest classifier adopts a sampling method that is random and
puts back after extraction; a training sample set is created by extracting N training samples
from the original dataset and then building a decision tree for each training sampling
set. Each node of the decision tree randomly selects k (k ≤ K) features from all features
K throughout the decision tree’s growth. The nodes then utilize information entropy,
information gain, or the Gini index to choose the features for node splitting [36]. When
a sample is input to be classified, the N decision trees have to evaluate the input sample
data and their classification characteristics [37], and finally, the classification results of all
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decision trees are decided by majority voting, and the category with the most votes is the
forecast result. The number of decision trees is normally set to N = 100 in the parameter
settings, and the optimal feature k is set to the square root of all feature K [38].

The deep learning algorithm used in this study is based on the U-Net model under the
TensorFlow framework. It utilizes a set of known feature sample input labels and defined
parameters to identify image features based on the spatial and spectral characteristics of
the imagery. After training, the model can classify images, enabling the identification of
similar features in other images. This model follows a typical convolutional neural network
architecture. Prior to training, the TensorFlow model must be initialized, defining the
structure of the model, including architecture, patch size, and the number of bands used
for training [39]. A patch is a small image provided to the model for training. In this
study, the patch size was set to 240, and the number of bands used for training were 5, 14,
24, 36, and 48. After initializing the new model, parameters were set for training in the
TensorFlow pixel model. Through multiple iterations, the training process was monitored
and evaluated in real time using the TensorBoard visualization tool, tracking metrics such
as loss, accuracy, precision, and recall. Combining these results with the classification
performance, the optimal parameters were ultimately selected. The parameter settings for
deep learning in this study are presented in the Table 3 below.

Table 3. The best parameters for model training.

Parameter Name Number of
Epochs

Patches per
Epoch

Patch
Sampling Rate Blur Distance Class Weight Loss Weight

Parameter Value 25 300 16 0–25 4.5 1.2

3.5. Accuracy Evaluation

The evaluation of classification results employs the method of confusion matrix [22],
utilizing field surveys and randomly selected regions of interest (ROI) from Google Earth
as validation samples. The classification outcomes from both random forest and deep
learning are compared with the categories of validation samples to construct the confusion
matrix. From this matrix, metrics such as producer accuracy (PA), user accuracy (UA),
kappa coefficient, and overall accuracy (OA) are computed [40]; producer accuracy and
user accuracy are pivotal in determining the extraction of different land-cover information.

4. Results and Analysis
4.1. Feature Importance Ranking and Grouping

In this paper, the Relief-F algorithm was used to perform feature optimization on
48 features (9 original Sentinel-2A bands, 24 texture features, 10 vegetation index features,
3 terrain features, and 2 polarization features) and rank each feature according to the
importance level of each feature, as shown in Table 4. Elevation emerged as the most critical
feature, while slope and aspect features also demonstrated high importance, indicating a
substantial influence of the terrain on the accuracy of feature classification. Radar features
are second only to elevation and slope in the order of importance. Among the vegetation
index features, GNDVI exhibited the highest importance, followed by RNDVI, NDVI, RVI,
and others. Notably, RNDVI, calculated using the red and red-edge bands, emerged as the
most important among the red-edge index features. This shows that adding the red-edge
band to the red band can effectively reflect the characteristics of various ground objects.
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Table 4. Feature importance ranking.

Ranking Feature Name Importance Ranking Feature Name Importance

1 elevation 0.032441 37 B4 0.000948
2 Slope 0.016145 38 B3 0.000885
3 VH 0.012775 39 NDVIRE3 0.000810
4 VV 0.012379 40 DIS-11 0.000220
5 Aspect 0.011868 41 DIS-7 0.000159
6 COR-7 0.009081 42 DIS-9 0.000122
7 GNDVI 0.009016 43 CON-11 0.000014
8 RNDVI 0.008818 44 VAR-11 0.000013
9 NDVI 0.008671 45 CON-7 0.000006

10 RVI 0.006160 46 VAR-9 0.000005
11 NDRE1 0.005591 47 CON-9 0.000005
12 NDRE2 0.005559 48 VAR-7 0.000002

Both texture and spectral features are of modest importance, with only one 7 × 7 texture
feature and no spectral features in the top 12 features and 9 texture features and 2 spectral
features in the bottom 12 features. The importance of the correlation features of each
window size in texture features is higher than that of other features, indicating that corre-
lation features contribute more to ground object classification compared to other texture
features. Additionally, the texture features for each ground object extracted through the
GLCM method in a small window demonstrate superior effectiveness. The green light band
has the lowest importance among spectral features, followed by the red band, indicating
that using only the visible light band has poor classification performance for different
ground objects.

We divided the features into five groups according to the order of importance and
used deep learning methods for classification. Table 5 shows a trend of increasing and
then decreasing feature extraction accuracy in the research area. The accuracy of the
classification grows as the number of features increases, and it begins to decline after
reaching its peak, which proves that feature optimization may ensure accuracy while
reducing the involvement of irrelevant feature variables in classification. The classification
accuracy is highest in group 4 with overall accuracy and kappa coefficients of 95.9% and
0.934, respectively. Therefore, group 4 is the optimal feature dataset, and the best features
identified in this study number 36, including 3 terrain features, 2 radar features, 7 raw
bands, 15 texture features, and 9 vegetation indices.

Table 5. Grouping.

Group Grouping Threshold Number of Features Classification Accuracy (%)

1 0.01 5 75.7
2 0.005 14 87.2
3 0.003 24 90.5
4 0.001 36 95.9
5 0.000002 48 92.3

4.2. Classification Results Comparison and Accuracy Evaluation

The optimal feature datasets obtained based on the Relief-F algorithm were classified
by random forest and deep learning, respectively, and the spatial planting structure of
crops in Qilihe District and Yuzhong County was obtained, as shown in Figure 3. It can be
seen that the distribution of the types of ground features classified by the two classification
methods is roughly the same, the artificial ground surface is distributed in blocks, and the
lily, other crop, and bare lands are distributed in a staggered manner. The extraction results
utilizing the random forest algorithm were fragmented, and there is a high incidence of
misclassification in some areas, according to a comparison of the classification results of the
two approaches. However, the “salt and pepper phenomenon” may be effectively avoided
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by the classification approach based on deep learning, and the classification effect is good.
With a planting area of 137.24 km2, the lily-growing region is primarily concentrated in the
mountainous regions of Xiguoyuan Township, Weiling Township, and Agan Township in
Qilihe District, as well as a portion of the mountainous regions of Shanghuacha Township,
Yuanzicha Township, and Zhonglianchuan Township in Yuzhong County.
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Figure 3. Comparison of Crop Identification and Classification Results in the Study Area.

The feature classification of the study area was performed using the random forest
and deep learning methods, respectively, based on the best dataset (36 spectral, textural,
exponential, topographic, and radar features), and the confusion matrices calculated based
on the comparison of the validation sample categories with the classification results are
shown in Tables 6 and 7. Among them, overall accuracy was 94.6% and 95.9%, respectively,
and the kappa coefficients were 0.911 and 0.934, respectively. It can be seen that the
performance of the random forest classification method in extracting lily information is
not as good as the deep learning method in this article. The user accuracy and producer
accuracy of the random-forest-extracted lilies are 87.3% and 94.8%, respectively, while the
user accuracy and producer accuracy of the deep-learning-extracted lilies are 93.7% and
91.6%, respectively, as shown in Tables 6 and 7.

Table 6. Confusion matrix for random forest methods.

Ground Object Code 0 1 2 3 4 Total UA (%)

0 1766 25 204 29 0 1821 87.3
1 18 939 31 7 12 1201 93.3
2 51 95 1397 34 1 1877 88.5
3 26 84 195 9649 18 9907 96.8
4 2 19 10 42 2095 2043 96.6

Total 1863 1162 1837 9761 2126
PA (%) 94.8 80.8 76.1 98.9 98.5
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Table 7. Confusion matrix for deep learning methods.

Ground Object Code 0 1 2 3 4 Total UA (%)

0 1707 37 75 2 0 1821 93.7
1 16 1060 45 78 2 1201 88.3
2 65 43 1657 65 47 1877 88.3
3 74 13 53 9616 51 9907 98.1
4 1 9 7 0 2026 2043 99.2

Total 1863 1162 1837 9761 2126
PA (%) 91.6 91.2 90.2 98.5 95.3

Note: Codes 0–4 represent the names of different feature types as shown in Table 1.

In the confusion matrices for random forest and deep learning classification, 204 and
75 lily image pixels were classified as other crops, while 51 and 65 other crop image
pixels were classified as lily, respectively. In addition, there were several image pixel
misclassifications in lilies, other crops, and bare soil. In random forest, 18 bare soil image
pixels were categorized as lily and 31 bare soil image pixels as other crops; in deep learning,
16 bare soil image pixels were classified as lily and 45 bare soil image pixels as other crops.
As other crops, bare soil, and lilies have comparable topographic features, this leads to more
misclassifications of lilies with other crops and bare soil, which reduces the classification
accuracy of lilies.

5. Discussions

In this paper, 48 features such as spectrum, texture, and red-edge index were chosen
to extract lily planting information based on the planting conditions of lilies in the study
area and using Sentinel-1, Sentinel-2, and DEM as data sources, avoiding the problem
of the low classification accuracy of a single feature. However, too many characteristics
are prone to data redundancy, which reduces the classification effect. As a result, the
Relief-F algorithm is used to sort and group the importance of features, and the deep
learning approach is utilized to select the ideal feature group, with a total of 36 features.
Deep learning classification with only terrain and radar features is poor, with an overall
accuracy of only 75.7%; the overall accuracy increases to 87.2% with the addition of partial
vegetation indexes and red-edge indexes, and the overall accuracy increases to 90.5%
with the addition of the more important texture features on top of the terrain, radar, and
partial index features. As the number of features rises, so does the classification accuracy.
When all features are classified, the accuracy falls, the most accurate feature group is
chosen as the optimal feature dataset, and the 12 features with a lower-importance ranking
are eliminated (ranked 37–48 in Table 4). The producer accuracy and user accuracy of
diverse ground objects are both greater than 76%, according to the random forest and
deep learning classification results based on the optimal feature dataset. Among them,
the producer accuracy and user accuracy of lilies are relatively excellent, both exceeding
87%. The overall accuracy of the deep learning classification algorithm for the optimal
feature dataset is 95.9%, with a kappa coefficient of 0.934. The overall accuracy and kappa
coefficients have increased by 1.3% and 0.023, respectively, as compared to the random
forest classification approach. This indicates that the combination of the Relief-F and deep
learning classification methods performs well in extracting lily planting information in
Lanzhou, which can meet the requirements of lily planting structure extraction and spatial
distribution monitoring in Lanzhou.

The deep learning classification method based on multi-source data in this article pro-
duced satisfactory results. However, deep learning approaches necessitate a huge quantity
of data to train the model, and parameter adjustments have a certain degree of subjectivity
and exploratory nature. As a result, further research is needed in parameter adjustment and
training techniques. Feature optimization can improve classification accuracy, but different
feature optimization methods are based on different models and principles, and the results
obtained by a single feature optimization method may be one-sided, so it is necessary to
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consider combining multiple feature optimization methods to obtain the best feature. In
addition, this paper is based on single-phase remote sensing image information extraction.
In most cases, the classification accuracy of multi-temporal is significantly higher than that
of single-phase. In the subsequent research, images with obvious phenological differences
in different periods are selected for classification as far as possible.

6. Conclusions

In this study, we extracted spectral, texture, vegetation index, red-edge index, to-
pography, and radar features from Sentinel-1, Sentinel-2A, and DEM data to construct a
multidimensional feature dataset, excluded irrelevant variables using the Relief-F algo-
rithm, selected the optimal feature dataset, and extracted the lily planting structure in
Qilihe District and Yuzhong County using a deep learning method and compared it with
the random forest classification method for comparison. The main findings are as follows:

(1) Using the Relief-F algorithm for feature selection and feature importance ranking,
deep learning classification revealed that accuracy increased initially and subsequently
decreased, achieving the best accuracy when the number of features was 36. Accord-
ing to the importance ranking of features, it can be seen that, among the topographic
features, elevation has the greatest contribution in feature classification, radar fea-
tures are only followed by elevation and slope, texture features and spectral features
have lower contributions, and the addition of red light bands to red-edge bands can
effectively reflect the characteristics of each feature.

(2) Deep learning classification accuracy is higher than random forest classification accu-
racy under the same feature dimension, with overall accuracy of 95.9% and a kappa
coefficient of 0.934, which can inhibit the generation of the “pepper and salt phe-
nomenon” and more accurately extract the planting structure information of lilies in
the study area.

(3) The lily planting area extracted based on multi-source data images is 137.24 km2,
mainly concentrated in Xiguoyuan Township in Qilihe District and in Shanghuacha
Township and Yuanzicha Township in Yuzhong County.

The deep learning method based on multi-source data exhibits promising performance
in extracting structural information concerning lily cultivation. Looking ahead, future work
could delve into optimizing the fusion of unmanned aerial vehicle (UAV) data with other
data sources, improving algorithms for more accurate feature extraction and exploring
the integration of advanced sensing technologies to extract more accurate crop areas. In
addition, the method can be used not only for agricultural production management but
also extended to other fields such as food security monitoring, land use planning, and envi-
ronmental protection. As an effective means of digital agriculture, the method is expected
to promote the development of agriculture in a more efficient and sustainable direction.
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