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Abstract: Stroke survivors with hemiparesis require extensive home-based rehabilitation. Deep
learning-based classifiers can detect actions and provide feedback based on patient data; however,
this is difficult owing to data sparsity and heterogeneity. In this study, we investigate data augmenta-
tion and model training strategies to address this problem. Three transformations are tested with
varying data volumes to analyze the changes in the classification performance of individual data.
Moreover, the impact of transfer learning relative to a pre-trained one-dimensional convolutional
neural network (Conv1D) and training with an advanced InceptionTime model are estimated with
data augmentation. In Conv1D, the joint training data of non-disabled (ND) participants and double
rotationally augmented data of stroke patients is observed to outperform the baseline in terms of
F1-score (60.9% vs. 47.3%). Transfer learning pre-trained with ND data exhibits 60.3% accuracy,
whereas joint training with InceptionTime exhibits 67.2% accuracy under the same conditions. Our
results indicate that rotational augmentation is more effective for individual data with initially lower
performance and subset data with smaller numbers of participants than other techniques, suggesting
that joint training on rotationally augmented ND and stroke data enhances classification performance,
particularly in cases with sparse data and lower initial performance.
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1. Introduction

Stroke survivors often experience hemiparesis, which is characterized by weakness
or mobility limitations on one side of the body [1]. Many post-stroke patients experience
hemiparesis owing to incomplete recovery of motor function in the upper extremities [2].
To restore motor function in the affected limb, patients require extensive training involving
repetitive movements using the use-dependent learning mechanism to facilitate neural
plasticity [3]. However, upon discharge from the clinic, most patients tend to develop a
habit of not using the affected limb in their daily lives, motivated by the fear of negative
consequences such as pain and the failure of motor tasks—this phenomenon is known as
learned non-use [4]. Encouraging the use of the affected limb in daily activities requires a
feedback system that monitors the patterns and frequencies of use [5]. Wearable sensors,
such as smartwatches and smart bands, are suitable hardware candidates for feedback
systems because of their widespread availability. For home-based rehabilitation systems to
perform effectively, they must utilize classification algorithms capable of recognizing the
activities of daily living (ADL) performed using the affected side.

With recent advances in deep learning, several operational models for recognizing
activities within non-disabled (ND) populations have been proposed [6,7]. Deep-learning
models do not depend on domain-specific feature engineering; instead, they automatically
extract learned features, rendering them generalizable to other domains. However, the
distinct patterns and sparsity inherent in movement data of stroke patients complicate the
direct application of deep learning methods to activity recognition.
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While wearable sensor data have been primarily utilized for the diagnosis and assess-
ment of patient movement [8,9], several studies have explored methods to enhance the
performance of classification models by incorporating data from both ND populations and
patients with movement disabilities, e.g., hemiparetic stroke patients. O’Brien et al. [10]
used smartphone sensors to train a random forest (RF) model to classify four gait-related
activities (lying and sitting, standing, walking, and using the stairs) in both gait-impaired
patients with stroke and healthy participants. The study revealed that a classifier trained
on data gathered from healthy subjects performed poorly when tested on stroke data.
Lee et al. [5] utilized bilateral inertial measurement unit (IMU) sensors on both wrists to
classify ADL tasks in stroke survivors and a control group. ADL movements were classified
as either goal-directed or non-goal-directed using logistic regression and the kinematic
characteristics of the movements were estimated using a RF model. Meng et al. [11] utilized
accelerometers, gyroscopes, and surface electromyography (EMG) signals to classify four
ADL movements (walking, brushing teeth, washing face, and drinking) in stroke patients
and ND individuals. Various machine learning-based models were trained, with a sup-
port vector machine exhibiting the best performance. The study by Um et al. [12] is one
of the few studies to have applied various time-series transformations, such as scaling,
rotation, permutation, magnitude, and time-warping, to augment wearable sensor data;
the augmented data were used for training a binary classifier to distinguish bradykinesia
from dyskinesia in Parkinson’s disease. It demonstrated that most transformations enhance
the classification performance of a convolutional neural network (CNN) model, with ro-
tation, permutation, and time-warping proving to be the most effective. Celik et al. [13]
converted IMU data into images and augmented to improve the classification performance
of pre-trained CNN models. The data consisted of six classes (walking, ascending, descend-
ing, sitting, standing, and lying down) sourced from healthy subjects, individuals with
Parkinson’s, and stroke survivors.

However, most existing studies have focused on data related to only a few gross body
movements, typically involving walking, standing, and lying. To assess the impact of
data augmentation on real-world applications, we conducted experiments encompassing
52 ADL movements involving the upper extremities in a real home environment [14]. In
this prior study, we discovered that joint training using data from both ND individuals
and stroke patients yielded more effective classification performance compared to training
based on either ND or stroke data exclusively. Additionally, the study demonstrated that
data augmentation based on rotation enhanced the model performance significantly under
all tested conditions. However, numerous research questions remain unanswered, such as
the amount of augmented data required, the effectiveness of other types of transformations,
and the influence of different augmentation strategies on the evaluation of individual data.

In this context, the current study aims to investigate the effects of data augmentation
systematically with the following goals. First, data augmentation based on rotation, permu-
tation, and time-warping was tested using two different baseline datasets involving varying
amounts of synthetic data—stroke data and ND + Stroke data. Second, transfer learning
based on the pre-trained ND data and training using a more advanced convolutional
model, InceptionTime [15], were tested with rotation augmentation. Third, the classifica-
tion performance of individuals in the stroke group while using rotation augmentation was
investigated. Finally, subsets with different numbers of participants, ranging from two to
12, were sampled from the original stroke data, and the effect of rotation augmentation was
measured to evaluate the contribution of data augmentation to the sparse data domain.

2. Materials and Methods

This study investigates the effects of training strategies data augmentation techniques
on activity recognition in stroke patients, where training data are sparse and exhibit a
distinct distribution compared to ND populations. To achieve this goal, various data
transformations and training strategies, including transfer learning and joint training,
were evaluated on ADL tasks based on the Jeonju University Inertial Measurement Unit
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(JU-IMU) dataset. This dataset is publicly available from a previous study [14] “https:
//github.com/youngminoh7/JU-IMU (accessed on 28 February 2024)”.

2.1. Dataset

The publicly available JU-IMU dataset introduced in a previous study was used.
Although the dataset also included the range of motion task, only the ADL task was used
for training and evaluation in this study. In aggregate, 42 participants took part in the study,
including 28 ND volunteers and 14 patients with hemiparetic stroke. The participants
performed 52 different ADL movements in a home environment. The dataset comprised
values of five IMU sensors attached to both sides of the wrists, upper arms, and trunk of the
participants. Nine out of the 14 stroke subjects suffered from right hemiparesis (subgrouped
as “StrokeRH”), while the remaining six suffered from left hemiparesis (“StrokeLH”). The
patients were instructed to perform ADL movements primarily on their affected side, even
though all of them were right-handed before the onset of stroke. Severity was measured
using various clinical assessments, with the Fugl-Meyer Assessment for Upper Extremity
(FMA-UE) being a representative clinical metric. The mean and standard deviation were
50.4 and 10.2, respectively, with the minimum and maximum values among the patients
being 33 and 66, respectively, out of a total of 66 points. Detailed information on the dataset
is provided in the Materials and Methods section of a previous study [14].

2.2. Preprocessing

In the ADL task, 42 participants performed each of the 52 movements five times
consecutively. The segments of the five repeated movements were annotated by human
experimenters. A single segment of data consisted of 30 channels corresponding to five
sensors equipped with six channels each (x, y, and z axes of an accelerometer and gyro-
scope). Before the segments were transmitted into deep learning models, their lengths
were adjusted to be exactly 3700 time points using linear interpolation, corresponding to a
46.25-s duration. Additionally, all channel-wise means were subtracted from the raw sig-
nals to make the mean of each channel in the segments equal to zero. Scaling was applied
to match only the between-sensor scales because the accelerometer and gyroscope signals
exhibited different units and scales. To this end, all accelerometer signals were divided
by 2.537, and all gyroscope signals were divided by 0.478. These divisor constants were
derived based on the global standard deviation of all corresponding channels across the
segments. Finally, all channel signals were smoothed by taking the moving average of the
last ten points. These preprocessed segments were then sliced into multiple windows by
applying the sliding window technique with a window size of 740 and stride of 150 time
points. Twenty windows were produced for each segment, serving as unit data for the
classification models.

2.3. Models

The same Conv1D baseline model in the previous study [14] (Figure 1a) was adopted. It
comprised four convolutional layers, with 32, 64, 128, and 256 kernels with one-dimensional
size = 5 and stride = 2. The kernels were convolved using the temporal dimensions of the data.
After passing through the convolutional layers, the output was flattened and transmitted into
three dense layers with 800, 200, and 52 neurons, respectively. The rectified linear unit (ReLU)
activation function [16] was applied following each convolutional or dense layer. Additionally,
a dropout operation [17] with a probability of 0.7 was applied to the first two dense layers to
regularize overfitting.

In addition to the baseline Conv1D model, the more advanced InceptionTime
model [15], based on the Inception module (Figure 1b), was trained and evaluated in
some of the augmentation scenarios (Section 2.5). The Inception module reduces the num-
ber of channels by applying a bottleneck layer following a convolution with a kernel of size
1. From the bottleneck layer, three kernels of different sizes (10, 20, and 40) were convolved
through the temporal dimension. Additionally, the maximum pooling of the input was
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convolved with a kernel of size 1 and concatenated with the output of the three kernel con-
volutions. This inception module captured temporal patterns of various lengths effectively.
The output of the Inception module was transmitted to the subsequent Inception module
stacked with the residual connections. There were six Inception modules in aggregate,
each equipped with 32 filters. In both models, the final layer was a softmax layer with
52 neurons, corresponding to the number of classes in the ADL task.
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warping—were tested in this study. The rotation transformation rotated a vector formed 
by the three axes of either the accelerometer or the gyroscope in three-dimensional space. 
Components of a rotation axis vector were randomly sampled from a uniform distribution 
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Figure 1. Schematic diagrams representing the data dimensions of the two deep learning models.
The lengths of data and the number of channels do not match those in the real models used. Coloured
lines indicate the result of a convolution operation. (a) Conv1D model: Kernels of fixed size perform
convolution operations through the time dimension. Only two kernels are depicted for brevity.
(b) InceptionTime model [15]: Number of channels is decreased via projection onto a number
of “bottleneck” layers (only one bottleneck layer is depicted). From the bottleneck layers, one-
dimensional kernels of different sizes are applied, and the resulting features are concatenated with
the max pooling result.

2.4. Data Augmentation

Among simple time-series transformations techniques, three methods known to be
effective in boosting classification performance [12]—rotation, permutation, and time-
warping—were tested in this study. The rotation transformation rotated a vector formed
by the three axes of either the accelerometer or the gyroscope in three-dimensional space.
Components of a rotation axis vector were randomly sampled from a uniform distribution
over [−1, +1], and the rotation angle was randomly sampled from a uniform distribution
over [−90◦, +90◦]. Rotation was applied to all time points in the data window. Permutation
transformation was used to split each data window into four subsegments of different
lengths and randomly permutate the temporal orders to create a new window. Time-
warping transformation was used to distort the temporal intervals between time points
randomly. Figure 2 depicts examples of these three transformations applied to a data
sample. Random seeds were used to control the randomness in the transformations.
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Figure 2. Data transformation for augmentation. (a) Demonstration of rotation at a certain time
t. The three axes (x, y, and z) of a sensor form a vector (“original”) in a three-dimensional space.
The vector is rotated by a random angle around a randomly chosen axis, resulting in a new vector
(“rotated”) with the updated components (x’, y’, and z’). The rotation is consistently applied to all
points overtime for a given data instance. Adapted from Ref. [14]. (b) Transformation examples. All
plotted lines were obtained from the x-axis of the accelerometer in the sensor attached to the right
wrist. (Left panel): rotation; (Middle panel): permutation; (Right panel): time-warping. Borders of
the sub-segments are plotted as vertical gray lines.

2.5. Training and Evaluation
2.5.1. Leave-One-Subject-Out Cross-Validation (LOSOCV)

To ensure unbiased estimation of the effects of data augmentation, leave-one-subject-
out cross-validation (LOSOCV) was employed under all conditions. Two conditions using
only un-augmented original data, the stroke condition (Figure 3a, without using trans-
formed data) and ND + Stroke condition (Figure 3b, without using transformed data) were
used as baselines. For each baseline condition, a set of transformed data using one of the
three transformation methods (rotation, permutation, and time-warping) was added to
the original training data for augmentation. To observe whether more augmented data
would improve model performance, both single and double augmentation strategies were
applied. Single augmentation involved the same amount of data as the original stroke
training data (from 14 − 1 = 13 participants in each cross-validation). Double augmentation
involved two sets of transformed data obtained from the stroke training data. These two
sets of transformed data differed from each other in terms of the sets of seeds applied to
control the randomness. Additionally, to evaluate whether the transformed data preserve
the properties and features of the original data, the Train on Synthetic, Test on Real (TSTR)
evaluation method [18] was applied. In this approach, LOSOCV was trained solely using
the transformed Stroke data, with the original Stroke data reserved for evaluation.

Data augmentation was based solely on the Stroke data, leaving the ND data un-
changed. This was intended to maintain a balance between the two distinct datasets of ND
and Stroke because the amount of available stroke data was only half of that of available ND
data. The effect of data augmentation is significantly influenced by the specific instance of
the transformed data used; hence, multiple LOSOCV runs (three to nine) were applied for
each combination of the original data (Stroke vs. ND + Stroke) and their transformed forms
(rotation, permutation, and time-warping). In each LOSOCV run with data augmentation,
different sets of seeds were used to generate different instances of transformed data.
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Figure 3. Training and evaluation based on LOSOCV. Participants’ data in Transformed and Original
were used for training. Participants’ data with white background were not used for training. (a) The
Stroke condition: Only Stroke data were used for both baseline training and augmentation training.
In baseline training, no transformed data were used. (b) The ND + Stroke condition: All participants’
data in the ND group were used in conjunction with Stroke data. In baseline training, no transformed
data were used. In augmentation training, transformed data from Stroke data were added together.

2.5.2. Training with the Stroke Subsets

To examine the impact of data augmentation in sparse data scenarios, where only
a limited number of Stroke patient data are accessible, we subsampled various numbers
of participants from the Stroke group. Out of 14 Stroke patients, n participants (where
n = 12, 10, 8, 6, 4, 2) were randomly selected and the data of these participants constituted
training subsets. The subsets of n = 2, 3, and 6 were each sampled six, four, and two
times, respectively, to mitigate biases stemming from small sample sizes. Evaluation was
conducted on all Stroke participants not included in the training subsets. The evaluation
results were averaged across all test participants, similar to LOSOCV. The single and double
rotation transformations were applied to all the training subsets.

2.5.3. InceptionTime and Transfer Learning

The aforementioned LOSOCV runs were tested using the baseline Conv1D model to
ensure consistency. Additionally, the InceptionTime model introduced in Section 2.3 was
also tested with the single and double rotational augmentations under the ND + Stroke
condition. Furthermore, transfer learning was carried out by re-instantiating the final dense
layer before the softmax layer in the Conv1D model. In this transfer learning scenario, the
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model was initially trained solely on the ND data. Subsequently, the final dense layer was
re-instantiated with random parameters, and the parameters of the remaining layers were
set to be updated based on additional training using the Stroke data, both with the original
and the rotation-augmented data.

2.5.4. Optimization

For optimization, the AdamW optimizer (learning rate = 0.001, betas = (0.9, 0.999),
eps = 1 × 10−8, and weight decay = 0.01) [19] was utilized to minimize the cross-entropy
loss. The batch size was set to 256, and the training epoch was adjusted to comprise
approximately 5200 batch iterations. Because the augmented conditions corresponded to
more training data than the original, the adjusted training epoch ensured that all LOSOCV
conditions had similar number of iterations during training. The final result was evaluated
as the median F1-score between fixed iterations ranging from 5000 to 5009.

2.6. UMAP

To evaluate the contribution of data augmentation, particularly rotation transforma-
tion, to the enhancement of classification performance, a dimension-reduction technique
called uniform manifold approximation and projection (UMAP) [20] was applied. UMAP
is based on Riemannian geometry and algebraic topology. Similar to t-SNE [21], it projects
high-dimensional data distributions to lower-dimensional spaces; however, is more scalable
to larger datasets, offering increased run-time performance. The technique was applied to
the output feature of the final dense layer before the softmax layer in the Conv1D model,
mapping from a domain of dimension 200 to one of dimension 2 for visual inspection.
In this manner, the model’s learned mappings of data distributions can be visualized
by projecting all data instances. The projected distributions of the original stroke and
rotation-augmented data were compared visually.

2.7. The OPPORTUNITY Dataset

The OPPORTUNITY dataset [22] contains sensor recordings of daily activities in
a realistic environment similar to the JU-IMU dataset. To evaluate the effectiveness of
data augmentation methods on this publicly available dataset, we adopted the OPPOR-
TUNITY challenge setup, where four participants engaged in 18 kitchen activities. We
selectively chose IMU sensors attached to the upper body and both feet, resulting in a
dataset with 54 dimensions. The NULL class in the original dataset was excluded to apply
data augmentation. Besides the sensor dimension and the exclusion of the NULL class, the
remaining training and test protocols followed those of the DanHAR model [23], one of the
state-of-the-art (SOTA) methods for the OPPORTUNITY challenge. Additionally, the Incep-
tionTime model was also trained and tested for reference. The three data augmentation
techniques—rotation, permutation, and time warping—were applied to the predefined
split of training data. Unlike JU-IMU, however, both the training and test data contained
split subsets from the same subjects (S2 and S3). The OPPORTUNITY dataset contained
imbalanced class distributions, prompting the use of data augmentation to bolster the
classes with fewer samples. As a result of data augmentation, all classes except one were
augmented to have 2500 training samples. The exceptional class had 2583 samples, with no
additional augmented data applied to it.

3. Results
3.1. Data Exploration

Figure 4 depicts an example of individual variability within the same class (“InsertEn-
velope”) and Figure 5 shows overlapping plots of the same class. The top two rows depict
data from eight participants in the ND group and the bottom two rows depict data from
eight participants in the stroke group. Notably, the two patterns corresponding to the ND
and Stroke groups were distinct. Participants in the stroke group exhibited less prominent
peaks in terms of both amplitude and duration than those in the ND group. The mean
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curves in Figure 4 exhibit similar patterns. Additionally, the individual signals were much
less coherent in the stroke group than in the ND group (mean correlation coefficient be-
tween signals: stroke = 0.048, ND = 0.226), resulting in an even weaker mean signal than
that of the ND group.
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Figure 5. Overlapping plots of a single channel (R.Wrist-Accelerometer-Y) corresponding to the class
“InsertEnvelope” as obtained from all participants in each group. The thin lines represent individual
signals, and the thick lines represent the mean signal of each group. Top panel: The ND group.
Bottom panel: The Stroke group.
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3.2. Training Results
3.2.1. Baseline Results

Figure 6 depicts the learning curves of all participants with stroke in the two baseline
LOSOCVs—one trained with only stroke data and another trained using ND + Stroke data.
Each curve depicts an increase in the participant’s F1-score when the baseline Conv1D
model was trained using the other participants’ data. Table 1 summarizes the training
results. The mean F1-score for each condition was calculated by averaging the participants’
individual F1-scores. Each participant’s individual F1-score was obtained from the median
of the F1-scores between 5000 and 5009 iterations. The F1-scores of the Stroke group
increased when trained with the ND + Stroke data (54.0%) compared to the stroke-only
data (47.3%). However, StrokeRH (56.9%) increased much more than StrokeLH (48.7%).
Note that the participants in both the ND and StrokeRH groups used their right hand,
whereas those in the StrokeLH group used their left hand as the primary hand while
performing asymmetric activities.
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Figure 6. Learning curves of all stroke participants in two baseline LOSOCVs. Each curve represents
the increase in a participant’s F1-score with respect to the number of iterations. Each iteration
corresponded to an update from a single batch containing 256 training samples. (Left panel): LOSOCV
trained using only data from the Stroke group. (Right panel): LOSOCV trained using ND + Stroke
data. StrokeRH represents stroke patients with right hemiparesis, StrokeLH represents stroke patients
with left hemiparesis.

Table 1. Mean F1-scores of the participants in each combination of training group and evaluation group.

Training Group
Evaluation Group

ND Stroke StrokeRH StrokeLH

Trained using Stroke data – 47.3 ± 10.4% * 47.2 ± 11.6% 47.6 ± 9.1%
Trained using ND + Stroke 90.5 ± 4.6% 54.0 ± 13.1% 56.9 ± 14.2% 48.7 ± 10.1%

* The number after “±” represents the standard deviation of individual F1-scores in the corresponding Stroke
group or its subsets (StrokeRH and StrokeLH).

3.2.2. Data Augmentation

Three types of data transformations—rotation, permutation, and time-warping—were
tested for both Stroke and ND + Stroke baselines. Figure 7 and Table 2 compare the effects of
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the data augmentation techniques in single- and double-augmentation configurations. Nine
LOSOCV runs were performed for each augmentation configuration with different random
seeds. The colored semi-transparent dots in Figure 7 represent the cross-subject mean F1-
scores corresponding to each LOSOCV run, calculated in the same manner as the baselines.
In aggregate, nine (some overlapping) colored dots were obtained for each augmentation
method. The lines in Figure 7 connect the baseline to the mean F1-scores corresponding to
each augmentation method. Under both baseline conditions, data transformations were
applied only to the Stroke data. Among the three augmentation transformations, rotation
yielded the greatest increase in F1-score, followed by time-warping and permutation, both
in the Stroke and ND + Stroke baselines. Double augmentation yielded only a slight
increase in performance compared to single augmentation. Permutation yielded only a
small increase with single augmentation and a slight decrease with double augmenta-
tion. Overall, the double rotational augmentation on the ND + Stroke baseline yielded
the best F1-score of 60.9% among all augmentation conditions when trained with the
Conv1D model.
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Figure 7. Effect of data augmentation on the Stroke (left panel) and ND + Stroke (right panel)
baselines. Each colored, semi-transparent dot represents a mean F1-score of a LOSOCV run. The
black dot (“original”) represents the baseline result for each baseline. The lines connect the baseline
result to the mean of each augmentation result. Single-Aug represents single augmentation, Double-
Aug represents double augmentation.

Table 2. Mean F1-scores of the participants in each combination of augmentation types and amount
of augmented data.

Augmentation
Type

Amount of Augmented Data

Stroke Stroke + Single
Augmentation

Stroke +
Double

Augmentation
ND + Stroke

ND + Stroke +
Single

Augmentation

ND + Stroke +
Double

Augmentation

Rotation
47.3%

53.9 ± 0.5% * 54.9 ± 0.5%
54.0%

60.3 ± 0.6% 60.9 ± 0.7%
Time-warping 50.5 ± 0.4% 51.0 ± 0.5% 55.7 ± 0.6% 55.8 ± 0.7%
Permutation 48.3 ± 1.0% 47.5 ± 0.7% 54.7 ± 0.5% 54.4 ± 0.4%

* The number after “±” represents standard deviation of mean F1-scores over nine LOSOCV runs.
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Table 3 displays the outcomes of the Train on Synthetic, Test on Real (TSTR) [18] eval-
uation method. The three transformed datasets (rotation, permutation, and time warping)
comprised exclusively of transformed signals as training data, while the original data
was reserved solely for evaluation. The transformed training data all demonstrated slight
increase in F1-scores compared to the original data, suggesting that these transformations
preserve the characteristics of the original data and may even enhance generalizability to
unseen data.

Table 3. Mean F1-scores of the Train on Synthetic, Test on Real (TSTR) data evaluation. The original
data were inserted as a reference.

Training Data

Original (Stroke) Rotation Permutation Time Warping

47.3% 49.8 ± 0.5% * 47.7 ± 0.7% 49.2 ± 0.8%
* The number after “±” represents standard deviation of mean F1-scores over nine LOSOCV runs.

Figure 8 and Table 4 present the results for two additional training methods—transfer
learning using the pre-trained model (Conv1D) and training using the InceptionTime
model. First, the pre-trained model was trained using all 28 ND participants’ data and then
it was fine-tuned using the data of participants with stroke, except one left for validation,
following the LOSOCV approach. The resulting F1-scores of transfer learning were slightly
lower than, albeit close to, those of the ND + Stroke Conv1D model, in which both ND and
stroke data were used for training from the beginning. The InceptionTime model exhibited
the best performance among all augmentation conditions considered. These additional
training conditions also yielded an increase in the F1-score with rotational augmentation.
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Figure 8. Comparison of some training methods. A coloured dot indicates the mean F1-score of each
experiment run. Original: no augmentation applied, Single-Rotation: rotation applied to Stroke data
and original data is augmented, Double-Rotation: two sets of differently rotated data augmented.
ND + Stroke: both ND and Stroke data used as a baseline. NDpre + Stroke: Conv1D model first
pre-trained with ND data, then transfer learning applied using Stroke data. Stroke: trained with
Stroke data as a baseline.
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Table 4. Mean F1-scores of the participants in each combination of training groups × evaluation groups.

Training Method
Amount of Augmented Data

Original Single-Rotation Double-Rotation

Stroke (Conv1D) 47.4% 53.9 ± 0.5% * 54.9 ± 0.5%
NDpre + Stroke (Conv1D) 52.8% 58.8 ± 0.4% 60.3 ± 0.4%
ND + Stroke (Conv1D) 54.0% 60.3 ± 0.6% 60.9 ± 0.7%
ND + Stroke (InceptionTime) 62.8% 66.0 ± 0.4% 67.2 ± 0.4%

* The number after “±” is standard deviation of mean F1-scores across multiple LOSOCV runs.

3.2.3. Correlations of Individual Data

Figure 9 depicts the correlation between the FMA and baseline F1-scores of all par-
ticipants in the stroke group. When training was conducted based solely on stroke data,
the correlation coefficient was 0.63 (p-value = 0.016), and when it was conducted using
ND + Stroke data, it was 0.75 (p-value = 0.002). These strong correlations between the
functional assessment of a patient’s movement capabilities and the performance metric
of the classification model indicate that the movement patterns of patients with more
severe symptoms were more distinct from those of ND populations, thus leading to lower
performance metric scores.
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Figure 9. Correlation between FMA and individual F1-scores in the two baseline LOSOCVs. (Left
panel): training with Stroke data only, (Right panel): training with ND + Stroke data.

Figure 10 depicts the effects of rotational augmentation on an individual basis by
calculating the percentage increase in F1-score compared to the baselines. The negative
correlation (−0.70, p-value = 0.005) in the stroke baseline indicates that rotational augmen-
tation further increased the F1-scores of participants with lower initial performances. The
correlation in the ND + Stroke baseline was also negative (−0.49, p-value = 0.08), but its
trend was less salient and the statistical significance was marginal. Higher initial F1-scores
of the ND + Stroke baseline could have affected this observation.
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Figure 10. Correlation between the baseline F1-scores and the percentage increase in F1-scores in the
two baseline LOSOCVs. (Left panel): training with Stroke data only, (Right panel): training with
ND + Stroke data. The percentage increase was calculated based on the mean increase caused by
both single and double rotational augmentations.

3.2.4. Training on Subsets

Figure 11 depicts the change in F1-score with respect to varying numbers of partici-
pants in the stroke training group. Corresponding to each number of participants, multiple
subsets were sampled and trained, as in the case of LOSOCV. All stroke participants, except
those included in the training subset, were evaluated for each condition. Multiple LOSOCV
runs were averaged to observe the trends. Rotational augmentation was applied only to the
training subsets. Corresponding to all participant numbers, the augmentations improved
F1-scores by similar margins, with an average improvement in absolute value by 5.8% for
single rotational augmentation and 6.9% for double rotational augmentation. However, the
percentage increase relative to the original subsets was larger corresponding to subsets with
fewer participants (right panel in Figure 11). This indicates that rotational augmentation
was particularly effective when the amount of training data was small.
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3.2.5. Dimension Reduction 
Figure 12 compares the UMAP embeddings of the original data (left panel) with those 

of the rotationally augmented data (right panel). Embedding was performed from the fi-
nal dense layer before the softmax layer in the Conv1D model, projecting 200-dimension 
feature vectors onto a two-dimensional space. Each dot represents an instance of 15,640 
stroke data points. Rotational augmentation shifted the distribution of the embedding and 
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Figure 11. Change in F1-score with respect to varying numbers of training subjects in the Stroke
group. Original: trained with subsets of the Stroke group. Single rotation: trained with rotationally
augmented data (augmented only corresponding to the included subset). Double rotation: trained
using two differently augmented datasets. (Left panel): The solid lines represent the mean and the
shaded areas represent ± standard deviation ranges over multiple LOSOCV runs for each condition.
(Right panel): Percentage increase of the augmented datasets relative to the original training sets.
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3.2.5. Dimension Reduction

Figure 12 compares the UMAP embeddings of the original data (left panel) with those
of the rotationally augmented data (right panel). Embedding was performed from the final
dense layer before the softmax layer in the Conv1D model, projecting 200-dimension feature
vectors onto a two-dimensional space. Each dot represents an instance of 15,640 stroke data
points. Rotational augmentation shifted the distribution of the embedding and improved
the separation of between-class clusters, thereby improving model performance.
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(Left panel): Embedding of the model trained with the original Stroke data, (Right panel): embedding
of the rotationally augmentated model. The colored dots represent the 52 classes.

3.2.6. The OPPORTUNITY Dataset

Table 5 presents a summary of the mean F1-scores achieved through data augmentation
on the OPPORTUNITY dataset using the two state-of-the-art (SOTA) models, DanHAR [23]
and InceptionTime [15]. The results indicate that time warping effectively improves the
F1-score, while permutation and rotation exhibit similar or slightly inferior performance.
Given that training and evaluation were conducted on sliding windows generated from
continuous and repetitive signals, the impact of permutation may already have been
accounted for. Additionally, the inferior performance of rotation implies that the original
data likely maintained consistent angular configurations over time. This observation may
be attributed to the OPPORTUNITY challenge’s limited subject numbers, which comprised
data from only five participants, with two participants (S2 and S3) contributing to both
training and test sets. Consequently, even minor angular deviations from the original data
could have compromised the model’s classification performance.

Table 5. Mean F1-scores of the OPPORTUNITY dataset with data augmentation.

Model
Data Augmentation

Original Rotation Permutation Time Warping

DanHAR 60.5% 59.4 ± 0.7% * 61.7 ± 0.6% 65.0 ± 1.0%
InceptionTime 60.0% 56.2 ± 0.6% 59.4 ± 1.2% 62.9 ± 1.3%

* The number after “±” is standard deviation of mean F1-scores across multiple LOSOCV runs.



Sensors 2024, 24, 1618 15 of 18

4. Discussion

In this study, the fundamental research questions were why the classification per-
formance trained on the stroke participants’ data was much worse than that on the ND
participants’ data, how they differed, and whether various training strategies, including
data augmentation, transfer learning, and more advanced classification models, would
improve performance.

Data exploration revealed that stroke data yielded less salient signals in time series
in both spatial and temporal dimensions. This indicates that it is more difficult for a
classifier to capture representative patterns from stroke data. Additionally, the stroke
data exhibited large inter-subject variability in terms of performance, which rendered the
identification of common features that work for all cases more difficult. Moreover, another
variability in the stroke group arose from data asymmetry. Based on the experimental
design, patients with left hemiparesis (StrokeLH subgroup) were instructed to use their
affected, non-dominant hand (the left hand) primarily for asymmetric ADL movements.
This instruction was implemented because, otherwise, the StrokeLH participants would
use their non-affected (right) side, revealing no difference compared to the ND group
corresponding to movements performed primarily using their non-affected side. Because
of this, the StrokeLH participants experienced greater difficulty in moving their affected
and non-dominant extremities, thereby creating distinct patterns compared to the StrokeRH
data. Adding the ND group data improved the mean F1-score up to 54.0% from 47.3%
in the case of the stroke-only baseline training despite their different patterns compared
with that of the stroke group. However, the increase was mostly observed in the StrokeRH
subgroup (56.9%); it was minimal in the StrokeLH subgroup (48.7%). This implies that the
ND data overlapped more with the StrokeRH data, in which participants primarily used
the same side.

Among the three data augmentation transformations tested in this paper, rotational
transformation yielded the best results, followed by time-warping and permutation. This
result was consistent across the two baselines (Stroke and ND + Stroke) as well as single and
double augmentations (Figure 7 and Table 2). Relative to the performance enhancements for
the baselines, the variability induced by different augmentation techniques was relatively
small (less than 1% of the standard deviation compared to an approximately 6% increase
in the absolute F1-score corresponding to rotation). However, the additional improve-
ment achieved using double augmentation was minute compared to single augmentation
corresponding to all transformations. This indicates that simple transformations have
limitations in extending data distributions to further enhance classifier performance. The
performance enhancement induced by rotation could be interpreted as a transformation
simulating the variability in limb orientation of the participants during movements, supple-
menting the uncovered feature space from the original data. This was observed indirectly
in the embedding space via dimension reduction using UMAP (Figure 12). However, the
two transformations acting on the temporal dimension, permutation and time warping,
were relatively less efficient. Permutation mimics partially mixing the order of movement
segments, while time warping simulates lengthening or shortening the duration of sub-
movements. These properties could already be inherent in the temporal patterns of the
original data. Additionally, the sliding windows take the form of temporal transformation
starting at different phases of repeated movements.

One notable observation was that the individual F1-scores of the participants exhibited
a strong correlation with their functional assessments of movement capabilities (FMA).
Thus, a higher F1-score in terms of model classification could indicate that a patient’s
movement patterns are closer to those of the ND population and vice versa. The correlation
coefficient for the ND + Stroke baseline (0.75) was greater than that for the Stroke baseline
(0.63), which verifies this theory because joint training with the ND data further enhanced
the data of the participants with higher FMA scores. Combined with rotational augmen-
tation, the relative increase in F1-scores exhibited the opposite trend—participants with
lower FMA scores exhibited further improvements compared to the baselines (Figure 10).
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This result, in conjunction with the test on subsets (Figure 11), suggests that the data of
participants with lower initial performance usually exhibit a larger relative improvement
compared to those with initially higher performance. Clinically, the correlation between
F1-score and FMA may be utilized to assess a stroke patient’s motor functions in ADL
at a home environment. While some studies have proposed methods for automatically
evaluating a stroke patient’s motor functions from sensor data [9], few have investigated the
connection between motor functions and the performance of a classification model in the
domain of ADL. In addition to its original intent of contextualizing a home rehabilitation
system, monitoring the individual classification performance may offer insights into the
recovery of motor functions during home training.

Among the two new training strategies considered, the one based on transfer learn-
ing outperformed the stroke baseline but yielded slightly worse performance than the
ND + Stroke baseline. The results indicate that transfer learning in this data configura-
tion did not outperform joint training of the two populations. In contrast, training with
InceptionTime yielded results superior to those obtained using other training strategies.
InceptionTime includes a bottleneck layer, followed by kernels of three different lengths
(10, 20, and 40), which enables the capture of temporal patterns at multiple scales over a
long range using a relatively smaller number of trainable parameters. This efficiency of
the model structure enabled the capture of features from sparse and varying data of the
stroke group.

A few studies [12,13] have adopted an approach similar to that used in this study.
Um et al. [12] applied various time-series transformations to augment movement data
related to Parkinson’s disease to enhance a binary classifier’s performance in distinguishing
bradykinesia and dyskinesia. Celik et al. [13] converted IMU data into images and subjected
them to data augmentation to improve the classification performance of pre-trained CNN
models. However, these studies tested data augmentation under restricted conditions,
with conclusions that may not be generalizable to a broader context. Additionally, few
studies have systematically investigated various combinations of training conditions to
examine the effects of data augmentation. As a different approach to data augmentation,
recent studies have adopted deep generative models to augment time-series data and
improve classification performance [24,25]. However, these generative models require the
generation of conditional synthetic data for augmentation, thereby requiring a substantial
amount of labeled data for training. This limits the usability of generative model-based
approaches in sparse data domains, such as the classification of patient movements.

5. Conclusions

The current study explored various training techniques, including data augmentation,
to improve classification performance of stroke data. One hypothesis was that the abnormal
movement patterns of stroke patients would result in distinct, albeit partially overlapping,
feature distributions compared to ND populations performing the same movements. The
effectiveness of the spatial transformation (rotation) in improving classifier performance
suggests that augmenting data by covering unexplored feature spaces (see Figure 12) is an
efficient strategy for addressing data heterogeneity. The study comprehensively investi-
gated different training strategies and models, combination of original and transformed
data volumes, and the impact of data augmentation at the individual subject level. These
findings offer insights into enhancing movement classifiers to support development of
home rehabilitation systems. The subset analysis further demonstrated that data augmen-
tation also benefits sparser datasets, a crucial aspect of clinical applications where patients’
data collection is challenging.

However, the study has certain limitations. The methods were tested only on a
single specific dataset (JU-IMU), partially due to the difficulty of accessing other public
time series datasets on ADL movements with sufficient class numbers. Additionally,
despite of improvement with various strategies, there remained a significant gap between
the performance of classifiers on ND and stroke data. Further investigation into data
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augmentation techniques, including those derived from generative models [24–26] and
utilizing datasets from other domains, is necessary to address the issue of data sparsity.
Lastly, monitoring individual patient’s movement patterns in long-term rehabilitation
may offer insights into the relationship between motor function recovery and changes in
movement patterns, as well as the corresponding classification performance.
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