
Citation: Zhang, Q.; Peng, J.; Tian, K.;

Wang, A.; Li, J.; Gao, X. Advancing

Ultrasonic Defect Detection in

High-Speed Wheels via UT-YOLO.

Sensors 2024, 24, 1555. https://

doi.org/10.3390/s24051555

Academic Editor: Riccardo

Carotenuto

Received: 31 January 2024

Revised: 23 February 2024

Accepted: 27 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Advancing Ultrasonic Defect Detection in High-Speed Wheels
via UT-YOLO
Qian Zhang 1 , Jianping Peng 1,*, Kang Tian 1 , Ai Wang 2, Jinlong Li 1 and Xiaorong Gao 1

1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610036, China;
zhangqian94@my.swjtu.edu.cn (Q.Z.); tiankang@my.swjtu.edu.cn (K.T.); jinlong_lee@swjtu.edu.cn (J.L.);
gxrr@vip.163.com (X.G.)

2 Chengdu Lead Science & Technology Co., Ltd., Chengdu 610073, China; ai.wang.ms@gmail.com
* Correspondence: adams.peng@swjtu.edu.cn

Abstract: In the context of defect detection in high-speed railway train wheels, particularly in
ultrasonic-testing B-scan images characterized by their small size and complexity, the need for a
robust solution is paramount. The proposed algorithm, UT-YOLO, was meticulously designed
to address the specific challenges presented by these images. UT-YOLO enhances its learning
capacity, accuracy in detecting small targets, and overall processing speed by adopting optimized
convolutional layers, a special layer design, and an attention mechanism. This algorithm exhibits
superior performance on high-speed railway wheel UT datasets, indicating its potential. Crucially,
UT-YOLO meets real-time processing requirements, positioning it as a practical solution for the
dynamic and high-speed environment of railway inspections. In experimental evaluations, UT-YOLO
exhibited good performance in best recall, mAP@0.5 and mAP@0.5:0.95 increased by 37%, 36%, and
43%, respectively; and its speed also met the needs of real-time performance. Moreover, an ultrasonic
defect detection data set based on real wheels was created, and this research has been applied in
actual scenarios and has helped to greatly improve manual detection efficiency.
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1. Introduction

Wheels play a pivotal role as integral components of trains, directly influencing the
safety and reliability of train operations [1]. With the rapid development and increasing
speed of high-speed trains, corresponding safety risks are also escalating. The quality
and structural condition of high-speed rail wheels have a direct impact on the safety and
overall performance of an entire train. Operating at high speeds exposes the wheels to
various external factors, including wear, impacts, and fatigue cracks, which will lead to
deformation, damage, or even detachment, particularly under high-load and -frequency
conditions. Wheel defects can lead to severe traffic accidents.

Non-destructive testing is a method that preserves the integrity of the object being
examined [2], primarily being used for detecting defects in materials, components, and
equipment. Traditional non-destructive testing (NDT) methods encompass ultrasonic
testing (UT) [3], magnetic particle testing (MT) [4], and penetrant testing (PT) [5]. In
the railway industry, owing to the unique environment, nearly all inspections rely on
non-destructive testing. X-ray computed tomography has been employed to address the
reconstruction of rolling contact fatigue cracks in rails [6], and various ultrasonic testing
methods have been applied in axle defect detection [7,8]. Given the complex structures of
wheels and the multitude of components, there are a variety of detection methods [9–11].

Traditional wheel defect detection methods predominantly hinge on visual inspection
and ultrasonic testing. Visual inspection, however, is inefficient and prone to inaccuracies.
Ultrasonic testing, relying on the principles of ultrasonic wave propagation in materials,
involves emitting ultrasonic waves and capturing reflected signals. This approach enables
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the detection of various defects within wheels, such as cracks, inclusions, and porosities.
Characterized by high sensitivity and resolution, this technology proves effective in identi-
fying minute defects, offering early warnings of potential issues and contributing to the
prevention of safety hazards arising from wheel failures.

The application of ultrasonic testing to train wheels goes beyond routine periodic
inspections; it is also applicable in emergencies, such as post-collision or other external
impact scenarios. Continuous monitoring of wheel health empowers operators to imple-
ment timely maintenance and repair measures, ensuring the safety and stability of trains
during high-speed operations. However, due to the huge quantity of data, relying solely
on manual detection is too inefficient. Traditional detection methods rely more on fixed
methods. Matching and efficiency are difficult to guarantee. At the same time, subject
to the limitations of expert knowledge, the detection process is relatively complicated.
Therefore, a set of novel methods that can meet the above needs continues to be applied
and promoted.

Deep learning technology represents a significant advancement in enhancing the
efficiency and accuracy of computer vision as well as NDT. Its application extends to the
automated analysis of various NDT data, including ultrasonic signals, magnetic particle
images, and penetrant images, thereby substantially improving defect detection accuracy.
Specifically, in ultrasonic wheel defect detection, deep learning technology offers several
advantages. Firstly, it facilitates the automatic analysis of ultrasonic signals, thereby
significantly enhancing detection efficiency. Secondly, it can extract intricate features from
ultrasonic signals that may be challenging for human recognition, leading to a substantial
improvement in detection accuracy. Additionally, deep learning technology contributes
to cost reduction and minimizes manual intervention in the testing process. One notable
strength of deep learning models is their ability to classify defects into different types,
accurately locate defect positions, and measure defect sizes. These affordances not only
streamline the analysis process but also provide a comprehensive understanding of the
detected defects. By annotating ultrasound B-scan images, we can annotate a defect, which
will give us a UT dataset. By learning from a large quantity of effective data, a model can
efficiently detect data.

Despite these advantages, the application of deep learning technology in ultrasonic
wheel defect detection still encounters certain challenges. One of the primary challenges is
the creation of high-quality datasets. The performance of deep learning models heavily
relies on the quality and diversity of the training data. Ensuring that the datasets used
for training are representative of real-world scenarios is essential for achieving robust and
reliable defect detection. Another challenge lies in the high complexity of deep learning
models. While these models exhibit remarkable capabilities, their complexity can lead to
challenges in interpretability and the need for significant computational resources. Striking
a balance between model complexity and interpretability is crucial for practical implemen-
tation and widespread adoption. While deep learning technology has immense potential
for revolutionizing ultrasonic wheel defect detection by significantly improving efficiency
and accuracy, addressing challenges related to dataset creation and model complexity is
essential for realizing its full benefits in real-world applications. To this end, we need to
explain the categories of defects. In this work, the defect data are divided into four different
forms according to the depth of scanning, namely, surface, near-surface, internal, and wheel
plate cracks.

Given that natural images seldom exhibit exaggerated aspect ratios, standard deep-
learning approaches may fall short when applied directly to ultrasonic images. Hence, this
article explores specialized preprocessing techniques aimed at enhancing the compatibility
between deep learning models and the intricate features inherent in ultrasonic wheel defect
B-scan images. By addressing these specific challenges through dedicated preprocessing
methods, the goal is to optimize the learning capacity of deep neural networks, fostering
improved accuracy in detecting defects. This approach is crucial in bridging the gap
between conventional image-processing methodologies and the distinctive characteristics
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of ultrasonic datasets, ultimately enhancing the efficacy of defect detection in high-speed
railway train wheels. The design and training of deep learning models need to be tailored to
accommodate these distinctive characteristics, ensuring optimal performance in detecting
ultrasound defects. The main contributions of this paper are as follows:

• An ultrasonic defect detection data set based on real wheels was created, and the
defects were subdivided according to different categories;

• An advanced UT-YOLO network was proposed to increase a network’s ability to
perceive small defects and detection;

• This research has been applied in actual scenarios and has helped to greatly improve
manual detection efficiency.

2. Related Work
2.1. Traditional Defect Detection

Traditional defect detection methods are based on the characteristics of an object,
such as color, size, shape, etc., and use image-processing methods and traditional machine
learning methods for detection. Among them, the representative target detection methods
include Scale-Invariant Feature Transform (SIFT) [12], Histogram of Oriented Gradients
(HOG) [13], Oriented FAST and Rotated BRIEF (ORB) [14], and Harr [15]. It is necessary
to use a pre-designed template to slide the window on the target image, and the steps are
cumbersome. The extracted object features are all low-level, manually selected features, so
they are not conducive to accurate detection and offer poor real-time detection. Moreover,
these methods are mostly used for obvious features in natural images which have rich
information. For these simple tasks, generally, Prewitt, Sobel, and Canny can be used
to find solutions. However, in practice, especially in complicated wheel defect detection
situations, noise is very serious, and much depends on the accuracy of the equipment and
the skilled operators. All in all, due to the limitations of many factors, ultrasonic detection
images are often not used in this type of detection method.

While conventional methods exhibit proficiency in straightforward industrial scenarios
governed by clear rules, they encounter challenges when confronted with the intricacies
and diversities inherent in real-world defects. Preceding the era of deep learning, object
detection heavily relied on meticulously crafted features. Although this approach attained
some degree of success, it grappled with notable limitations. For instance, the manual
design of features often necessitated subjective decisions, resulting in inconsistencies
and a lack of generalizability. The manual approach struggled to accommodate the vast
diversity and complexity of real-world objects, and as the number of object categories and
image variations expanded, the manual design process became increasingly cumbersome
and impractical. Moreover, the broad spectrum of potential defects demanded multiple
sets of pre-defined templates, constraining these methods’ capacity to identify novel and
unexpected issues. Consequently, when confronted with intricate data, traditional methods
frequently falter, necessitating laborious post-processing efforts.

2.2. Deep-Learning-Based Defect Detection

The rise of deep learning has transformed object detection, offering notable advantages
over traditional methods. Convolutional neural networks (CNNs) excel at extracting high-
level features from images, overcoming the limitations of manual feature crafting. Their
seamless integration of feature extraction, selection, and classification enhances overall
efficiency and effectiveness. Scholarly work consistently demonstrates the prowess of deep
learning in defect detection, particularly in industrial settings.

The R-CNN network was proposed by Girshick et al. [16] in 2013. It is a landmark
effort in the field of object detection. He et al. proposed SPP-Net [17], which no longer
extracts features from all candidate areas and only extracts features of an entire image once,
which greatly reduces the amount of calculation. Faster-RCNN [18] was the most repre-
sentative model in the R-CNN series that was proposed by Ren et al. Because the Region
Proposal Network (RPN) realized end-to-end training and testing of a network, detection
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accuracy was highly improved. However, Faster-RCNN is generally more complex, and its
performance on small objects is not very impressive. He et al. proposed Mask RCNN [19],
which has high accuracy in detection, but at the same time, instance segmentation will
increase label price. The biggest problem for practical use is that the speed of the algorithm
still cannot meet the industrial real-time detection requirements. In the industrial field,
some researchers have adjusted the common detection frameworks to suit the detection
of industrial data. Liu et al. [20] improved Faster-RCNN by utilizing cascade heads to
detect metal defects. Cha et al. [21] changed the backbone to improve the detection time for
bridge defects based on Faster-RCNN. He et al. [22] improved detection accuracy using
multi-scale feature diffusion. The pursuit of greater detection speed has favored a large
number of one-stage algorithms.

Redmon et al. [23] proposed the first one-stage detector, YOLO v1, which uses a
multi-scale region centered on a grid to replace the RPN, greatly improving detection speed
and meeting the needs of real-time detection but not in terms of accuracy. A novel object
detection method called SSD [24] was proposed in 2016, combining the advantages of
both Faster-RCNN and YOLO v1. It ensures high-precision detection while taking into
account detection speed by using multi-scale regional features for regression, particularly
via combining high-level and low-level feature maps. YOLO v2 [25] employs Darknet-
19 as a backbone network of a model to extract features and reduce the computational
complexity of the model. In addition, it further improves detection speed and accuracy
by adding batch normalization, multi-scale training, and K-means dimension clustering
after each convolutional layer. YOLO v3 [26] introduced several key advancements over its
predecessors, leading to improved performance in both speed and accuracy. One of its most
significant contributions is the Darknet-50 residual network, a newly designed architecture
that utilizes residual connections for deeper feature extraction. This network was combined
with the feature pyramid network (FPN) [27], which enabled multi-scale fusion prediction
and detection on three different-scale feature maps. YOLO v4 [28] uses CSPDarkNet53
as a backbone network and optimizes to varying degrees using data processing, training
methods, activation functions, loss functions, etc., to achieve the best detection effect at a
given time. Li et al. [29] provided an end-to-end solution for the surface defect detection of
steel strips based on improved YOLO. Zhang et al. [30] improved YOLO v3 by introducing a
novel transfer learning method with fully pre-trained weights from a geometrically similar
dataset to detect bridge surface damage.

However, all algorithms are based on the premise of sufficient data. However, in actual
situations, especially in industrial environments, due to the particularity of application
scenarios, sufficient and balanced labeled data sets are difficult to obtain, even if ordinary
data augmentation cannot completely solve this problem. A novel automated defect
synthesis network called Defect-GAN was designed by Zhang et al. [31] to generate realistic
and diverse defect samples for training accurate and robust defect inspection networks.
Valente et al. [32] used synthetic training data by simulating two types of print effects with
image-processing and computer graphic techniques.

Building upon YOLO v5s as the baseline, this work introduces UT-YOLO, a novel
ultrasonic testing defect detection method. UT-YOLO incorporates several key advance-
ments over the baseline model, namely, enhanced backbone architectures with Swin-
Transformer [33] and ResNet [34] variants, improved neck modules like BiFPN [35] for
better feature aggregation, a dedicated multi-detection head for the accurate localization of
small defects, a novel attention module for enhanced feature representation, and a prac-
tical pre-processing pipeline specifically tailored for real-world ultrasonic B-scan images,
ensuring robust and effective defect detection in industrial applications.

3. Methodology

The basic architecture of YOLO v5 is shown in Figure 1. The whole operation process
is as follows: Firstly, the images are readied for feature extracted by the backbone network,
named CSPDarkNet53 [28]; then, the features in the neck section are separated into different
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sizes for feature fusion to obtain more feature information. After that, the different detection
heads are designed, which allows the algorithm to fulfill the specific requirements of
object detection.
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3.1. Backbone

The architecture of the backbone is designed for feature extraction, but its efficiency
should be given more attention. Due to this consideration, some novel backbone structures
were applied in this task. The defects from ultrasonic testing B-scan images appear in
different regions, so a useful feature extraction backbone should be designed to solve this
problem. Regarding the wheels of railway trains, the defects are always small and noise-
like, making them hard to identify easily. Figure 2 shows a typical residual connection,
which is widely used in the design of backbone improvements. By introducing residual
connections, the neural network is allowed to skip certain levels of learning, thereby
alleviating the vanishing and exploding gradient problems and making training easier.
This network also supports deeper networks. Traditional deep neural networks suffer from
the problem wherein the training difficulty increases as the depth of the network increases.
The residual structure allows building deeper networks by adding more layers without
degradation issues.
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Figure 3 shows the structure of the Swin-Transformer block. It allows a model to better
capture global relationships among pixels in an image and avoids full connection to reduce
calculation costs, affordances that are of vital importance in object detection, especially in
ultrasonic defect testing. At the same time, by stacking multiple transformer blocks, the
network is able to learn more complex and abstract feature representations.
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Here, Zl−1 represents the output of layer l − 1 or the input of layer l. The information
passes from one layer to the next layer sequentially.

Firstly, the input is linearly transformed and normalized; then, it is passed through
Weighted Multi-Head Self Attention (W-MSA), which focuses on a different area of the
input rather than the global average. Secondly, the output will be added by the residual
connection. The new output will repeat another Layer Normalization (LN) step and then
connect with a Multi-Layer Perceptron (MLP) to fit the complicated input data. Finally,
the residual connection will be used again to improve model stability. It is usually used
as a repeated block, which helps alleviate vanishing or exploding gradient problems
during training, making the network easier to train and optimize. In wheel defect feature
extraction, after convolution and residual connection, the feature extraction module of Swin-
Transformer can be superimposed multiple times to obtain more semantic information,
which plays an important role in distinguishing background noise and defects.

3.2. Neck

BiFPN, a bidirectional feature propagation network, facilitates the bidirectional flow of
information, allowing features to traverse from high-level layers to low-level layers, as well
as enabling the propagation of low-level features to high-level layers. This dual-directional
information exchange enhances the model’s ability to capture semantic information across
various feature levels, thereby augmenting the model’s perceptual capabilities towards
the target. In contrast, PANet adopts unidirectional propagation, limiting the flow of
information to a single direction. The corresponding structure is shown in Figure 4.
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Another noteworthy aspect is that BiFPN was meticulously designed to mitigate
computational complexity without compromising model efficacy. It achieves this by judi-
ciously fusing features at distinct levels, thereby sidestepping the computational overhead
associated with full connections. In contrast, PANet exhibits a more intricate design that
could entail a higher computational burden. Nevertheless, a novel enhancement of BiFPN
made by incorporating the Simple, Parameter-Free Attention Module (SimAM) [36] was
proposed. This addition enables the network to selectively concentrate on varying levels of
features, thus refining its capacity for nuanced feature extraction. A diagram of SimAM is
shown in Figure 5.
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3.3. Head

Given that ultrasonic testing typically involves small targets, the existing detection
heads may struggle to meet the required standards. Consequently, this study enhances the
number of detection heads and simultaneously augments the depth of the detection heads
within the target detection model. The objective is to enhance the model’s discernment of
intricate scenes and nuanced features in pursuit of more effective performance. The new
structure is shown in Figure 6.
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The added detection head is shown in Figure 6. The structure in the dotted box in the
lower half is consistent with that in Figure 1 but is rendered in gray. On this basis, in the
upper block diagram of the network, a small target detection layer was added. Using color
marking, the structure is used for the detection of small targets.

3.4. Loss Function

The original YOLOv5 loss function generally consists of three components, as repre-
sented by Equation (1). The first term quantifies localization loss, evaluating the accuracy
of the model’s predictions for the position of the target bounding box. The second term
corresponds to confidence loss, measuring how accurately the model predicts the presence
of a target. The final term assesses the accuracy of the classification

Lori
(
tp, tgt

)
=

K

∑
k=0

[
αw

k αbox

S2

∑
i=0

B

∑
j=0

Iobj
kij

LCIoU+αobj

S2

∑
i=0

B

∑
j=0

Iobj
kij

Lobj + αcls

S2

∑
i=0

B

∑
j=0

Iobj
kij

Lcls

]
(1)

where K, S2, and B are the number of output features, the number of grids, and the number
of anchors, respectively. α∗ is the weight for different sections; αbox, αobj, and αcls are set as

0.05, 0.3, and 0.7, respectively. Iobj
kij

represents whether the i − th cell, the j − th anchor box
in the k − th feature map, is a positive sample. If it is positive, it is defined as 1; otherwise, it
is set as 0. tp and tgt are the prediction vector and ground truth (GT), and αw

k is the weight
for different sizes of the output.
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Equation (2) is the new loss function called LUT, which is designed for UT defect
detection. The localization loss is replaced by LEIoU.

LUT
(
tp, tgt

)
=

K

∑
k=0

[
αw

k αbox

S2

∑
i=0

B

∑
j=0

Iobj
kij

LEIoU+αobj

S2

∑
i=0

B

∑
j=0

Iobj
kij

Lobj + αcls

S2

∑
i=0

B

∑
j=0

Iobj
kij

Lcls

]
(2)

Intersection over Union (IoU) is used to evaluate the quality of object detection models.
A schematic diagram of IoU is shown in Figure 7.
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Here, the value of IoU should be described as in Equation (3).

IoU =
A ∩ B
A ∪ B

(3)

Simply put, the overlapping region of A and B is C, which is denoted as A ∩ B. The
area of A + B − C is denoted as A ∪ B. The ratio of A ∩ B and A ∪ B is IoU, which is an
indicator of prediction accuracy. In the original loss function, a complete IoU (CIoU) was
used to solve the special cases with the same central point but different ratios of height to
width. Equations (4)–(6) define the loss of CIoU

LCIoU = 1 − CIoU (4)

CIoU = IoU −
(

ρ2(b, bgt)
c2 + αν

)
(5)

ν =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(6)

where α is weight and the ν is the parameter for measuring the ratio of height to width.
A schematic diagram is shown in Figure 8: the green line (AB) is the parameter c, which
signifies the diagonal distance of the minimum bounding box (the gray, dotted one) capable
of encompassing both the predicted box and the GT box. Meanwhile, the parameter ρ is
the Euclidean distance between two center points b and bgt, which are indicated by the
red line.

At the same time, the definition of ν is shown in Equation (7):

ν =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(7)

In Equation (2), the penalty term of EIoU consists of separating the influence factors
of the aspect ratio based on the penalty term of CIoU to calculate the length and width
of the target frame and anchor frame, respectively. So, LEIoU is changed according to
Equation (8).

LEIoU = 1 − IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2(h, hgt)

c2
h

(8)
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Therefore, LEIoU can provide a more accurate assessment when an object’s position is
imprecise or slightly offset. However, to use LEIoU as the loss function, the dataset should
be more closely scrutinized, especially regarding the balance between various types of data.

To strike a balance between real-time requirements and computational complexity,
the original YOLOv5 algorithm was chosen as the baseline model. This work enhanced
the baseline model by (1) utilizing dataset-preprocessing methods that incorporate the
characteristics of ultrasonic B-scan data, enhancing the model’s compatibility with neural
networks; (2) employing a combination of ResNet, Swin-Transformer, and BiFPN structures
for feature extraction to capture richer feature information, thereby increasing the capability
of feature extraction; (3) introducing SimAM and a dedicated small-object detection head
to further optimize the detection accuracy for small objects; and (4) enhancing the accuracy
of bounding box regression through the refinement of the loss function’s design.

4. Experiments and Results

Diverging from natural images, ultrasonic detection images primarily convey intensity
information, rendering them particularly susceptible to noise interference. Moreover, as
the focus of this study is on detecting defects in wheels, the acquired data hold excep-
tional value. The experiments were conducted alongside an exploration of datasets and
various experiments.

4.1. Dataset

This work was evaluated with reference to a real dataset, which was collected with
phased array UT (PAUT) and transmit–receive (TR) probes to attain B-scan images about
four different defects according to different depths, surfaces near other surfaces, and
internal and rim cracks in different service depots using the LU system [37]. The entire
dataset of UT defects consisted of around 15,000 B-scan images, in which peeling, scratches,
and cracks in different positions and depths were recorded. It is hard to find different real
images with which to show the different types of defects, especially some inner defects, so
a diagram of typical wheel defects is shown in Figure 9.

UT is a very useful solution for detecting inner defects, but analyzing surface and
sub-surface areas is not its strength because of the large amount of initial wave interference
at the contact surface, as well as the noise; last but not the least, due to the particularity of
the wheel structure, the collection is generally completed in one cycle, so the aspect ratio of
the collected images will be very large. Examples of the original collection data are shown
in Figure 10. Image (a) below depicts a surface defect, and the periodic signal represents
the wheel plate hole; there are six holes in a wheel.
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The environment of the experimental data acquisition is shown in Figure 11. In the
service depots, the wheel runs in the designated area, and the robotic arm will carry a
phased array probe to collect the testing information. The collected signals will be stored
in the industrial computer for preliminary analysis like different gains to give a short
judgement.
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To illustrate the practicability of the proposed method, this work briefly displays the
typical real defects, including wheel rim cracks and some surface defects like scratches,
with their B-scan images given below in Figure 12.
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Figure 12. Typical defects: (a) wheel rim crack; (b) scratch; (c) ultrasonic b-scan defect image of rim
crack; (d) surface and near-surface b-scan defect images.

Another thing that should be taken into consideration is the variation in the depths
of the scan with the different ratios of width to height. It was necessary to perform
a data-preprocessing procedure. First, the images were cropped and reorganized into
rectangles with an aspect ratio of 1 to the greatest extent possible, as in the algorithm for
data preprocessing shown below (Algorithm 1).

Then, the processed images needed to be labeled with different classes. Finally, the
images were divided into three sets: a training set, a validation set, and a testing set with a
ratio of 7:2:1, containing 10,395, 2970, and 1485 images, respectively.



Sensors 2024, 24, 1555 12 of 19

Algorithm 1: Data Preprocessing

Input: Original Images.
Output: Processed Image after Data Preprocessing.

1: // Obtain the width (w) and height (h) of the image
2: w, h = getImageDimensions(originalImage)
3: // Check if the width is greater than 3 times the height
4: if w > 3 * h:
5: // Crop the image into two halves and stack them vertically
6: processedImage = cropAndStackImage(originalImage)
7: else:
8: // If width is not greater than 3 times height, no processing is done
9: processedImage = originalImage
10: end if
11: // Return the processed image
12: return processedImage

4.2. Evaluated Index

In this work, two sets of metrics from academia and industry, respectively, are used
to evaluate the model. Generally, the academic indexes that should be used are average
precision (AP), recall, mAP, and frames per second (FPS); the industrial indexes always
focus on the true alarm rate (TAR) and the false alarm rate (FAR) of detection.

4.2.1. Academic Indexes

A confusion matrix is often used to summarize the prediction effect of classification
models, as shown in Table 1.

Table 1. Confusion matrix.

Actual Positive Actual Negative

Predicted Positive TP FP
Predicted Negative FN TN

The calculations are shown in Equations (9)–(13):

precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

AP =
∫ 1

0
p(r)dr (11)

mAP =
1
n

n

∑
k=1

AP
k

(12)

FPS =
f rameNum

elapsedTime
=

N
T

(13)

4.2.2. Industrial Indicators

An example describing the true alarm rate (TAR) and false alarm rate (FAR) is provided
here. Assuming there are T samples in total, and D is the number of defect samples, the
rest of the samples, called N, are normal. Using an algorithm of detection, in the problem
section, D − 1 out of D samples were found to be defects, and in the normal section, 2 out
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of N were identified as defects; an explanatory diagram is shown in Figure 13, and the
calculation formulae should be like those in Equations (14) and (15).

TAR =
D − 1

D
(14)

FAR =
2
N

(15)
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In this example, there is one more definition to provide, that is, the miss alarm rate
(MAR), which in this case is 1 out of D, as represented in Equation (16).

MAR = 1 − D − 1
D

=
1
D

(16)

In practice, there is a big gap between academia and industry. The requirements
for statistical results are often stringent in the industrial setting, making the utilization
of industrial indexes more challenging. In this work, academic metrics were adopted
primarily to validate the feasibility of algorithmic improvements, serving as an assessment
tool for evaluating the effectiveness of the algorithm.

4.3. Implementation Details

All the experiments were carried out on a computer running Windows 10. Two Nvidia
GeForce RTX3090 GPUs were used, and the CPU version was Intel Core i9-1098XE. The
deep learning framework was Pytorch 1.7.1, and the python version was 3.7.11. The image
input was resized to 640 × 640, the batch size was 128, the optimizer was SGD, the initial
learning rate was set to 0.001, the total number of iterations was set as 500 epochs, and
the patience was set to 50, signifying that if there are 100 consecutive rounds without
improvement, the system defaults to convergence.

4.4. Experiment Results

To evaluate the performance of the algorithm in question in terms of accuracy and
speed in terms of both academic and industrial applications, UT-YOLO was compared with
different algorithms. Table 2 presents the best recall, mAP@0.5, and mAP@0.5:0.95 results
for each algorithm, derived from the experimental observations of the proposed model
with respect to the test set. Figures 14 and 15 depict the mAP@0.5 and mAP@0.5:0.95.
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Table 2. Results regarding detection for the UT-B scan dataset.

Model Best Recall mAp@0.5 mAp@0.5:0.95 FPS

YOLOv5s 0.57 0.53 0.21 55
YOLOv5s + BiFPN 0.63 0.58 0.21 58

YOLOv5s + BiFPN + SimAM 0.67 0.63 0.25 57
YOLOv5s + Swin-Transformer 0.85 0.82 0.61 64

UT-YOLO (Ours) 0.94 0.89 0.64 69
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The results depicted in Figures 14 and 15 show the effectiveness of UT-YOLO. Com-
pared with the original baseline, the IoU0.5 indicator and the 0.5:0.95 indicator have been
greatly improved, which is a very exciting result. In Figure 16, a comparative analysis of the
detection results across different models is presented, highlighting the performance varia-
tions for a common object. Notably, the examination distinctly underscores the superior
efficacy of the UT-YOLO model.
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It can be observed in Figure 17 that the UT-YOLO model demonstrated precise lo-
calization of the defects, especially the small-sized defects. Furthermore, for defects near
the wheel plate hole, the model exhibited commendable feature extraction capabilities,
as evident in the outcomes presented in Figure 17. Despite the presence of some minor
defects associated with background blur, the model displays robustness and can effectively
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detect defects, even in challenging conditions like strong background noise and electrical
interference. The left side of each image is the original detection result, and the blue box on
the right corresponds to the enlarged local features.
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For real-world industrial inspection, additional sets of 50 defective samples and
50 non-defective samples were carefully chosen to assess the detection rate and false alarm
rate. Among the 50 defective samples, consisting of a total of 6000 images, 210 were
identified as defects by the UT inspectors. Using UT-YOLO, a total of 206 defect instances
were successfully detected, resulting in a TAR of 98.10% (206 out of 210). Notably, the
four undetected defects existed in three distinct wheelsets. In practical applications, the
achieved TAR was 94% (47 out of 50), underscoring the heightened challenges faced in
real-world scenarios.
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Furthermore, a thorough examination of 6000 defect-free images from 50 wheelsets
revealed 83 instances of false alarms, originating from 6 different wheelsets. According to
statistical analysis based on the images, the calculated FAR was 1.38% (83 out of 6000). How-
ever, in actual application scenarios, the observed FAR was 12% (6 out of 50). These results
emphasize the complexity and intricacies encountered in practical industrial applications,
where achieving optimal detection indicators proves to be a more demanding task.

Last but not least, the efficiency of this method aligns with the demands of real-time
collection and detection. In typical scenarios, a wheel completes one full rotation in about
one minute. With a phased array probe utilizing 120 channels for data collection, the
algorithm achieves a detection speed of approximately 2 s per wheel. Considering factors
such as software response and data loading time, on-site application can accomplish the
detection of a wheel and provide defect location information within 10 s, significantly
diminishing the expenses associated with manual inspection.

5. Discussion

In this study, the application of the UT-YOLO method to ultrasonic inspection data
of railway wheels was inspected, with a focus on detecting various types of defects. The
evaluation of results underscores the superiority of this method, emphasizing its reliability
both in field applications and on site. Among the models employed for object detection,
the proposed UT-YOLO model exhibits significant advancements compared to several
benchmark models. The outcomes indicate that UT-YOLO achieved a best recall of 0.94, an
mAP@0.5 of 0.89, and an mAP@0.5:0.9 of 0.64, surpassing baseline YOLOv5s by 37%, 36%,
and 42%, respectively. Particularly noteworthy is UT-YOLO’s substantial superiority over
other comparative algorithms in terms of mAP@0.5:0.9. Moreover, UT-YOLO demonstrated
the fastest speed among the evaluated models. This is attributed to its unique features,
such as an added small object detection layer, an attention mechanism module, data
enhancement, and data preprocessing, specially designed for ultrasonic wheel b-scan
image defect detection.

While the current study has effectively addressed challenges in ultrasonic wheel
detection, especially in regard to speed and accuracy, achieving promising outcomes in
terms of efficiency and practical applicability, it is crucial to acknowledge the diverse nature
of real-world defects. Despite this success, certain limitations may arise in addressing
specific prevalent issues. In particular, some false alarms caused by external factors such
as electrical interference are still relatively serious, so the data collection process is very
dependent on the stability of the equipment because the surface conditions of the wheels
are not the same, which will cause the data to be easily invalidated, and a large amount of
noise, especially electrical noise, is generated at the same time. However, to avoid excessive
investment, more targeted distinctions will be made on the algorithm side to eliminate
some special interferences. This will also be reflected in future work. Therefore, future
endeavors will prioritize an in-depth exploration of actual wheel inspection equipment
and the quality of inspection data. These tasks will involve a meticulous classification
of various defects, aiming to enhance this methodology’s performance across a broader
spectrum of real-life scenarios.

6. Conclusions

The study presents a noteworthy breakthrough in defect detection methods utilizing
ultrasound B-scan images obtained through the application of UT-YOLO. The UT-YOLO
model incorporates specific modifications that significantly enhance the accuracy of defect
detection, particularly in the context of B-scan images of ultrasonic defects. The notable
enhancements include the integration of small-object detection layers, residual structures
for feature fusion, attention mechanisms, and specialized processing methods. Collectively,
these adjustments culminate in a robust model poised to address the challenges inherent in
wheel defect detection in real-world ultrasonic B-scan images. When compared with the
baseline YOLOv5s model, UT-YOLO demonstrated marked performance improvements. In
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the wheel defect dataset test results, it achieves noteworthy enhancements of 37%, 36%, and
43% in best recall, mAP@0.5, and mAP@0.5:0.95, respectively. Simultaneously, the speed
of UT-YOLO reached an impressive 69FPS, indicating its capacity to operate effectively in
real-time applications and making it well suited for deployment in practical scenarios.

Despite the UT-YOLO algorithm’s notable successes in UT defect detection, there are
still some areas that may be further investigated and refined. To further lower the false
alarm rates and missed alarm rates, future work will concentrate on distinguishing the
noise and the noise-like defects as well as the whole automatic process in train wheel defect
detection to achieve truly intelligent detection.
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