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Abstract: With the advancement of engineering techniques, underground shield tunneling projects
have also started incorporating emerging technologies to monitor the forces and displacements during
the construction and operation phases of shield tunnels. Monitoring devices installed on the tunnel
segment components generate a large amount of data. However, due to various factors, data may
be missing. Hence, the completion of the incomplete data is imperative to ensure the utmost safety
of the engineering project. In this research, a missing data imputation technique utilizing Random
Forest (RF) is introduced. The optimal combination of the number of decision trees, maximum
depth, and number of features in the RF is determined by minimizing the Mean Squared Error (MSE).
Subsequently, complete soil pressure data are artificially manipulated to create incomplete datasets
with missing rates of 20%, 40%, and 60%. A comparative analysis of the imputation results using three
methods—median, mean, and RF—reveals that this proposed method has the smallest imputation
error. As the missing rate increases, the mean squared error of the Random Forest method and the
other two methods also increases, with a maximum difference of about 70%. This indicates that the
random forest method is suitable for imputing monitoring data.

Keywords: shield tunnel; soil pressure; missing data; imputation; random forest

1. Introduction

In the present era, as computer science and technology continue to progress, under-
ground shield tunneling projects have embraced cutting-edge technologies like artificial
intelligence and big data. This integration facilitates the seamless acquisition and monitor-
ing of comprehensive lifecycle data for shield tunnel segments. This is aimed at studying the
deformation mechanisms and mechanical performance evolution of tunnel segments [1–5].
The tunnel segment monitoring system acquires force and displacement data of the soil,
segments, and components by installing buried sensors and surface-mounted sensors at
key locations. The data are then uploaded to a cloud platform in real time through remote
communication. Analyzing all the data allows for the assessment of the safety of the
tunnel structure. Should critical data be lost, leading to data gaps, the accuracy of the
tunnel structure safety assessment becomes compromised, thereby impeding the timely
avoidance of potential engineering hazards. Therefore, handling data gaps is of paramount
importance. During this process, despite the meticulous protection measures implemented
for data collection and transmission equipment, data gaps remain widespread. Data gaps
are prevalent to varying degrees in various data sources [6–9].

At present, many scholars from countries such as China, the United States, the United
Kingdom, Switzerland, Canada, and Germany have conducted research on data missing-
ness handling methods in various fields such as healthcare, economy, and transportation.
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According to the research by Little and Rubin, there are three mechanisms for data miss-
ingness, including Missing Completely at Random (MCAR), Missing at Random (MAR),
and Missing Not at Random (MNAR) [10,11]. In the case of MCAR, the missing data are
unrelated to any factors and do not follow any pattern. In the MAR case, the missing
data are related to certain characteristics and variables of the existing data but not directly
related to the missing values themselves. In the MNAR case, the missing data are not only
related to the existing data but also related to unknown observed variables.

In previous research, common methods for handling data missingness included List-
wise Deletion (LD) or Pairwise Deletion (PD), both of which belong to deletion methods that
involve directly removing the missing data from the dataset. Although PD, based on LD,
considers each variable separately and reduces the number of cases deleted, both methods
result in the loss of useful information due to the researcher’s selection and significantly
reduce the sample size. When the data missingness is small, such as below 5%, and the
missingness mechanism is MCAR or MAR, direct deletion methods can be appropriate.
However, when the data missingness is large or the missingness mechanism is MNAR,
simply using deletion methods can lead to substantial estimation bias [12–16].

In subsequent research, to address the issue of loss of useful information caused
by deletion methods, imputation methods began to be used to handle incomplete data.
Imputation is the process of utilizing estimated values to fill the gaps in incomplete data. In
general, the two main approaches to imputing missing values include employing statistical
techniques or utilizing machine learning techniques to estimate and fill in the missing data.

The median imputation method involves substituting missing values with the median
value derived from the available data for that specific feature. It is suitable for numerical
data, particularly in the presence of outliers in the dataset. However, median imputation
fails to utilize information from other related variables, leading to potentially substantial
bias in the imputed values. Furthermore, it does not account for data uncertainty and vari-
ability [17–19]. Mean imputation involves computing the mean of a variable from cases that
contain data and replacing the missing values for that variable with this mean value [20].
Although this technique can reduce variance, it ignores the correlation between variables
and is appropriate only for MCAR or MAR missing data mechanisms and small sample
sizes with only a few missing data points [21]. EM algorithm is an iterative optimization
algorithm used for parameter estimation and often employed for unsupervised learning
problems. It typically converges to a local optimum in parameter estimation but may face
computational challenges for large-scale data due to the high computational cost [22,23].
Linear regression is a technique for analyzing various types of data, including contin-
uous, categorical, and binary data. However, for nonlinear and complex relationships,
traditional linear regression algorithms may not perform well [24–26]. K-Nearest Neigh-
bors Imputation (KNN) is a technique that estimates missing values by identifying the K
nearest neighboring samples from the available data. It considers the interrelationships be-
tween features and leverages information from other variables to fill in the missing values.
However, it has several notable drawbacks. For large-scale datasets, the computation of
distances between samples can be extremely time-consuming. Moreover, the selection of an
unsuitable K value can result in biased imputation values. Additionally, KNN imputation
may perform suboptimally when confronted with high-dimensional feature spaces due
to the inherent challenges associated with the curse of dimensionality [27,28]. Multiple
Imputation (MI) is a method that utilizes Monte Carlo simulation to generate multiple
plausible complete datasets and derives the final imputed values through averaging or
combining regression estimates. It enables simultaneous estimation of multiple missing
values while accounting for uncertainty and variability, thereby enhancing result accuracy.
However, MI entails a complex process involving multiple model fits and imputation
operations. The computational cost is high. Additionally, it requires careful consideration
of feature interdependencies and assumptions about the missing data mechanism [29,30].

The actual monitoring data of tunnel segments exhibit time correlation. In comparison
to other time series datasets, sensor time series datasets typically feature high frequency,
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multiple variables, and long duration, while also being susceptible to noise interference
from sensor errors and external factors. This article proposes using the Random Forest
method to complete the missing parts in the dataset. It is a precursor to the classification tree
algorithm and has now been driven by the development of ensemble learning and decision
tree algorithms. The Random Forest algorithm has higher accuracy than most individual
algorithms, rapid training speed, and can handle large-scale high-dimensional data. At the
same time, each tree can be independently and synchronously generated, making it easy to
parallelize. Therefore, it is widely used in various research fields. Section 2 of this article
provides a brief introduction of the engineering background. Section 3 introduces the
tunnel liner monitoring system and the possible causes of missing data. Section 4 explains
the principle of the Random Forest algorithm. Section 5 describes the experimental steps
and compares the results of imputing missing data using the median, mean, and Random
Forest algorithms. Section 6 summarizes the work of this study and presents conclusions.

2. Engineering Background

Tunnel boring machines have the advantages of low cost, minimal environmental
impact, fast construction speed, and minimal interference from seasonal weather, and
have been widely used in subway, railway, and river transport. The tunnel project in this
paper is located 3 km downstream of Fuyang Bridge, and uses a shield machine with a
diameter of 15 m or more. The excavated soil layer is mainly composed of gravel and
round gravel, and the bottom of the excavation section is fully weathered quartz diorite
with a strength of about 40 MPa. The ratio of excavated gravel soil is high, with a particle
size generally between 30–80 mm (accounting for 60–70%), and is shown in Figure 1. The
tunnel passes through strata with high permeability, and the overlying soil layer during
construction is thin, with a minimum cover thickness of less than 0.7D. Therefore, during
the period when the segment is assembled into a ring to resist the pressure of the strata
along with the grout final setting and the segment, the segment will be more likely to
float due to various factors such as the pressure of the shield machine hydraulic jacks,
injection pressure, and ground reaction forces, which can lead to segment damage. On
the other hand, the tunnel is a highway-rail joint venture, and during operation, complex
traffic dynamic loads (such as subway train loads and vehicle loads) and changes in water
level will change the distribution of internal and external loads of the tunnel structure,
causing uneven longitudinal settlement of the load structure, and longitudinal uneven
deformation of the tunnel structure. This can cause stress concentration in weak parts
of the tunnel structure, leading to cracks and water leakage in the segments, affecting
service safety. The traditional operation and maintenance methods have encountered
significant challenges in efficient diagnosis of structural damage and accurate assessment
of operational performance. Engineering accidents caused by untimely maintenance occur
frequently. Therefore, to address the key technical issues of deformation mechanism and
mechanical performance evolution throughout the entire life cycle of tunnel boring machine
(TBM) segments, this project needs to solve the following two technical challenges:

1. Evaluation of Deformation and Initial Internal Forces for Shield Tunnel Structures:
During the construction phase, a shield tunnel structure experiences upward shape
deformation, resulting in the generation of initial internal forces in the segment and
bolts. Precisely understanding the changes in initial internal forces during the con-
struction phase for a shield tunnel structure is the fundamental basis for assessing the
mechanical performance of the structure during the operation phase. Currently, shield
tunnel segment design methods mainly include the traditional method, modified
traditional method, and multi-hinge ring method. These methods primarily focus
on analyzing the stress of segments during the regular service period and do not
consider the impact that different factors may have on segment stress during the
construction phase. Significant experience in shield tunnel engineering has shown
that it takes some time for the segments to be assembled into rings and for the grout to
solidify, with joint resistance and external ground pressure affecting the load transfer
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mechanism. Thus, it is essential to systematically study the mechanical behavior of
segments considering the soil–segment–jack interactions and their key influencing
factors. Furthermore, analyzing the ground disturbance caused by the shield excava-
tion and tunnel additional settlement can accurately evaluate the initial stress state of
the tunnel structure.

2. Long-term Deformation and Mechanical Performance Evolution of Shield Tunnel
Structures During the Operational Phase: The water level of the Fuchun River fluctu-
ates seasonally, causing changes in the external confining pressure on the tunnel and
affecting the deformation and internal forces of the tunnel structure. This can result in
water leakage through the segments, compromising the overall stability of the tunnel
structure and causing damage to electrical equipment inside the tunnel. Moreover,
localized water leakage can lead to weathering and detachment of the concrete lining.
Corrosive substances present in the water can accelerate the deterioration of rein-
forced concrete structures, reducing their load-bearing capacity. Furthermore, during
the operational phase, complex traffic loads significantly influence the mechanical
performance of the segments. Interactions between vehicles, trains, and the road
surface or tracks cause vibrations in the shield tunnel structure, which are transmitted
to the surrounding soil. This process can cause plastic deformation and result in
the buildup and release of pore pressure within the soil. Consequently, both the
tunnel structure and the surrounding soil undergo uneven settlement and deforma-
tion. In addition to the natural degradation of the structure over time, cumulative
damage from long-term traffic loads can eventually lead to cracking, leakage, and
misalignment of the tunnel structure. Moreover, shield tunnel structures constructed
in combination with public transport systems feature complex internal structures such
as roadway slabs and sidewalls. Traditional research methods that simplify these
structures into single circular rings are unable to accurately analyze the dynamic
response characteristics and deformation patterns of large-section tunnel structures
with complex internal spatial divisions. Therefore, there is an urgent need to study
the long-term deformation mechanisms and mechanical performance evolution of
segments under the combined effects of water level fluctuations and traffic loads.
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Figure 1. Geological profile map.

In summary, in view of the different stress characteristics of the segment structure
of the tunnel throughout its entire lifespan, it is necessary to comprehensively analyze
the deformation and internal force monitoring data of the shield tunnel structure during
the construction phase. This will facilitate a holistic comprehension of the deformation
and internal forces acting on the tunnel structure, along with variations in external loads.
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Furthermore, it allows for an analysis of the stress conditions experienced by the segment
during the construction phase. Based on the determination of the mechanical behavior and
initial internal forces of the segment during the construction phase, it is important to study
the long-term longitudinal deformation characteristics of the tunnel structure under the
combined effects of fluctuating river water levels and complex traffic loads. This will reveal
the deformation mechanism and mechanical performance evolution of the shield tunnel
segments throughout their entire lifespan, and propose deformation control methods and
key indicators for the tunnel structure. This research has significant implications for the
design optimization and safe operation of large-diameter river-crossing tunnels.

3. Monitoring System

The monitoring system consists of three subsystems, including the sensor subsystem,
the data acquisition and transmission subsystem, and the cloud platform data manage-
ment subsystem. Figure 2 shows the types of installed sensors and data acquisition and
transmission instruments, where Figure 2a shows the surface-mounted sensors, including
static water level gauges and vibrating wire strain gauges; Figure 2b,c show the embedded
sensors, including earth pressure cells, steel strain gauges, concrete strain gauges, ther-
mometers, and seepage gauges; and Figure 2d shows the data acquisition and transmission
equipment. During the construction and operation phases, the stress and displacement
data of the tunnel structure collected by the sensors are saved in real-time to the cloud
platform for unified management through the data acquisition and transmission subsystem.
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Considering that the soil pressure around the tunnel lining is the main load sustained
during tunnel shield construction and operation, monitoring data of soil pressure can
provide information on stress distribution in the surrounding soil and potential instability,
which has a significant impact on the stability and safety of the tunnel. Moreover, analyzing
soil pressure monitoring data allows for identifying deformation characteristics of the
tunnel lining and its relationship with mechanical performance and soil pressure, aiming
to optimize tunnel design and construction schemes in the future. This article adopts soil
pressure time series data. The data are collected by pressure sensors installed on the outside
of the lining segments. Each lining segment has an outer diameter of 15.2 m, thickness of
0.65 m, and width of 0.65 m. The segments are assembled with 1/3 overlap, consisting of
seven standard segments (B), two connection segments (L), and one top segment (F). Each
small segment has monitoring points, as shown in Figures 3 and 4. The data for the entire
process are collected using fiber-optic grating sensors, which offer advantages such as high
precision, strong anti-interference capability, compact size, and fast response compared
to other monitoring methods. They are more suitable for long-term monitoring of tunnel
structures [31,32]. The equation for calculating soil pressure is as follows:
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P =
λ − λ0 −

(
λt − λ′

t
)
× 1

a × b
K

, (1)

In the above equation, P is the soil pressure λ and λ0 represent the measured and initial
wavelengths, respectively; λt and λ′

t represent the temperature compensation measured and
initial wavelengths, respectively; a is the temperature compensation sensitivity coefficient;
b is the temperature coefficient; and K is the coefficient of the primary term for soil pressure.

Due to suboptimal installation and working conditions of the sensors, there are several
factors that can lead to data loss, such as (1) damage to some sensors during the process of
tunnel lining pouring, maintenance, and transportation; (2) as the length of the shield tunnel
reaches 1258 m, the probability of fiber optic damage increases with the increase in length
of the fiber optic connection line during data collection and transportation; (3) during
the construction phase, data collection interruptions may occur due to power outages,
mechanical failures, or other human factors, resulting in data loss. Therefore, it is necessary
to utilize existing data and suitable algorithms to achieve data recovery.
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classification or regression. In 2001, Breiman [33] introduced Random Forest (RF) by
combining classification trees. RF employs randomization techniques to utilize variables
(columns) and data (rows), generating numerous classification trees and then aggregating
their outcomes. In the following decades, scholars and experts from various fields carried
out further theoretical analysis and experimental validation. For example, Andy Liaw
and Matthew Wiener introduced the specific implementation methods of Random Forest
in classification and regression problems and provided examples of using the Random
Forest algorithm in the R language. Cutler et al. explored the application of the Random
Forest algorithm in the field of ecology and demonstrated its practical effectiveness in
ecological data classification through specific case studies [34,35]. Today, the development
of the Random Forest algorithm has been driven by the advancement of ensemble learning
and decision tree algorithms. Its practical applications have seen widespread adoption,
propelling it to emerge as a crucial algorithm in the realm of machine learning over time.

4.2. Principle of Random Forest

Random Forest, classified as an ensemble learning method within the Bagging category,
leverages the aggregation of numerous weak classifiers. Through voting or averaging
techniques, the final outcome is obtained, yielding an overall model with superior accuracy
and generalization capabilities. Bootstrap sampling is employed in Bagging to randomly
select a predetermined number of samples from the training set. After each sample is
selected, it is put back, and the number of samples collected is generally less than the
original sample size. In this way, k new datasets are selected to train the classifier. During
each round of random sampling in Bagging, certain data points from the training set are
left out, forming what is known as Out of Bag (OOB) data. These data points are not used
in training the model and can be utilized to assess the model’s capability to generalize
to unseen instances. For classification problems, a simple voting method is usually used
to obtain the class with the highest number of votes or one of the classes as the final
output of the model. For regression problems, the final output of the model is typically
obtained using a simple averaging method. This involves taking the arithmetic mean of
the regression results generated by T weak learners. The Bagging structure is shown in
Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 5. Bagging principle diagram. 

The Random Forest algorithm employs the CART decision tree as its weak classifier, 
which stands for Classification and Regression Tree. In cases where the dataset’s depend-
ent variable is continuous, the decision tree functions as a regression tree. This means that 
the prediction value is determined by the average value observed at the leaf node. When 
the dependent variable is categorical, the decision tree acts as a classification tree, which 
effectively solves classification problems. This algorithm is a binary tree, meaning each 
non-leaf node can only create two branches. Therefore, when a non-leaf node represents 
a multi-level (more than 2) discrete variable, the variable may be referenced multiple 
times. Additionally, if a non-leaf node represents a continuous variable, the decision tree 
treats it as a discrete variable during the processing. 

The CART decision tree relies on the Gini coefficient (GINI) for selecting features. The 
GINI criterion aims to maximize purity within each child node, ensuring that all observa-
tions within a child node belong to the same class. By minimizing the GINI coefficient, we 
can maximize purity and reduce uncertainty. In a decision tree with K classes, if the prob-
ability of a sample belonging to the Kth class is PK, the Gini index of this probability distri-
bution can be calculated as follows: 𝐺𝑖𝑛𝑖(𝑝) = ∑ 𝑝(1 − 𝑝)ୀଵ = 1 − ∑ 𝑝ଶୀଵ , (2) 

In this equation, 𝐺𝑖𝑛𝑖(𝑝)  stands for the Gini coefficient, where 𝑝  represents the 
probabilities of different categories, and 𝐾 denotes the number of categories. A larger 
value of Gini(p) indicates higher uncertainty, while a smaller value of Gini(p) indicates 
lower uncertainty and more refined data segmentation. Since the CART decision tree is a 
binary tree, it can be represented using the following formula: 𝐺𝑖𝑛𝑖(𝑝) = 2𝑝(1 − 𝑝), (3) 

When exploring each feature and split point, if we divide the dataset D into two parts, 
D1 (containing samples with feature A = a) and D2 (containing samples without feature A 
= a), we can calculate the Gini of D with respect to feature A = a as follows: 𝐺𝑖𝑛𝑖(𝐷, 𝐴) = |భ||| 𝐺𝑖𝑛𝑖(𝐷ଵ) + |మ||| 𝐺𝑖𝑛𝑖(𝐷ଶ), (4) 

In this context, 𝐷 refers to the original dataset, 𝐴 represents the feature to be parti-
tioned, 𝐷ଵ  denotes the set of samples that satisfy A = a, and 𝐷ଶ  represents the set of 

Figure 5. Bagging principle diagram.

The Random Forest algorithm employs the CART decision tree as its weak classifier,
which stands for Classification and Regression Tree. In cases where the dataset’s dependent
variable is continuous, the decision tree functions as a regression tree. This means that
the prediction value is determined by the average value observed at the leaf node. When
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the dependent variable is categorical, the decision tree acts as a classification tree, which
effectively solves classification problems. This algorithm is a binary tree, meaning each
non-leaf node can only create two branches. Therefore, when a non-leaf node represents a
multi-level (more than 2) discrete variable, the variable may be referenced multiple times.
Additionally, if a non-leaf node represents a continuous variable, the decision tree treats it
as a discrete variable during the processing.

The CART decision tree relies on the Gini coefficient (GINI) for selecting features. The
GINI criterion aims to maximize purity within each child node, ensuring that all obser-
vations within a child node belong to the same class. By minimizing the GINI coefficient,
we can maximize purity and reduce uncertainty. In a decision tree with K classes, if the
probability of a sample belonging to the Kth class is PK, the Gini index of this probability
distribution can be calculated as follows:

Gini(p) = ∑K
K=1 pK(1 − pK) = 1 − ∑K

K=1 p2
K, (2)

In this equation, Gini(p) stands for the Gini coefficient, where p represents the prob-
abilities of different categories, and K denotes the number of categories. A larger value
of Gini(p) indicates higher uncertainty, while a smaller value of Gini(p) indicates lower
uncertainty and more refined data segmentation. Since the CART decision tree is a binary
tree, it can be represented using the following formula:

Gini(p) = 2p(1 − p), (3)

When exploring each feature and split point, if we divide the dataset D into two parts,
D1 (containing samples with feature A = a) and D2 (containing samples without feature
A = a), we can calculate the Gini of D with respect to feature A = a as follows:

Gini(D, A) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2), (4)

In this context, D refers to the original dataset, A represents the feature to be parti-
tioned, D1 denotes the set of samples that satisfy A = a, and D2 represents the set of samples
that do not satisfy A = a. Gini(D) represents the uncertainty of set D, while Gini(D, A)
represents the uncertainty of set D after it has been partitioned based on A = a.

Random Forest utilizes multiple CART decision trees, where each tree is constructed by
iteratively exploring all potential split points within the subset of features. It identifies the
split point of the feature with the lowest Gini index to divide the dataset into two subsets,
repeating this process until a stopping condition is satisfied. The concept of Random Forest
is depicted in Figure 6.
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4.3. Advantages of Random Forest

The translation of the given text is as follows:

1. Due to the adoption of an ensemble algorithm, Random Forest itself has higher
accuracy than most individual algorithms;

2. It performs well on the test set. The introduction of two random elements makes
Random Forest less prone to overfitting and provides a certain level of noise resistance,
giving it an advantage over other algorithms;

3. When trees are combined in Random Forest, it can accommodate nonlinear data and
itself represents a nonlinear classification (fitting) model;

4. It can handle high-dimensional data without the need for feature selection and show
robustness to the dataset. Furthermore, it can handle both discrete and continuous
inputs without normalization of the data;

5. Owing to its Out-of-Bag (OOB) error estimate, it can obtain an unbiased assessment
of the true error during the model building process without discarding any training
data. During training, Random Forest can identify interactions amid features and
determine each feature’s significance, thereby providing a valuable reference;

6. As each tree within Random Forest is generated independently and concurrently,
it is easy to parallelize the process, and it demonstrates fast training speeds to fit
large-scale datasets.

5. Experiment
5.1. Introduction to Measured/Tested Data

In order to evaluate the interpolation effect of the Random Forest (RF) method, it is
necessary to select samples with sufficient and complete data. Therefore, the raw data for
this experiment are collected from fiber optic grating pressure sensors on eight sections of
a certain ring (F, L1, L2, B2, B4, B5, B6, B7). Considering the requirement for an adequate
number of samples and continuity, this experiment uses 1 h soil pressure data with a
time interval of 1 s for data acquisition. As a result, the length of the time series for
each monitoring point is n = 3600. The original soil pressure monitoring data are shown
in Figure 7.
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This study classifies the missing types as random missing (discontinuous data missing)
and uses a complete dataset without missing data. Therefore, three missing datasets with
missing ratios of 20%, 40%, and 60% are artificially created. Taking a 20% missing rate as
an example, with a total of 28,000 data samples, we created an array during the artificial
missing data generation process. This array consists of 5760 column indices distributed
between 0 and 7, and 5760 row indices distributed between 0 and 3599. Afterwards, we
assigned null values to the 5760 positions in the dataset based on the generated indices
within the specified ranges. The curves of different missing ratios are shown in Figures 8–10.
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5.2. Random Forest-Based Imputation Method

Any regression learns from the feature matrix and solves for the continuous label. The
reason regression algorithms can achieve this is that they believe there is a connection be-
tween the feature matrix and the label. In fact, the label and the features can be transformed
into each other, and the idea of using regression to fill in missing values utilizes this.

For a dataset with n features, if feature T contains missing values, we consider feature
T as the label and form a new feature matrix with the remaining n − 1 features and the
original label. The non-missing part of feature T contains both labels and features, while the
missing part only has features without labels. This missing portion needs to be predicted.

When there are missing values in features other than feature T, the Random Forest
algorithm examines all the features and begins by filling in the missing values of the feature
with the fewest missing values (since this requires the least amount of accurate information).
When imputing a feature, the missing values of other features are substituted with 0. After
each regression prediction is made, the predicted value is inserted back into the original
feature matrix, and the process continues with the next feature. Each time the filling is
complete, the number of features with missing values decreases, so the number of features
that need to be filled with 0 decreases after each iteration. Once the algorithm reaches
the final feature, which typically has the highest number of missing values among all the
features, there are no other features remaining to be filled with 0.

5.3. Comparison of Imputation Methods and Evaluation Metrics

This study compares the proposed imputation method with two other commonly
utilized techniques for imputation, specifically, mean imputation and median imputation.
The evaluation method used is mean squared error (MSE), which is calculated as follows:

MSE =
1
m∑m

i=1

(
y(i)test − ŷ(i)test

)2
, (5)

In this case, m refers to the number of samples, y(i)test represents the true values of the

test set, and ŷ(i)test represents the predicted values of the test set. MSE calculation is simple
and can directly reflect the overall performance of the prediction model. The smaller the
value of MSE, the more accurate the prediction model.
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5.4. Parameter Selection and Optimization

In Random Forest-based imputation methods, several parameters are typically opti-
mized, including (1) the number of decision trees, which can improve the performance and
stability of the Random Forest but may increase computation time and require an optimal
value; (2) the maximum depth of each decision tree to prevent underfitting or overfitting;
(3) the number of features considered for each node split; and (4) the minimum number of
samples required to be in a leaf node to avoid overfitting due to too few samples.

In this study, cross-validation was used to select the optimal parameters. The com-
monly used numbers of cross-validation folds are 5-fold cross-validation and 10-fold
cross-validation. We chose 5-fold cross-validation in this study because it requires fewer
computational resources and helps to balance the trade-off between variance and bias
when evaluating model performance. Firstly, the dataset was divided into 5 subsets, and
then the Random Forest regressor was trained and evaluated. The evaluation metric
used is mean squared error to find the minimized objective function. ntree = 50, 150, 200,
Max depth = 2, 4, Max features = 2, 4, 8 are iteratively run for 18 parameter combinations,
resulting in model evaluation metrics as shown in Figures 11–13.
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Since the model evaluation is based on mean squared error (MSE), lower scores
indicate better performance. From the results, it can be observed that the model performs
better when Max depth = 4, and the number of features has a less significant impact on the
model. Subsequently, we select ntree = 50, 100, 200 and Max depth = 4, Max features = 4 for
comparison, as shown in Figure 14.
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5.5. Imputation Results and Comprehensive Evaluation

We applied the aforementioned parameters to impute missing data in datasets with
missing rates of 20%, 40%, and 60% for soil pressure. Figures 15–18 demonstrate the
comparison between the results obtained using different imputation methods (median,
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mean, and Random Forest) and the original data for four segments (F, L1, L2, B1). It can
be observed that the imputation results of median and mean methods are poor, with a
significant difference between the imputed values and the original values. On the other
hand, the Random Forest imputation method produces good results with a high degree of
agreement between the imputed values and the original values.
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The comparison of the mean squared error (MSE), which is used as the evaluation
criterion for assessing the performance of the model in imputing missing data, is presented
in Figures 19–21. From the comparison, it can be inferred that there is a positive correlation
between the missing rate and the imputation error. As the missing rate increases, the error of
the Random Forest-based imputation method remains around 0.000250, indicating its good
robustness. Across different missing rates, the Random Forest-based imputation method
consistently has the lowest error. Particularly, at a missing rate of 60%, the Random Forest-
based imputation method achieves the smallest error of 0.000249, which is approximately
70% lower than the errors of other methods.
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6. Conclusions

This paper mainly accomplishes the following three tasks: firstly, the behavior of
tunnel segments is monitored through both surface-mounted and embedded sensors,
characterizing the stress and displacement changes throughout the entire lifespan of the
segment structure; secondly, a Random Forest-based interpolation method is developed,
and by comparing the MSE scores, the optimal combination of the number of decision trees,
maximum tree depth, and maximum number of features is determined; thirdly, incomplete
soil pressure datasets with missing proportions of 20%, 40%, and 60% are completed using
data imputation, and the imputation results are compared with models using median and
mean imputation methods. Based on the above work, the following conclusions are drawn:

• According to the field monitoring results, it is evident that the soil pressure exhibits
minimal fluctuations in the first 25 min, followed by a gradual decline, indicating a
non-linear variation;

• The Random Forest model demonstrates optimal performance and achieves the mini-
mum mean squared error (MSE) when the following parameters are set: 200 decision
trees, a maximum depth of 4 for each tree, and the consideration of a maximum of
four features during each node split;

• As the missing proportion increases, the imputation errors of the models based on
median and mean imputation methods also increase, while the error of the model
based on Random Forest remains around 0.00025. It is evident that the Random Forest
method outperforms median and mean imputation methods. At a missing proportion
of 60%, the difference in errors reaches approximately 70%;

• Comparing the interpolated results with the original data through plots shows that
the Random Forest-based imputation method can effectively handle multidimensional
data obtained from sensor monitoring. It can provide reasonable predictions to fill in
the missing parts of the dataset.
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