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Abstract: This paper presents the development of path-tracking control strategies for an over-actuated
autonomous electric vehicle. The vehicle platform is equipped with four-wheel steering (4WS) as well
as torque vectoring (TV) capabilities, which enable the control of vehicle dynamics to be enhanced. A
nonlinear model predictive controller is proposed taking into account the nonlinearities in vehicle
dynamics at the limits of handling as well as the crucial actuator constraints. Controllers with
different actuation formulations are presented and compared to study the path-tracking performance
of the vehicle with different levels of actuation. The controllers are implemented in a high-fidelity
simulation environment considering scenarios of vehicle handling limits. According to the simulation
results, the vehicle achieves the best overall path-tracking performance with combined 4WS and TV,
which illustrates that the over-actuation topology can enhance the path-tracking performance during
conditions under the limits of handling. In addition, the performance of the over-actuation controller
is further assessed with different sampling times as well as prediction horizons in order to investigate
the effect of such parameters on the control performance, and its capability for real-time execution.
In the end, the over-actuation control strategy is implemented on a target machine for real-time
validation. The control formulation proposed in this paper is proven to be compatible with different
levels of actuation, and it is also demonstrated in this work that it is possible to include the particular
over-actuation formulation and specific nonlinear vehicle dynamics in real-time operation, with the
sampling time and prediction time providing a compromise between path-tracking performance and
computational time.

Keywords: autonomous vehicle; path tracking; multi-actuation; predictive control

1. Introduction

Over the past few decades, due to the increasing demands to improve the safety,
efficiency and comfort of road vehicles, autonomous vehicles (AVs) have been widely
considered as the next generation of road transportation. The control techniques for AVs
have been rapidly developed with a great deal of research work carried out for various
objectives, including path and motion planning [1–3], path tracking [4,5], obstacle detection
and avoidance [6,7] and so forth. Among these topics, the fundamental function of path
tracking, and the real-time realization of it, is the main focus of this paper.

Regarding the path-tracking problem, geometry-based control methods have been
raised for active front-wheel steering (FWS) vehicles [8,9]. Geometric path-tracking con-
trollers are able to track a path only with the geometry of vehicle kinematics and of the
reference path, but they are less suitable for control at the limits of handling due to the
lack of knowledge on vehicle dynamics. In terms of the path-tracking controllers involving
vehicle dynamics, Roselli et al. proposed a path-tracking controller for lane keeping based
on the H-infinity technique [10]. According to experimental tests, the H-infinity controller
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was able to achieve an overall smaller lateral error in comparison with a PID controller with
feedforward, leading to a smoother action in the corner. In another study, a higher-order
sliding mode controller was designed for lateral control, and robustness was validated by
the test results [11]. In addition to these, optimal control theory has been introduced to the
scope. Lee et al. proposed an optimal path-tracking controller based on linear quadratic
Gaussian control, which provided better performance than the geometry-based controllers
in terms of tracking deviation [12].

Among various control methods, model predictive control (MPC) has been found to
be an outstanding technique for autonomous vehicle control. In [13], various controllers
including a geometric controller, linear quadratic regulator and MPC were compared in
terms of their path-tracking performance, and the simulation results demonstrated that
the best path-tracking performance was achieved by MPC with the minimum control
effort. Yakub et al. [14] extended the study by comparing the tracking performance of
MPC and linear quadratic control for different speeds, tyre–road friction coefficients and
control topologies, including FWS, four-wheel steering (4WS) and FWS with direct yaw
moment control (DYC). A similar conclusion was drawn that MPC is more suitable for
multi-variable systems. An additional advantage of MPC is that it takes into consideration
physical constraints present in the system, such as state ranges, input limitation and road
boundaries [3,15]. Therefore, MPC has been extensively applied in research work for
the path-tracking control of autonomous vehicles [16–20]. In [16], Raffo et al. presented
an MPC controller for path tracking. The controller was based on a linear model, and a
constant velocity was assumed in order to neglect the vehicle’s longitudinal dynamics.
Another path-tracking controller was developed in [21] with an adaptive preview strategy,
where it was demonstrated by the simulation results that the tracking error significantly
increased when the vehicle approached the limits of handling condition. In the above
studies, linear vehicle dynamics models are applied for control development. This could
reduce the complexity of the MPC optimization problem, while on the other hand, when it
comes to situations where the vehicle is equipped with multi-actuation, or is operating at
extreme conditions, a linear model may no longer provide a good prediction of the vehicle
dynamics as the vehicle behaviour becomes highly nonlinear.

In addition to active FWS control, techniques like DYC, torque vectoring (TV) in
particular, have been extensively discussed in the literature for vehicle control. Typically, TV
refers to the differential technique that varies the torque delivered on each wheel. With the
development of electric vehicles (EVs), the application of independent in-wheel motors
provides a more straightforward realization of TV. Various path-tracking controllers were
compared in [22], some of which applied TV, while the others did not have the functionality.
The results showed that the cornering response of the vehicle could be effectively improved
with the application of TV, especially at the limits of handling condition, and this was due
to the generation of a direct yaw moment helping in the stabilization of the vehicle. Hence,
TV has been applied in several studies for the development of driver assist systems, aiming
to improve the vehicle performance and guarantee a consistently safe and stable cornering
response [23–25]. There is no doubt that AV control can benefit from the multi-actuation
formulation, referring to the integration of TV and steering. Chen et al. developed a path-
tracking controller for vehicles with four-wheel drive (4WD) as well as 4WS [26]. With a
hierarchical structure, the control demand for path-tracking as well as lateral stabilization
was obtained in the higher level controller, and tyre force allocation was then carried out
at a lower level to achieve that. In [27], another path-tracking controller was proposed
based on MPC. The controller was also hierarchical, based on an LTV system, and could
be implemented in real time. The disadvantage of such a formulation is that the results
may not be optimal as the control inputs are not directly integrated into the high-level
strategies. What is more, as the higher levels were based on a linear system, it was hard
to guarantee feasibility, especially in extreme conditions. This could hinder the vehicle
from operating at the limits of handling. In [28], Acosta et al. developed a multi-actuation
controller for autonomous drift control. The controller was based on nonlinear vehicle and
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tyre models, and the results showed that the dynamical capability of a vehicle could be
exploited by combining FWS and TV. However, a PID controller was used instead of MPC
for the path-tracking purpose, which meant that the vehicle might not be able to track a
complicated path properly. In addition, the controller might not be able to be implemented
in real time. To the best of our knowledge, there have been few studies on multi-actuation
control including rear-wheel steering (RWS), which is part of the novelty of our work.

In this paper, we present the development of path-tracking control strategies for an
over-actuated autonomous EV, which is equipped with 4WS as well as TV functionality
on the rear axle. The vehicle is supposed to track a desired path at a specified reference
velocity, which is close to the maximum possible velocity according to the turning radius
and road–tyre friction coefficient. The control design is based on nonlinear MPC (NMPC)
so that the nonlinearities of the vehicle dynamics are taken into account, which is beneficial
to the operation at the limits of handling. Four controllers are built and tested in this
work, including FWS only, FWS with TV (FWS-TV), 4WS and 4WS with TV (4WS-TV).
The four controllers are compared in terms of path-tracking performance to validate the
advantage of the over-actuation topology. Further study has also been carried out to im-
plement the proposed over-actuation controller in real time. The control performance of
the 4WS-TV controller with different prediction horizons as well as sampling time is inves-
tigated and discussed. For the purpose of the real-time implementation of the controller,
a compromise has been made between path-tracking performance and computational time,
and an appropriate setup of prediction horizon and sampling time is identified. In the
end, the control strategy is implemented on a real-time target machine for validation.
The major contribution of this paper can be summarized in two parts. First, this paper
proposes a control formulation based on NMPC that is compatible with different levels of
actuation, and the control performance with those actuation topologies has been compared
and studied. The results demonstrate that the over-actuation formulation with both TV
and 4WS leads to the best path-tracking performance for an autonomous vehicle at the
limits of handling, in comparison with the individual utilization of either TV or 4WS.
The second contribution of this paper is the demonstration that the proposed controller
including the particular over-actuation formulation as well as nonlinear vehicle dynamics
can be implemented in real time. An appropriate prediction horizon and sampling time
have been discovered for the controller, which strikes a balance between path-tracking
performance and system complexity. Furthermore, the controller is implemented and
validated in a real-time target machine to prove that it can be executed in real time. It is
worth mentioning that although the work presented in this paper is based on simulation
only, some practical testing has been carried out to validate the proposed 4WS-TV control
strategy. Both simulation and experimental results for tracking the same reference path are
demonstrated and compared in [29], which confirms the effectiveness of the controller as
well as its capability of real-time implementation.

This paper is organized as follows. Section 2 introduces the modelling of vehicle
dynamics. Then the optimal control problem is formulated in Section 3. Section 4 presents
the simulation results of the controllers. In Section 4.1, the path-tracking performances
of the four controllers are demonstrated and compared. In Section 4.2, the path-tracking
performance of the over-actuated controller with different sampling times and prediction
horizons is demonstrated. Finally, we demonstrate the implementation of the controller in
a real-time target machine.

2. Vehicle Dynamics Modelling

Figure 1 shows the actuator topology of the specific vehicle for which the controller
in this paper is designed. The vehicle in this study is a 4WD EV prototype developed by
Delta Cosworth for the AID-CAV project. The powertrain includes three electric motors,
responsible for both the acceleration and deceleration of the vehicle. The motor M1 drives
the front wheels through an open differential on the front axle, and the rear wheels are,
respectively, driven by the other two motors M2 and M3, with which torque vectoring is
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performed. In addition, the autonomous EV is equipped with 4WS functionality, realized
by two steer-by-wire systems. It should be mentioned that the control strategies we have
developed for this specific vehicle are extendable to fit most kinds of multi-actuation
configuration of EVs, like an individual hub motor for each wheel.

Figure 1. Actuator topology of the case study vehicle.

2.1. Equations of Motion

A two-track vehicle model is applied for the design of the path-tracking controller.
The model is formulated around the vehicle’s centre of gravity (CoG), and with assumptions
that the vehicle travels on a horizontal plane, while the pitch, roll and heave motion are
neglected. The model is shown in Figure 2. Focusing on the longitudinal, lateral and yaw
motion of the vehicle, the equations of motion can be derived based on Newton–Euler
equations using the present tyre forces, and are given as follows:

m(V̇x − Vyr) = (FFLx + FFRx) cos δF − (FFLy + FFRy) sin δF

+(FRLx + FRRx) cos δR − (FRLy + FRRy) sin δR
(1)

m(V̇y + Vxr) = (FFLx + FFRx) sin δF − (FFLy + FFRy) cos δF

+(FRLx + FRRx) sin δR − (FRLy + FRRy) cos δR
(2)

Iz ṙ = lF · (FFLx + FFRx) sin δF + lF · (FFLy + FFRy) cos δF

−lR · (FRLx + FRRx) sin δR − lR · (FRLy + FRRy) cos δR

−wL · (FFLx cos δF − FFLy sin δF)

−wL · (FRLx cos δR − FFLy sin δR)

+wR · (FFRx cos δF − FFRy sin δF)

+wR · (FRRx cos δR − FRRy sin δR),

(3)

where m and Iz stand for the mass of the vehicle and its moment of inertia about the vertical
axis through the CoG. lF and lR represent the distances from the CoG to the front and rear
axle, while wL and wR refer to the left and right portions of the track width divided by the
CoG. The longitudinal velocity, lateral velocity and yaw rate of the vehicle are denoted by
Vx, Vy and r, respectively. Fijk (i = F, R, j = L, R, k = x, y) stand for the longitudinal and
lateral tyre forces, while δF and δR represent the steering angles of the vehicle on the front
and rear wheels, respectively.

For the path-tracking purpose, it is fundamental to include the vehicle’s position in
the model. In this paper, the vehicle’s position is identified in the Cartesian coordinate
system, and the derivatives of the vehicle’s position coordinates X and Y as well as yaw
angle Ψ can be calculated as:

Ẋ = Vx cos(Ψ)− Vy sin(Ψ) (4)

Ẏ = Vx sin(Ψ) + Vy cos(Ψ) (5)

Ψ̇ = r (6)



Sensors 2024, 24, 1566 5 of 19

Figure 2. Schematic diagram of the vehicle model.

2.2. Tyre Model

When operating near the adhesive limits, vehicle dynamics become highly nonlinear
due to the characteristics of tyre force. Thus, it is important to apply an appropriate tyre
model when developing control strategies for such extreme operating conditions. Since
control development is focused on planar motion, the pitch and roll of the vehicle as well
as the vertical motion of the sprung mass can be neglected. Under these assumptions,
the vertical load at each wheel can be calculated as a combination of the static weight on each
corner and the transferred load resulting from both longitudinal and lateral acceleration.
The total vertical loads at each wheel Fijz are given by:

FFLz = FFLz0 +
mh
lw

· (−wRax − lRay) (7)

FFRz = FFRz0 +
mh
lw

· (−wLax + lRay) (8)

FRLz = FRLz0 +
mh
lw

· (wRax − lFay) (9)

FRRz = FRRz0 +
mh
lw

· (wLax − lFay), (10)

where ax and ay are the longitudinal and lateral acceleration of the vehicle, and h denotes
the height of the CoG from the ground. Fijz0 are the static vertical forces on each wheel.

The side slip angles on the front and rear tyres can be calculated by the following
equations. It is assumed that the side slip angles are the same at the left and right tyres.

αF = arctan
Vy + lF · r

Vx
− δF (11)

αR = arctan
Vy − lR · r

Vx
− δR (12)

By applying appropriate constraints on the control inputs, an assumption can be made
that the tyres do not go beyond their adhesion limit in the longitudinal direction, and hence,
the rotational dynamics of the wheels can be neglected [30]. In this case, the longitudinal
tyre force is supposed to be proportional to the driving or braking torque applied on the
wheels. As mentioned in Section 1, the front wheels are driven by a single motor through
an open differential; the torque input on the front axle is evenly distributed on the two front
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wheels. With TF, TRL and TRR representing the three torque inputs from motors M1, M2 and
M3, the longitudinal tyre force of the vehicle on each wheel can be calculated as follows:

FFjx =
TF/2
Rw

(13)

FRjx =
TRj

Rw
(14)

The maximum tyre force can be calculated as

Fij,max = µ · Fijz, (15)

where µ refers to the tyre–road friction coefficient. To maintain the crucial coupling between
longitudinal and lateral tyre forces, the maximum available lateral tyre force is determined
by the friction circle

Fijy,max =
√

Fij,max
2 − Fijz

2 (16)

Thus, the lateral tyre force on individual wheels can be calculated by the simplified
Pacejka’s Magic Formula tyre model [31]

Fijy = −Fijz · D sin (C arctan (Bαi)) (17)

3. Predictive Path-Tracking Controller

The nonlinear continuous-time system can be described as:

ẋt = f c(xt, ut), (18)

where xt stands for the state vector [Vx, Vy, r, X, Y, Ψ]T and u refers to the control input
vector. With regards to the actuation configuration, there are four formulations to be
investigated in this paper, including FWS, FWS-TV, 4WS and 4WS-TV. For the FWS and
FWS-TV formulations, the RWS angle is not included in the controller and thus remains
zero. For the FWS and 4WS formulations, it is assumed that the driving torque delivered
on each wheel equals the same, which means the torque from the three motors have
the relationship:

TF
2

= TRL = TRR = Tw, (19)

where Tw is the actual control input in the FWS and 4WS formulations. Table 1 shows the
actuation configuration of each formulation, and the control input vector u of each of them
is shown as follows:

uFWS = [δF, Tw]
T

uFWS−TV = [δF, TF, TRL, TRR]
T

u4WS = [δF, δR, Tw]
T

u4WS−TV = [δF, δR, TF, TRL, TRR]
T

(20)

Table 1. Actuation topologies of the controllers.

Controller Steering Driving Torque

FWS FWS only Same on each wheel
4WS FWS + RWS Same on each wheel

FWS-TV FWS only TV applied on rear wheels
4WS-TV FWS + RWS TV applied on rear wheels

The controller development is based on NMPC, and is realized in the sampled-data
framework by discretizing the nonlinear continuous-time system with the explicit Runge–



Sensors 2024, 24, 1566 7 of 19

Kutta 4th order method. The main purpose of the controller is to follow the reference path
at the reference velocity, and the discrete NMPC problem is formulated as

min
x,u

N−1

∑
k=0

(xk+1 − xre f ,k+1)
TQ(xk+1 − xre f ,k+1) + uk

T Ruk

st. x0 = xinitial

xk+1 = fd(xk, uk), k = 0, · · · , N − 1

xmin ≤ xk ≤ xmax, k = 0, · · · , N − 1

umin ≤ uk ≤ umax, k = 0, · · · , N − 1,

(21)

where N is the prediction horizon steps, xre f is the reference for state vector x, namely

[Vx,re f , Vy,re f , rre f , Xre f , Yre f , Ψre f ]
T , and Q, R are the weighting matrices of the state and

control input vectors, respectively. fd represents the discrete-time system obtained from
fc. In terms of the constraints on control commands, it is worth mentioning that despite
the use of box constraints in this paper, the formulation can easily take a time-varying
constraint on the control inputs.

The reference path is parametrized by the arc length S along the path from the origin
point, where S ∈ [0, L] and L is the total length of the path. With this parameterization,
the position Xre f (S), Yre f (S) of any point on the reference path can be obtained by calculat-
ing the third order polynomial for the argument S. In addition, the tangential angle of the
path at the point can be obtained as

Ψre f (S) = arctan
∂Yre f (S)
∂Xre f (S)

, (22)

and is used as the reference yaw angle of the vehicle. This parameterization takes ad-
vantage of the known waypoints on the reference path and provides an accurate enough
interpolation within them [20].

For path-tracking purposes, the relative position of the vehicle with regards to the
reference path is required. Point (Xre f (S0), Yre f (S0)) is proposed as the projection of the vehicle
position on the reference path, and S0 can be obtained by solving the optimization problem

S0 = min
S

√
[X − Xre f (S)]2 + [Y − Yre f (S)]2. (23)

S0 can be used to denote the progress of the vehicle along the reference path, and the
distance between the vehicle and this projection point refers to the lateral deviation of
the vehicle from the path. In order to reduce the computational time, the solving of this
optimization problem is carried out in a local range, which means only the waypoints
within a specific range are included in the problem. The range is identified based on the
vehicle’s previous position and is proportional to the velocity. This could massively increase
the efficiency of localization while maintaining an accurate solution under the assumption
that the vehicle does not deviate far from the reference path.

For the discrete objective function, a total of N waypoints are required to generate xre f .
The waypoints are supposed to follow the projection point (Xre f (S0), Yre f (S0)), with an
interval of ∆S,

∆S = Sk+1 − Sk = Vre f · ts, k = 0, · · · , N − 1, (24)

where Vre f is the reference velocity and ts is the sampling time of the discrete-time system.
Figure 3 shows a diagram of the generated waypoints based on the feedback states of the
vehicle. The reference state vector xre f is then evaluated by carrying out third-order spline
polynomials based on the argument S.
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Figure 3. Diagram of the reference waypoints. The red point represents the vehicle’s position, while
the green point stands for the projection of the vehicle position on the reference path. The interval
of the waypoints ∆S = Vre f · ts, where Vre f is the reference velocity and ts is the sampling time of
the controller.

Figure 4 shows the diagram of the complete control algorithm. The parameterization
of the desired path is completed offline prior to the simulation. The solvers for the optimiza-
tion problems are generated with FORCESPRO [32,33], which is an MPC and embedded
optimization solution developed by Embotech.

Figure 4. Diagram of the control system.

4. Simulation Results

In this section, we demonstrate the path-tracking performance of the vehicle with
different control formulations and configurations according to the simulation results. Ex-
cept for the real-time implementation, the simulation is carried out in the MATLAB
Simulink environment. The generated NMPC solvers are imported into the Simulink
model, which is connected to IPG CarMaker to provide a vehicle dynamics simulation
with a high-fidelity vehicle model and scenario. All the simulation sessions are run on a
workstation laptop (Intel Core i7-8750H CPU at 2.2 GHz with 32 GB RAM).

In this paper, a double U-turn scenario as shown in Figure 5 is used for testing the
control performance. The desired path consists of two connected U-turns, with two straights
before and after them, and the radius of both the U-turns is 20 m. Instead of the double
lane change manoeuvre that is commonly used to examine vehicle stability, the double
U-turn scenario is adopted in this work as the fixed curvature helps to better capture
the difference in path-tracking performance brought by the different levels of actuation.
In addition, the step change in curvature in the middle of the double U-turns requires the
vehicle to turn sharply for path-tracking, which is challenging in terms of vehicle response
and stability, especially when the vehicle is operating close to the limits of handling. This
helps us to understand and compare the vehicle’s flexibility with different controllers by
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seeing how close the vehicle can get to this path. In the simulation, the reference velocity
of the vehicle is 52 kph, which is close to the handling limits of the vehicle corresponding
to the turning radius as well as the maximum tyre–road friction coefficient. This can well
demonstrate the control performance at the limits of handling, and can thus better visualize
the difference among all actuation topologies. Table 2 shows the parameters of the above
vehicle and tyre models. The weighting factors of MPC for each controller can be found
in Equations (25) and (26), and they are obtained by scaling down the relative weight of
each variable with their respective scaling factor. The scaling factors equal the square of
each variable’s reasonable value and bring the different terms in the objective function to
a similar level, while the relative weights are used to reflect the priority of each variable.
In this work, more penalization was put on position X and Y deviation, as well as the
control inputs. In order to compare the performance of different actuation topologies, it is
ensured that each variable’s weighting factor is consistent across all topologies.

Figure 5. Reference path for the vehicle to follow. Here, L refers to the straight length, and R refers to
the turning radius.

Table 2. Parameters of the vehicle model.

Parameter Value Parameter Value

m [kg] 874.5 B 9.50
Iz [kg m2] 1597.7 C 1.63

lF [m] 0.815 D 1.16
lR [m] 1.180 δF,lim [deg] 19
wL [m] 0.765 δR,lim [deg] 19
wR [m] 0.765 TF,lim [Nm] 800
h [m] 0.297 TRL,lim [Nm] 350

Rw [m] 0.315 TRR,lim [Nm] 350

Q = diag([50.0, 50.0, 16.4, 100, 100, 328.3]) (25)

RFWS = diag([9848.4, 0.0011])

RFWS−TV = diag([9848.4, 0.00031, 0.0011, 0.0011])

R4WS = diag([9848.4, 9848.4, 0.0011])

R4WS−TV = diag([9848.4, 9848.4, 0.00031, 0.0011, 0.0011])

(26)
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4.1. Path-Tracking Performance of Different Actuation Topologies

In this part, the simulation results are presented regarding the path-tracking perfor-
mance of the vehicle with the four controllers, which have a sampling time of 0.02 s and a
prediction horizon of 1 s. The acceleration diagram of the vehicle during the path-tracking
process is shown in Figure 6a. It can be seen that the vehicle is quite close to the acceleration
limit identified by the tyre friction circle, which indicates that the vehicle is at the limits of
handling with all the four controllers at the double U-turns. Figure 6b shows the velocity-
tracking performance of the vehicle. A larger velocity deviation takes place during the
sharp turn, but with the 4WS-TV controller, the vehicle tends to have the smallest velocity
variation during the double U-turns. It can also be noticed that there is some steady-state
deviation on the straights, which is due to the presence of penalization on torque inputs in
the objective function. If the steady-state deviation is to be further reduced, more torque
inputs would be required. This would lead to a larger overall objective and would not
be the optimal solution from the controller’s perspective. Figure 6c shows the yaw rate
of the vehicle with different controllers. It can be noticed that with the FWS and FWS-TV
controllers, there is a larger overshoot in the yaw rate in response to the curvature change
compared with the 4WS and 4WS-TV controllers. This indicates that the application of
4WS does a better job than TV in terms of reaching the required yaw rate during cornering,
while 4WS together with TV can further increase the vehicle’s stability when operating at
the limits of handling.

(a) g-g diagram

(b) Velocity (c) Yaw rate
Figure 6. States of the vehicle with the four controllers.

Figure 7 shows the lateral deviation εy of the vehicle from the reference path with
all the four controllers, and Table 3 provides a summary of the average and maximum
lateral deviation with the controllers. In general, the increase in actuation leads to a smaller
lateral tracking error. The vehicle obtained the largest lateral deviation up to 1.337 m
with the FWS controller in the double U-turn scenario. By comparing the FWS, 4WS and
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FWS-TV controllers, it can be seen that the application of either RWS or TV can significantly
enhance the cornering response and reduce the lateral deviation value, while the utilization
of TV seems to provide a better performance than 4WS, with the ability to reduce lateral
deviation more quickly. By applying both 4WS and TV, the lateral deviation is reduced most
significantly compared to the FWS case. The average tracking error is 73% smaller, and the
error is around 0.4 m even at the sharp change in curvature. This proves the advantage of
RWS in addition to TV for autonomous vehicle path tracking, particularly when close to
the limits of handling. RWS improves the vehicle’s flexibility and potential to deal with
emergency scenarios that require sharp turning.

Figure 7. Lateral deviation of the vehicle with the four controllers.

Table 3. Average and maximum lateral deviation of the vehicle with the four controllers.

ts [s] Average |ϵy| [m] Maximum |ϵy| [m]

FWS 0.531 1.337
4WS 0.256 0.684

FWS-TV 0.248 0.642
4WS-TV 0.141 0.404

Figure 8 shows the driving torques of the three motors with the four controllers. It
can be observed that there is some oscillation in the driving torque commands, and this is
due to the controller making efforts to track the reference velocity at the limits of handling
condition. In general, it can seen that there is less oscillation in the torque commands of
the FWS-TV and 4WS-TV controllers, which indicates that with the application of TV, it
tends to be easier to maintain the vehicle’s handling stability. Furthermore, it can be seen
from Figure 8a that the FWS-TV and 4WS-TV controllers require less driving torque on the
front axle as a result of TV application. As shown in Figure 8c, the two controllers with
TV generate a yaw moment on the rear axle during the turning, which helps to satisfy
the required yaw rate, to enhance vehicle stability and thus to improve the path-tracking
performance. In addition, due to the application of 4WS, the 4WS-TV controller requires less
driving torque on the rear wheels compared with the FWS-TV controller, which requires
more torque to compensate for the absence of RWS.

Figure 9 shows the steering angle commands from the four controllers to the vehicle.
Figure 9a compares the front steering commands by the FWS and FWS-TV controllers,
and it is shown that with the application of TV, the FWS-TV controller requires less front
steering angle input than the FWS controller. In Figure 9b, both the 4WS and 4WS-TV
controllers tend to have front and rear steering angle in opposite directions in response to
the change in curvature, which could generate a larger yaw moment than the FWS and
FWS-TV controllers to deal with the harsh change in turning direction. With the utilization
of TV, the 4WS-TV controller requires less steering angles on the wheels than the 4WS
controller, which is an additional advantage brought by TV.
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(a)

(b) (c)
Figure 8. Driving torque commands of the four controllers. (a) Front motor torque commands.
(b) Rear motor torque commands of the FWS and 4WS controllers. (c) Rear motor torque commands
of the FWS-TV and 4WS-TV controllers.

(a) (b)
Figure 9. Steering angle commands of the four controllers. (a) Steering angle commands of FWS and
FWS-TV controllers. (b) Steering commands of 4WS and 4WS-TV controllers.

Figure 10 shows the computational time of each controller. Here, the solve time refers
to the time that the FORCESPRO solver takes to solve the MPC optimization problem.
The FWS controller has an average solve time around 0.01 s and a maximum solve time
lower than 0.03 s. In comparison, the 4WS-TV controller has an average solve time longer
than 0.03 s and a maximum solve time up to 0.07 s. In general, with an increasing level of
actuation, the controller takes a longer computational time due to the system complexity.
The average solve times of 4WS, FWS-TV and 4WS-TV are 16%, 115% and 216% higher
than that of the FWS controller. The black dashed line in Figure 10 marks the sampling
time of the controllers, which is 0.02 s. This determines the maximum solve time allowance
for real-time execution, and it can be seen that none of the four proposed controllers can
be directly implemented in real time. The FWS and 4WS controllers have the potential for
real-time operation if the maximum solve time is capped, while the FWS-TV and 4WS-TV
cannot be run in real time with the current parameters.
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Figure 10. Computational time of the four controllers.

By comparing the simulation results of the four proposed controllers, it is obvious
that both 4WS and TV are able to improve the path-tracking performance of the vehicle.
TV improves the vehicle’s response and stability in turning by generating a yaw moment
directly. In addition to that, 4WS is able to manipulate the vehicle’s motion with the
direction of FWS and RWS angles; thus, the vehicle’s flexibility is increased. The 4WS-
TV controller provides the best path-tracking performance among the four formulations,
but at the same time, it requires the most computational time among the four controllers
and cannot be directly implemented in real time. Hence, further investigation is required
on the simplification of the system complexity of the 4WS-TV controller for the purpose of
real-time operation.

4.2. Path-Tracking Simulation Results with Different Time Parameters

In Section 4.1, the proposed 4WS-TV controller has shown its great advantage for
path tracking. On the other hand, the system complexity is preventing the controller
from operation in real time. In order to implement the 4WS-TV controller in real time,
its system complexity needs to be reduced. One approach to do this while retaining
the control formulation is to limit the prediction steps of the MPC formulation. In this
part, the control performance of the 4WS-TV controller is further studied with different
prediction horizons and sampling times, in order to explore the possibility of the real-time
operation of the controller.

First, the effects of prediction horizon on control performance is studied. The sampling
time ts is fixed as 0.02 s, and five different prediction horizon times t of 0.6 s, 0.8 s, 1.0 s,
1.2 s and 1.4 s are used in the simulation. The lateral deviation of the vehicle is shown in
Figure 11 to demonstrate the path-tracking performance, and Table 4 summarizes the aver-
age and maximum lateral deviation values with different prediction horizons. As expected,
the vehicle achieves a relatively smaller lateral deviation throughout the reference path with
a longer prediction horizon, with the average lateral deviation being reduced by 81% with a
prediction horizon of 1.4 s, compared to a 0.6 s prediction horizon. This is because a longer
prediction horizon allows the controller to plan for a further look-ahead distance, and im-
proves the feasibility to identify the optimal control actions according to the cost function.
On the other hand, it can be seen from Table 4 that the maximum lateral deviation value does
not change monotonically with the prediction horizon. After the prediction horizon exceeds
1.0 s, the maximum |ϵy| value starts increasing with longer prediction horizons. This
is because with a longer prediction horizon, the controller carries out control planning
in a longer timescale, which potentially leads to a less responsive action in terms of
reference tracking.
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Figure 11. Lateral deviation of the vehicle with 4WS-TV controller with a fixed sampling time of
0.02 s and different prediction horizon times.

Table 4. Average and maximum lateral deviation of the vehicle with 4WS-TV controller with a fixed
sampling time of 0.02 s and different prediction horizon times.

t [s] Average |ϵy| [m] Maximum |ϵy| [m]

0.6 0.613 1.747
0.8 0.280 0.783
1.0 0.141 0.404
1.2 0.122 0.454
1.4 0.117 0.508

Figure 12 shows the solve time information of the 4WS-TV controller with different
prediction horizons. Despite the better path-tracking performance, the controller has
a longer solve time with a longer prediction horizon. With a 0.6 s prediction horizon,
the controller has the best potential to run in real time, while with a prediction horizon of
1.4 s, the average solve time is 213% higher, and is more than twice of the sampling time.
According to Table 4 and Figure 12, it can be inferred that a prediction horizon time of 1.0 s
achieves a relatively good balance between control performance and computational time,
and thus is probably suitable for the real-time implementation of the 4WS-TV controller.
However, the solve time is still higher than the limitation given by the sampling time, so
next, the performance is studied with different sampling times.

Figure 12. Solve times of the 4WS-TV controller with a fixed sampling time of 0.02 s and different
prediction horizon times.

Next, the prediction horizon time t is fixed as 1.0 s, and the sampling time ts is
gradually reduced, giving increasing prediction steps of MPC. Four different sampling
time are applied here in the simulation, including 0.05 s, 0.04 s, 0.025 s and 0.02 s. As shown
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in Figure 13 and Table 5, a better prediction of the system dynamics could be achieved with
a shorter sampling time; the controller with a 0.02 s sampling time achieves the smallest
lateral deviation for path tracking.

Figure 13. Lateral deviation of the vehicle with 4WS-TV controller with a fixed prediction horizon of
1.0 s and different sampling times.

Table 5. Average and maximum lateral deviation of the vehicle with 4WS-TV controller with a fixed
prediction horizon of 1.0 s and different sampling times.

ts [s] Average |ϵy| [m] Maximum |ϵy| [m]

0.05 0.164 0.432
0.04 0.151 0.423
0.025 0.145 0.406
0.02 0.141 0.404

However, the difference in path-tracking performance with various sampling times
is not significant. The relative difference between the maximum and minimum value of
average lateral deviation is 14%, while as shown in Figure 14, there is a large difference
regarding the solve time. With a sampling time of 0.02 s, it takes 2.4 times longer on average
to solve the NMPC problem, in comparison with the sampling time of 0.05 s. With sampling
times of 0.05 s and 0.04 s, the 4WS-TV controller is able to guarantee operation in real time
as the solve time is maintained below the boundary. In comparison, the controller cannot
run in real time with a sampling time of 0.025 s or 0.02 s due to the solve time exceeding
the limit. In summary, the combination of the 0.04 s sampling time and 1.0 s prediction
horizon is proven to be able to obtain a good balance between control performance and
computational time, and thus is suggested as being suitable for real-time implementation
of the proposed 4WS-TV controller.

Finally, the 4WS-TV formulation with a 0.04 s sampling time and 1.0 s prediction
horizon is implemented on a Speedgoat mobile real-time target machine (Intel Core i7-
3555LE CPU at 2.5 GHz with 4 GB RAM and 4MB L2 cache). A 7DoF vehicle model
based on [34] with an extension of RWS functionality is used for the real-time simulation.
The vehicle dynamics simulation runs at a frequency of 1 kHz. Figure 15a and Figure 15b,
respectively, show the velocity-tracking and path-tracking performance of the vehicle
in the real-time simulation. The velocity-tracking error is less than 0.2 m/s, while the
lateral deviation of the vehicle from the reference path is up to 0.8 m, which is similar
to the former simulation results. Figure 16 shows the task execution time (TET) of the
control algorithm running in Speedgoat. The capability of the proposed control strategy
for real-time execution is validated as the TET remains below the sampling time of the
controller. The real-time simulation results prove that the proposed 4WS-TV controller is
real-time implementable, and the control performance corresponds with the simulation
results in CM.
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Figure 14. Solve time of the 4WS-TV controller with a fixed prediction horizon of 1.0 s and different
sampling times.

(a) Velocity. (b) Lateral tracking error.
Figure 15. Velocity and lateral tracking error of the vehicle with 4WS-TV controller under real-time
implementation with 0.04 s sampling time and 1.0 s prediction horizon.

Figure 16. Task execution time of 4WS-TV controller under real-time implementation with 0.04 s
sampling time and 1.0 s prediction horizon.

5. Conclusions

In this paper, we have presented a path-tracking controller for multi-actuated au-
tonomous EVs equipped with 4WS as well as TV functionality. The controller design is
based on NMPC, and the control formulation has the ability to adapt to different levels
of actuation. Four controllers including FWS only, FWS with TV, 4WS and 4WS with TV
are constructed and compared in the aspect of path-tracking performance. According to
the simulation results, the 4WS-TV controller is able to achieve the best path-tracking per-
formance, especially at the limits of handling condition, by exploiting the multi-actuation
capability. When carrying out the same manoeuvre, the maximum lateral deviation of the
vehicle from the reference path is around 0.4 m, which is significantly smaller than that with
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the other three controllers. In addition, with the 4WS-TV controller, there is less oscillation
in the vehicle’s yaw rate in transient conditions, which indicates that the application of
over-actuation formulation can enhance the vehicle’s stability as well as flexibility at the
limits of handling in corners.

Furthermore, it has been proven that the particular level of over-actuation can be
implemented in real time with NMPC control formulation, which is another contribution
of this paper. In order to reduce system complexity, the impact of prediction horizon and
sampling time on the control performance has also been studied. As expected, a longer
prediction horizon and shorter sampling time can, in general, have a relatively better path-
tracking performance with smaller lateral deviation, at the cost of a higher computational
time. Among the different combinations of prediction horizons and sampling times, a
compromise has been made between path-tracking performance and computational effi-
ciency, with the combination of a 0.04 s sampling time and 1.0 s prediction horizon time.
Finally, the control strategy is implemented in a Speedgoat target machine for real-time
simulation, and the simulation results prove that the proposed 4WS-TV controller including
the specific nonlinearities of vehicle dynamics is able to run in real time with the particular
time parameters while achieving the expected control performance.

In future work, further experimental testing is to be carried out to validate the perfor-
mance with different levels of actuation. Predictive filtering will also be introduced and
investigated as to how that will affect the control performance in response to signal noise
and model uncertainty, which is critical in practical implementation. In addition, online
path planning will be integrated into the control strategy taking into account the vehicle
dynamical capability.
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