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Abstract: Early detection of ransomware attacks is critical for minimizing the potential damage
caused by these malicious attacks. Feature selection plays a significant role in the development of
an efficient and accurate ransomware early detection model. In this paper, we propose an enhanced
Mutual Information Feature Selection (eMIFS) technique that incorporates a normalized hyperbolic
function for ransomware early detection models. The normalized hyperbolic function is utilized to
address the challenge of perceiving common characteristics among features, particularly when there
are insufficient attack patterns contained in the dataset. The Term Frequency–Inverse Document
Frequency (TF–IDF) was used to represent the features in numerical form, making it ready for the
feature selection and modeling. By integrating the normalized hyperbolic function, we improve the
estimation of redundancy coefficients and effectively adapt the MIFS technique for early ransomware
detection, i.e., before encryption takes place. Our proposed method, eMIFS, involves evaluating
candidate features individually using the hyperbolic tangent function (tanh), which provides a
suitable representation of the features’ relevance and redundancy. Our approach enhances the
performance of existing MIFS techniques by considering the individual characteristics of features
rather than relying solely on their collective properties. The experimental evaluation of the eMIFS
method demonstrates its efficacy in detecting ransomware attacks at an early stage, providing a more
robust and accurate ransomware detection model compared to traditional MIFS techniques. Moreover,
our results indicate that the integration of the normalized hyperbolic function significantly improves
the feature selection process and ultimately enhances ransomware early detection performance.
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1. Introduction

The rapid increase in digital interconnectivity and reliance on technology has made
cyber-attacks, especially malware, a significant global threat [1–3]. Malware, or malicious
software, has evolved since the early 1970s, represented by various emerging types such
as viruses, worms, Trojans, spyware, and ransomware [4–6]. Ransomware, which holds
user data and files for ransom by denying access, gained popularity among attackers when
enabling technologies such as Ransomware-as-a-Service (RaaS), internet, cryptography, and
hard-to-trace digital currencies emerged [7,8]. These technologies allow even inexperienced
attackers to create and distribute ransomware and receive payment without a significant
risk–reward fear of being caught. Currently, it is unclear what percentage of attackers are
ever brought to justice. Anecdotally, there are examples of circumstances where the ransom
has been recovered (e.g., Colonial Pipeline).

Kaspersky reports that ransomware attacks are increasingly targeting businesses, with
30% of infections in 2019 affecting corporate users [9]. Financial losses due to ransomware
attacks have been substantial, reaching billions of dollars worldwide in recent years. These
attacks have surged in recent years, costing an average of USD 170,000 per attack [10]. Since
2020, several major ransomware attacks have occurred, including WannaCry, NotPetya,
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REvil, BlackByte, and LockBit 2.0, targeting various sectors such as healthcare, manu-
facturing, and government [11]. Such an escalation is attributed to several factors like
the growing sophistication of ransomware, increased use of cloud computing, and the
COVID-19 pandemic. Some notable cases include the following:

• Colonial Gas Pipeline attack in May 2021 caused gasoline shortages and price hikes.
The JBS meatpacker attack in July 2021 led to a shutdown of operations in the US and
Australia.

• Kaseya VSA software attack in December 2021 affected over 1500 businesses across
100 countries [12]. Victims of ransomware suffer not only from denied access to data
but also from downtime costs, financial loss, and reputational damage.

Ransomware Overview

Ransomware is typically characterized as either locker ransomware or crypto-ransomware
based on severity. Crypto-ransomware attacks are particularly concerning, as they cannot
be reversed even after removing the malware, often leaving victims with no choice but
to pay the ransom for a decryption key [13]. To effectively protect digital assets, early
detection of impending ransomware attacks is crucial before the encryption phase can take
place [14]. Invariably, early detection can be achieved by observing and analyzing the
processes running on a victim’s machine during the pre-encryption phase [15]. However,
detecting ransomware in its early stages is very challenging due to insufficient data as well
as the variability of attack patterns at this phase [16].

Consequentially, during the early stages of ransomware attacks, the small amount
of data collected poses challenges for early detection and results in low detection accu-
racy [17,18]. Moreover, pre-encryption data lacks sufficient attack pattern characterization
for the detection model to make accurate decisions while simultaneously avoiding the
disruptive consequences of false positive courses of action. Prior studies have shown that
feature selection techniques cannot identify the necessary crucial features that distinguish
ransomware behaviors from normal process behaviors [15,16]. High dimensional features
generated by feature extraction methods like n-gram can lead to overfitting, and many
of these features are either too common, too specific, or redundant, ultimately degrading
detection accuracy [19]. Redundant features may also cause the exclusion of informative
features, which makes early detection even more challenging.

Several studies focusing on ransomware prevention and detection have indeed focused
on understanding the characteristics of attack patterns, including the varied behaviors of
ransomware [20]. These studies have explored state-of-the-art detection methodologies
aimed at disrupting the escalating ransomware problem. Additionally, there has been a
shift towards the development of machine learning-based detection systems, leveraging
dynamic analysis and classification techniques to identify and prevent the constantly mov-
ing target of ransomware attacks [21]. Furthermore, the use of cryptographic algorithms
and reinforcement learning has been proposed as a means to enhance ransomware de-
tection and defense mechanisms [22,23]. In response to the increasing sophistication of
ransomware attacks, researchers have introduced innovative approaches such as file-based
ransomware detectors and self-configurable prevention techniques for the Internet of Medi-
cal Things (IoMT) [24,25]. Additionally, the development of early-stage detection systems
based on pre-attack internal API calls has been explored as a means to mitigate ransomware
attacks [26]. The use of game theory and multi-tier streaming analytics models has been
investigated to enhance the detection of 0-day ransomware attacks using machine learn-
ing [27,28]. Likewise, the analysis of ransomware attack behaviors and the development
of prevention mechanisms have been crucial in understanding the impact of ransomware,
such as the LockBit 2.0 ransomware, and devising strategies to avoid such attacks [29].
Additionally, the use of predictive analysis and context-aware AI in IoT systems has been
proposed to predict and detect ransomware penetration attempts in resource-constrained
IoT environments [30].
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Numerous different feature selection techniques are incorporated in ransomware
and malware detection solutions to reduce data dimensionality and remove redundant
features [31]. Redundancy and relevancy are the main factors that affect the performance of
these techniques, which aim to filter out redundant and irrelevant features while retaining
informative ones [32]. However, redundancy and relevancy are not always separate, and
some relevant features may also be redundant. Therefore, a redundancy–relevant trade-off
is needed during the selection process and is crucial for the feature selection technique to
effectively manage this trade-off [33].

Information theory-based feature selection excels in balancing redundancy and rele-
vancy without assuming a specific underlying data distribution, making it suitable for use
in ransomware early detection where such distributions are hard to perceive [16,34]. How-
ever, this information theory-based method struggles with sparse and incomplete attack
patterns, generating suboptimal feature sets due to the reliance on mutual information cal-
culations. Consequently, incomplete data during the pre-encryption phase of ransomware
attacks makes it difficult to identify common characteristics, leading to redundant and
irrelevant features.

The current techniques that employ a redundancy coefficient calculation are not
well-suited for early attack detection, as the collected data lacks sufficient attack patterns.
This issue negatively impacts the MIFS goal function’s ability to accurately estimate the
redundancy coefficient due to data sparsity that makes it difficult to discern the common
characteristics of features in the selected list. As a result, an enhancement to the redundancy
estimation mechanism within the MIFS goal function is necessary. Although some studies
have tried to address this issue by individually comparing the candidate feature with each
feature in the already-selected set, they assume that the redundancy increases linearly with
the size of the selected set. This does not always hold, as the redundancy score of the
features can vary and not necessarily be linear, especially with early pre-encryption data
that contains incomplete attack patterns.

This paper aims to address this problem by proposing an enhanced redundancy esti-
mation method for the enhanced Mutual Information Feature Selection (eMIFS) technique
to improve the accuracy of ransomware detection. Rather than increasing the redundancy
score linearly, our technique uses the normalized hyperbolic function that follows the
S shape. Such a regime represents the change of the redundancy score for incomplete
pre-encryption data. To this end, the contributions of this paper are three-fold.

• Propose an improved redundancy–relevancy trade-off technique for the goal function
of the MIFS using the normalized hyperbolic function eMIFS.

• Integrate the improved eMIFS into the training phase of the ransomware early detec-
tion model.

• Conduct an experimental evaluation to measure the accuracy of our improved model
and compare it with the existing solutions found in the literature.

2. Related Works

As mentioned above, ransomware attacks target various systems and networks, while
studies on detecting these attacks can be categorized into data-centric and process-centric
approaches [5,35]. Data-centric approaches monitor user data and files, raising alarms when
detecting suspicious changes. However, they do not distinguish between changes made by
benign programs and those by crypto-ransomware, leading to false positive alarms and
ineffective early detection. Process-centric approaches monitor running processes’ behavior
to discover suspicious patterns or computational resource usage but often rely on the entire
runtime data or ad hoc events, which can lead to false alarms and/or be unsuitable for early
detection. Both approaches have limitations in effectively detecting ransomware before the
main sabotage phase, i.e., encryption takes place.

Several approaches attempt to detect crypto-ransomware early by using pre-encryption
phase data to train machine learning algorithms [15,36–38]. Most of those studies rely on
a set of features selected based on their relevancy estimation, which helps to select the
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most important features while reducing data dimensionality. In the study [16], the authors
proposed a Redundancy Coefficient Gradual Upweighting (RCGU) technique to address
the challenge of estimating feature significance in the early (pre-encryption) phase of crypto-
ransomware attacks with insufficient attack patterns. The RCGU technique individually
calculates redundancy between the candidate feature and each feature in the selected set,
making it more effective in detecting redundancy with limited pre-encryption data. The
RCGU approach eliminates the need for difficult-to-perceive common characteristics ex-
traction and improves the redundancy–relevancy trade-off. One of the main contributions
of this paper includes proposing the RCGU technique be incorporated with the MaxMin
approximation technique. In this way, we thereby emphasize the importance of the redun-
dancy term. We have conducted extensive experimental evaluations to demonstrate and
validate the efficacy of the proposed combined techniques.

The study conducted by [15] proposed an Enhanced Maximum Relevance and Mini-
mum Redundancy (EmRmR) algorithm for high-dimensional ransomware feature selection.
The method involves a two-step feature reduction technique using API call-sequence refine-
ment and feature redundancy. The approach refines the data based on the ransomware’s
dynamic characteristics during execution and applies a dynamic programming technique
to achieve maximum relevance and minimum redundancy. The EmRmR algorithm is
compared with the original mRmR method in terms of running time and evaluations on
different datasets. Additionally, the performance of five machine-learning classifiers trained
on the refined system call sequences is evaluated to determine the proposed method’s
effectiveness. As a result, the paper’s main contributions include introducing a refinement
process for system call traces, proposing the EmRmR method to improve feature selection
efficiency, and comparing their performance with the original mRmR results.

An automated wrapper-based feature selection method [27] used along with Particle
Swarm Optimization (PSO) was suggested as a way to identify and categorize ransomware
based on its behavior. The approach achieves the following: (i) eliminates the need for a
predetermined number of input features, (ii) addresses feature selection in datasets with
many dimensions by using a group-based strategy through PSO, and (iii) offers insights
into the suitability of the chosen features for ransomware detection and classification. These
are some of the method’s primary contributions. The study compared the performance and
quantity of features selected from the proposed method with two other feature selection
techniques: Variable-Length Particle Swarm Optimization (VarLenPSO) and Self-adaptive
Particle Swarm Optimization (SaPSO).

The research conducted by [39] focuses on the development of robust features for
ransomware detection systems to effectively handle concept drift, which can render current
features ineffective. While machine learning classifiers have proven effective in detecting
zero-day malware threats, zero-day ransomware detection remains a challenge. The study
distinguishes between zero-day ransomware and truly evolved ransomware based on their
behavioral patterns during execution. The paper contributes by analyzing the evolving
behavioral characteristics of ransomware and proposing a feature selection architecture
(FeSA) that provides an optimal feature set with promising performance under concept
drift, maintaining a slower degradation rate in detection.

Malware visualization, automatic feature extraction, and classification were all pro-
vided by MalFCS [29], a malware categorization mechanism. The malware binaries are
represented as entropy graphs by the framework, which uses convolutional neural net-
works with deep layers to extract features. It is evaluated against current techniques using
the Microsoft and Malimg benchmark datasets. With precision rates of 0.997 and 1, re-
spectively, MalFCS performs exceptionally well in classification and is more resilient to
data imbalances than alternative methods. This is the first study to show that malware
entropy graphs may be used to distinguish families of malware since convolutional neural
networks with deep layers can be applied to them. By adding to current techniques, the
suggested framework can make it more difficult for malware to avoid detection.
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The framework [40] combined machine learning and blockchain technology to en-
hance malware detection accuracy for IoT devices. Machine learning was used for Android
malware detection, creating a vast malware database. The trained model results were
stored in a blockchain-based framework. The methodology first distinguished malware
from benign applications and refined them using enhanced clustering methods, which
calculated feature weights and iteratively reduced unnecessary features. A multi-feature
Naive Bayes algorithm was proposed for malware classification, extracting vital character-
istics and removing noisy objects. Permissioned blockchain was used to store de-tracked
malware feature information, enabling efficient runtime detection. The framework could be
directly applied to mobile devices and offered improved accuracy, robustness, and speed
in detecting and classifying malware.

A malware classification method that uses pre-trained deep convolutional networks
with features extracted from the grayscale images of malware binaries is described in
a feature fusion-based strategy [31]. Once malware binaries have been converted into
grayscale images, data augmentation techniques are applied to resolve data imbalances
in the malware datasets. The best multimodal feature representation is then produced by
merging deep convolutional neural network (DCNN) features and segmentation-based
fractal texture analysis (SFTA) features into a single vector. This feature representation
makes the malware classification model more reliable.

An Android malware static detection method using a Siamese Convolutional Neural
Network (SCNN) was proposed by [41]. The main contributions included proposing an
effective feature extraction method based on frequency in different applications, being
the first to utilize Siamese CNN for Android malicious application detection, comparing
distance calculation methods and finding Euclidean distance to be more effective for
Siamese CNN, and proposing a benign and malicious mean center strategy [41], that can
improve detection efficiency by calculating the distance from two mean centers for category
judgment.

However, the lack of sufficient data during early attack phases affects the feature
selection process, leading to increased redundant features, higher data dimensionality, and
decreased detection accuracy. Our paper proposes an enhanced technique, which improves
the feature selection process by making better redundancy–relevancy trade-offs, allowing
for better estimation of feature significance and overcoming the insufficiency in attack
patterns collected during early crypto-ransomware attack phases.

3. Preliminaries

Mutual information (MI) is a measure of how much information one variable provides
about another. It can be used to evaluate the relationship between two variables, such
as a feature and a target variable. By selecting features with high mutual information
scores, we can reduce the dimensionality of the dataset while preserving the most rele-
vant and informative features. This can lead to improved model performance, increased
interpretability, and reduced computational cost. MI-based feature selection techniques are
particularly useful when dealing with large datasets containing numerous features with
varying degrees of relevance and redundancy.

Let us define two variables, X and Y, where X = {x_1, x_2, . . ., x_i} is an array of input
features, and Y is the vector of output labels. Thus, MI measures how much information
two variables share. Concretely, it is calculated using Equation (1), where I(X;Y) is the
MI between variables X and Y, and P(X), P(Y), and P(X,Y) are the marginal and joint
distributions of X and Y.

I(X, Y) = ∑yϵY ∑xϵX (p(x, y))log
p(x, y)

p(x)p(y)
(1)

The general formula for MI-based feature selection J(Xk) is shown in Equation (2).
It includes the MI between a candidate feature and the class label and the conditional
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MI between the candidate feature and the selected feature set, given the class label. The
coefficients in the equation have values between 0 and 1.

J(Xk) = I(Xk, Y)− β ∑
xjϵs

I
(
Xj, Xk

)
+ γ ∑

xjϵs
I
(
Xj, Xk

∣∣Y)
(2)

Equation (2) can be decomposed into a relevancy term and a redundancy term. The
relevancy term (the 1st expression) measures the amount of information that a candidate
feature provides about the class label. The redundancy term (the 2nd and 3rd expressions)
measures the amount of information that a candidate feature shares with the selected feature
set. Typically, the coefficients β and γ are calculated based on the following equation:

β = γ =
1
|S| (3)

where S denotes the number of selected features. Therefore, when the number of selected
features increases, the value of these coefficients decreases. There are two types of MI-based
feature selection techniques: those that consider only the relevancy term and those that
consider both the relevancy term and the redundancy term. The first type of technique, such
as Mutual Information Feature Selection (MIFS) and Minimum Redundancy Maximum
Relevance (mRMR), only considers the amount of information that a candidate feature pro-
vides about the class label. The second type of technique, such as Joint Mutual Information
(JMI), considers both the amount of information that a candidate feature provides about
the class label and the amount of information that it shares with the selected feature set.

The performance of MI-based feature selection techniques depends on the way that
redundancy is calculated. The coefficients (β and γ) in Equation (2) play a crucial role
in the relevancy–redundancy trade-off, which determines the significance of a feature.
Smaller values of the marginal redundancy coefficient (β) decrease the effect of redundancy,
increasing the significance of a feature. Smaller values of the conditional redundancy
coefficient (γ) also decrease the significance of a feature.

4. Methodology

In this methodology section, we outline the systematic approach and techniques
employed to address the research contribution to achieve the objectives of this study. A
comprehensive description is herein provided of the following: (i) data collection and
pre-processing, (ii) feature selection, and (iii) model development processes, as well as (iv)
evaluation metrics used to assess the performance of the proposed solution. By presenting a
clear and detailed explanation of the methods used, we ensure that the study is transparent,
replicable, and can be built upon by other researchers in the field. The following sections
delve into each aspect of the methodology, highlighting the rationale behind the chosen
techniques and their respective contributions to the overall study.

4.1. Data Collection and Pre-Processing

Data are gathered in the Cuckoo Sandbox, where ransomware samples are run in
a controlled environment and stored in trace files. Then, the data underwent various
data pre-processing activities, which included operations like noise removal, missing data
imputation, and normalization, which were carried out to get the data ready for modeling.
As it guarantees that the data is clear and devoid of information that is unrelated or
misleading, eliminating noise is a crucial stage in the pre-processing of data. Measurement
mistakes, missing values, and outliers are a few examples of how noise can be introduced.
These can all have a detrimental effect on the MIFS detection model’s performance and
lead to conclusions that are unreliable or wrong. To find and remove outliers in each
dataset feature, a filter based on the statistical mean and standard deviation was used in
this procedure.
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eMIFS’s Architecture

Figure 1 shows the architectural design of our eMIFS ransomware detection model.
The model comprises several components starting with ransomware samples run inside the
Cuckoo Sandbox. The runtime data are then stored in trace files, which undergo data pre-
processing to remove the noise and vectorization to convert data into a numerical form. The
vectorization was carried out using Term Frequency Inverse Document Frequency, which
prepares the data for the next step and makes it suitable for modeling. Pre-processing also
involves data standardization by which the data are scaled between 0 and 1. The processed
data are then fed into the eMIFS to select the top n desired features. These features are used
to train the detection model. The model is composed of a machine-learning classifier that
checks the new data instances against its learned knowledgebase and recommends the
decision as to whether it is ransomware or benign.
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Scaling attribute values to a range between 0 and 1 is known as normalization. Its goal
is to stop the machine learning algorithm from training by placing an undue emphasis on
qualities with wider value ranges. By doing this, normalization aids in balancing the impact
of big values on the training procedure, which may otherwise cause the algorithm to give
some attributes more excessive weight than others. Normalization also lessens the chance
of overfitting and helps the algorithm converge more quickly. In this way, normalization
guarantees that no feature is given preference by the model and offers a more realistic
depiction of the connections between the various features in the dataset. Equation (4) below
is therefore employed to standardize the data.

Xnorm = (X − Xmin)/(Xmax − Xmin) (4)

Equation (4) produces a normalized value (Xnorm) for each entry (i.e., entity) within the
dataset. This is accomplished by deducting the minimal value (Xmin) from X and dividing
the resulting number by the dataset’s range (Xmax–Xmin). The feature’s scale is made
consistent throughout the dataset thanks to this normalizing method, which guarantees
that the value of X is scaled to the range between 0 and 1.

4.2. A Normalized Hyperbolic Redundancy Coefficient Upweighting

This section describes our suggested method for estimating feature redundancy, which
we name Normalized Hyperbolic Redundancy Coefficient Upweighting (NH-RCU). De-
termining the degree of confidence in the redundancy term is largely dependent on the
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coefficient β. We provide the NH-RCU strategy, which uses Equation (6) to evaluate redun-
dancy, in contrast to the existing MIFS method, which uses Equation (5) to determine β.

β =
1
|S| (5)

β = 0.5 ∗ (1 + tan
(

S
F

)
) (6)

where F denotes the original feature’s vector. When new features are introduced to the
selected set, the NH-RCU algorithm slowly increases the weights rather than updating the
value of β linearly. This technique guarantees the preservation of common traits among
the selected features. The small size that the selected set S starts with is reflected by the
initial setting of the β value to 0. Using the tanh function (6), β steadily climbs towards 1 as
the set S expands. In Equation (6), the tangent was used to refine β to provide a distinct
advantage in feature selection when dealing with sparse or limited datasets. The rapid
change in the function’s output for small changes in input offers a sensitive mechanism to
differentiate between the features with marginal differences in mutual information values.
This sensitivity is particularly beneficial in early detection scenarios, where the distinction
between relevant and irrelevant features must be made with high precision despite the
paucity of data. The number of required features are used as a stopping criteria.

4.3. NHRCU-Based Mutual Information Feature Selection

The goal of the eMIFS (also referred to as NHRCU-MIFS) is to choose the features
that are most relevant to the class label. Each feature in the first feature set has its mutual
information calculated as part of the process. Next, a new set of features is introduced
to which the feature with the highest mutual information is attached. Until the required
number of features is obtained, this process is repeated (refer to Equation (7)). Next, the
features in the new set are ordered according to how relevant they are to the class label.
The features that rank higher are kept, while the lower features are eliminated. The eMIFS
technique improves our machine learning model accuracy and minimizes data noise by
concentrating on the most important features. It is a versatile technique that can benefit
various applications by improving model performance through effective feature selection.
Figure 2 shows the pseudocode of the proposed NHRCU-MIFS technique.

NHRCU_MIFS(xk) = MI(xk, y)− 0.5 ∗ (1 + tan
(

S
F

)
)

∑
sjϵS

I
(
xk, xj

) (7)

4.4. The Dataset

The study collected ransomware PE files from Virusshare, a public repository, which
included 39,378 ransomware samples from families like CryptoWall, Petya, and WannaCry.
Additionally, 9732 benign applications were downloaded from informer.com. The files
were executed in the Cuckoo Sandbox virtual platform for analysis. Cuckoo Sandbox is an
open-source framework that analyzes malware in a controlled and isolated environment,
tracing API calls and network traffic and providing comprehensive reports in JSON format.
Following the same procedure as those specified above in the related works section, the
study used the Cuckoo Sandbox to run ransomware samples and collect runtime data. The
sandbox submits the sample to a guest machine imitating a victim’s device and captures
the runtime data, including API calls. The guest machine is then restored to a clean state
for the next analysis, ensuring no influence from any previous infections. The JSON files
generated were used to create a dataset, from which features were extracted and selected
before training the detection model.
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Figure 2. The pseudocode for the NHRCU-MIFS technique.

4.5. Experimental Environment and Evaluation Metrics

The eMIFS method was implemented and evaluated using a variety of software and
tools, including Python 3.8, SK-feature, TensorFlow 2.14, Keras 2.14, Scikit Learn 1.3, and
Numpy 1.26. The data preparation, algorithm execution, and analysis of results were
carried out on a computer with an Intel® Core™ i7-4790 CPU @ 3.60 GHz and 16 GB
of RAM. The effectiveness of the eMIFS approach was evaluated using accuracy. The
approximation error of the model was measured using its false positive and false negative
rates. The detection accuracy was calculated using Equation (8). The results showed that
the eMIFS method was able to achieve high accuracy on the dataset. The eMIFS method is a
promising approach for improving the accuracy of the detection model. It is able to select
features that are most relevant to the class label, which helps to reduce the noise in the data
and improve the accuracy of the detection model.

ACC =
TP + TN

TP + TN + FP + FN
(8)

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false
negative, respectively.

5. Results, Discussion, and Analysis

For the first encryption stage of the ransomware lifecycle, the most informative features
were selected using the eMIFS method. The following feature sets, with varying amounts
of features, were tested: 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50. Each of these feature sets was
used to train a variety of machine learning classifiers, including Long Short-Term Memory
(LSTM), Random Forests (RF), Support Vector Machines (SVM), Logistic Regression (LR),
and Deep Belief Networks (DBN). Using a 10-fold cross-validation method, the classifiers’
accuracy was evaluated at various feature quantities. The dataset was split into training
and testing sets. The classifiers’ accuracy in classification was then assessed using the
testing set.
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5.1. Maximizing Feature Discriminative Accuracy

Table 1 provides the accuracy results for each classifier per feature set. Notably, we
observe that the accuracy of the classifiers increases as the number of features grows until a
certain limit, after which the accuracy stops increasing or declines. This indicates that the
top features selected by the proposed eMIFS were discriminative enough to identify the
attack patterns even in the absence of sufficient data. This claim is also supported by the
decline that happens after adding more features caused by the effect of overfitting beyond
the feature discriminative power. For example, LR accuracy increases to 0.919 when the
feature size reaches 30. When the number of features surpasses 30, LR’s accuracy fluctuates
between 0.913 and 0.917. Similarly, the SVM accuracy increases to 0.93 as the number of
features grows to 20, but the accuracy then declines as the number of features continues to
increase.

Table 1. Experimental results of the eMIFS with different sizes of feature sets used to train several
classifiers.

# Features LR SVM RF DBN LSTM

5 0.88 0.903 0.911 0.927 0.93
10 0.882 0.918 0.926 0.932 0.938
15 0.893 0.926 0.932 0.937 0.94
20 0.907 0.93 0.934 0.94 0.942
25 0.91 0.928 0.934 0.946 0.949
30 0.919 0.925 0.93 0.951 0.955
35 0.913 0.921 0.93 0.96 0.964
40 0.917 0.919 0.928 0.961 0.966
45 0.916 0.916 0.923 0.962 0.967
50 0.917 0.915 0.922 0.962 0.967

Likewise, the RF accuracy rises to 0.934 as the number of features reaches 20, but the
accuracy falls when the number of features exceeds 25. Moreover, we observed that the
use of deep learning maintains the increase in accuracy as the number of features grows.
This phenomenon is evident in the DBN, where the accuracy continues to increase from
0.927 to 0.962 as the number of features ranges from 5 to 45. Similarly, LSTM accuracy
increases from 0.93 to 0.967 as the number of features grows from 5 to 45. However, the
increase in accuracy becomes less steep when the number of features surpasses 35 for
both deep learning DBN and LSTM models. Such accuracy values indicate that the top
25 features selected by eMIFS carry sufficient information about the early ransomware
attack patterns. This is attributed to the ability of the normalized hyperbolic function
to control the redundancy calculation of the candidate feature. Instead of increasing the
redundancy score linearly, the NHRCU increases it according to the tanh function that is
bound between 0 and 1. Such a regime is more realistic as the redundancy does not follow
a constantly increasing rate.

5.2. Improving NH-RCU Accuracy via MIFS Integration

To show the efficacy of the proposed NH-RCU technique when integrated with MIFS,
the results are compared with the RCGU-MIFS [16], EMRMR [15], and MIFS [42] feature
selection techniques. The same machine learning classifiers (LR, SVM, RF, DBN, and
LSTM) are used to measure accuracy using different sizes of feature sets ranging from 5
to 50 and incremented by 5 features between each two subsequent sets (sets with a higher
number of features, e.g., 10, 15, 20, . . . etc.). Therefore, classification accuracy is used as
the measurement of classification performance. Figure 3a–e shows the comparison results
between the proposed NH-RCU and the related techniques. Based on these comparison
results, the proposed NH-RCU outperforms RCGU, EMRMR, and MIFS.
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Figure 3. These graphs compare the accuracy of our NH-RCU with the comparable works (i.e.,
RCGU-MIFS, EMRMR, and MIFS) employing a number of classifiers, including (a) LR, (b) SVM,
(c) RF, (d) DBN, and (e) LSTM.

Consider Figure 3a–e, which show that the proposed NH-RCU technique achieved
detection accuracies higher than the RCGU_MIFS of [16] for all selected set sizes. Our
proposed technique also outperformed the accuracy of eMIFS and MIFS. This is attributed
to the ability of the proposed NH-RCU function in estimating the redundancy score of the
candidate features better than the existing methods in the cases of insufficient data. This
demonstrates that eMIFS has the ability to overcome circumstances to represent the change
of redundancy score when the number of features increases in the already-selected set. This
indicates that the proposed techniques were able to perceive information from the features
better than those captured by existing feature selection techniques.
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The comparison results shown in Figure 3a–e indicate how performance improvements
are achieved by increasing the number of features up to a certain limit, as described above.
Notably, when the limit is reached, the accuracy tails off and potentially declines. This
effectively defines the limit empirically due to the effect of the redundancy score that grows
when the number of features increases. Predictably, and consequently, this supports our
assumption that redundancy can be measured between the individual features instead of
the common characteristics of the feature set.

Another reason for accuracy curtailment is the well-known effect of overfitting. The
accuracy (including false positive/negative rates) of ransomware deterrence models suffers
when the number of features increases beyond a specific threshold. Again, this can be
attributed to the increase in the redundancy score that features carry when more features
are added to the selected set. Classical machine learning classifiers like LR, SVM, and
RF experience accuracy declines more typically after a certain limit of feature numbers.
However, such a decline does not happen for deep learning algorithms like DBN and
LSTM due to their ability to perceive hidden characteristics in the features that could not
be perceived by classical machine learning.

5.3. Perceiving Hidden Feature Characteristics

There is a limit to which the number of selected features contributes to improving
accuracy. This limit varies based on the number of features selected within each run. For
example, the maximum accuracy was obtained when training the LR model with 30 features,
whereas the maximum accuracy for SVM was obtained training with 25 features. The
problem of overfitting, which is brought on by adding features and increasing the number
of training epochs, is responsible for the decline in accuracy (or the barely noticeable
improvement) that occurs as the number of features in the detection model’s training
increases.

The dimensionality of the data rises with the number of features. Large data dimen-
sionality negatively impacts the detection model’s accuracy. When working with data that
does not exhibit enough early-stage ransomware behavior, the dimensionality issue gets
even worse. Moreover, there is a greater chance of overfitting when the model’s training in-
corporates a larger number of features. As a result, the classifier’s loss function is unable to
distinguish between false and actual patterns with sufficient accuracy. Consequently, after
a certain number of features, accuracy begins to decline or show no further improvement.

5.4. Comparing Characteristic Measures of eMIFS Robustness

We also conducted a comparative evaluation between the proposed and related tech-
niques in terms of False Positive Rate (FPR), Detection Rate (also called false positive rate),
and F1 score. The comparison of false positive rates (FPR) between the proposed feature
selection technique and related techniques is shown in Figure 4. It reveals nuanced perfor-
mance across different feature counts. Initially, for a low feature count (5), the proposed
technique shows a lower FPR of 0.18 compared to those observed in the related techniques,
indicating a minor but notable efficiency in reducing false alarms with minimal feature
sets. As the number of features increases to 10 and 15, the proposed technique continues
to exhibit lower or equal FPRs (0.16 and 0.14, respectively), suggesting its effectiveness in
maintaining lower false positives even as the feature count increases. Notably, at 25 features,
the proposed technique achieves its lowest FPR of 0.12, surpassing the related techniques
and highlighting its superior capability in minimizing false positives with an optimal
number of features.

However, as the feature count increases beyond 30, the FPR for the proposed technique
slightly rises but remains competitive, indicating a consistent performance across a range
of feature sizes. Specifically, at higher feature counts (40 to 50), the proposed and related
techniques converge towards similar FPRs, with the proposed method maintaining a better
performance compared to its counterparts. This pattern suggests that while the proposed
technique is particularly effective at lower to mid-range feature counts in minimizing false



Sensors 2024, 24, 1728 13 of 17

positives, its advantage becomes less at higher feature counts. However, it still remains an
efficient choice for reducing false positives.

Sensors 2024, 24, x FOR PEER REVIEW  13  of  18 
 

 

5.3. Perceiving Hidden Feature Characteristics 

There is a limit to which the number of selected features contributes to improving 

accuracy. This limit varies based on the number of features selected within each run. For 

example, the maximum accuracy was obtained when training the LR model with 30 fea-

tures, whereas the maximum accuracy for SVM was obtained training with 25 features. 

The problem of overfitting, which  is brought on by adding  features and  increasing  the 

number of training epochs, is responsible for the decline in accuracy (or the barely notice-

able improvement) that occurs as the number of features in the detection model’s training 

increases. 

The dimensionality of the data rises with the number of features. Large data dimen-

sionality negatively impacts the detection model’s accuracy. When working with data that 

does not exhibit enough early-stage ransomware behavior, the dimensionality issue gets 

even worse. Moreover, there is a greater chance of overfitting when the model’s training 

incorporates a larger number of features. As a result, the classifier’s loss function is unable 

to distinguish between false and actual patterns with sufficient accuracy. Consequently, 

after a certain number of features, accuracy begins to decline or show no further improve-

ment. 

5.4. Comparing Characteristic Measures of eMIFS Robustness 

We also conducted a comparative evaluation between the proposed and related tech-

niques in terms of False Positive Rate (FPR), Detection Rate (also called false positive rate), 

and F1 score. The comparison of false positive rates (FPR) between the proposed feature 

selection technique and related techniques is shown in Figure 4. It reveals nuanced per-

formance across different feature counts. Initially, for a low feature count (5), the proposed 

technique  shows a  lower FPR of 0.18  compared  to  those observed  in  the  related  tech-

niques, indicating a minor but notable efficiency in reducing false alarms with minimal 

feature sets. As  the number of  features  increases  to 10 and 15,  the proposed  technique 

continues to exhibit lower or equal FPRs (0.16 and 0.14, respectively), suggesting its effec-

tiveness in maintaining lower false positives even as the feature count increases. Notably, 

at 25 features, the proposed technique achieves its lowest FPR of 0.12, surpassing the re-

lated  techniques and highlighting  its  superior  capability  in minimizing  false positives 

with an optimal number of features. 

 

Figure 4. A comparison of the False Positive Rate (FPR) of our NH-RCU with comparable works 

(RCGU-MIFS, EMRMR, and MIFS). 

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20 25 30 35 40 45 50

FP
R

# of features

proposed RCGU‐MIFS EMRMR MIFS

Figure 4. A comparison of the False Positive Rate (FPR) of our NH-RCU with comparable works
(RCGU-MIFS, EMRMR, and MIFS).

The detection rate shown in Figure 5, a comparison between the proposed feature
selection technique and related techniques, highlights the effectiveness of the proposed
method across various feature counts. Initially, with 5 features, the proposed technique
starts with a detection rate of 0.86. As the feature count grows, at 15 and 20 features,
the proposed technique shows its peak performance with detection rates of 0.90 and 0.91,
respectively, indicating its efficiency in leveraging larger feature sets for improved detection.
Notably, it outperforms all related techniques at these points, suggesting its superior ability
to utilize additional information for better threat identification. The detection rates for
the proposed technique slightly fluctuate but remain high across different feature counts,
highlighting its consistency in maintaining high detection rates.
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Towards the higher end of the feature spectrum (35 to 50), the proposed technique’s
detection rates exhibit slight variations but generally remain better, with a notable return
to a higher rate of 0.90 at 50 features. This demonstrates the technique’s adaptability
and effectiveness across a wide range of feature counts. Although the detection rates of
the related techniques improve or remain steady in some cases, the proposed technique
consistently presents a better performance.

The F1 in Figure 6 measures a comparison between the proposed feature selection
technique and demonstrates the proposed method’s consistent and effective performance
in balancing precision and recall across various feature counts. Starting with five features,
the proposed technique exhibits a better F1 measure of 0.91, outperforming the related
techniques. This trend is maintained as the number of features increases. At the mid-range
of feature counts (15 to 25), the proposed technique maintains an F1 measure of 0.90 to
0.91, indicating its robustness in utilizing an optimal number of features for maximum
effectiveness. Notably, at 30 features, the proposed method achieves its peak F1 measure of
0.92, showing its capability to maximize the harmonic mean of precision and recall with a
moderately large feature set. This is particularly noteworthy as it outperforms the related
techniques, underscoring the proposed technique’s ability to achieve a balance between
false positives and false negatives.
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Figure 6. A comparison of the F1 score of our NH-RCU with comparable works (RCGU-MIFS,
EMRMR, and MIFS).

As the feature count further increases to 40 and beyond, the proposed technique’s F1
measure remains high, demonstrating its consistent performance and adaptability across a
wide range of feature counts. Although the related techniques exhibit improvements or
maintain stable performance in some cases, the proposed technique shows competitive
F1 values, highlighting its effectiveness in the proposed feature selection ransomware
analysis. This consistent performance across different feature counts shows the ability
of the proposed technique to achieve optimal detection capabilities with an emphasis on
precision and recall balance.

5.5. Outlook and Significance of These Results

Future research in ransomware detection can focus on bridging the gap between the
high resource demands of AI-based methods and the efficiency of non-AI-based techniques.
AI solutions, known for their adaptability and precision in identifying complex threats, are
often prohibitive for resource-constrained settings due to their computational intensity. A
key research trajectory involves refining AI algorithms to be more resource-efficient with-
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out sacrificing performance through methods like model pruning and the development of
streamlined neural networks. Concurrently, enhancing non-AI methods to improve their
adaptability and incorporating AI insights could offer immediate, low-resource solutions.
The development of hybrid models that merge the strengths of both AI and non-AI ap-
proaches promises a versatile and scalable cybersecurity framework adaptable to various
computational constraints. Addressing this disparity in resource consumption is crucial
for practical ransomware detection, ensuring comprehensive protection across diverse
organizational sizes and capacities in the face of rapidly advancing ransomware attacks.

6. Conclusions and Future Research

In this paper, we have presented an enhanced MIFS, i.e., eMIFS. This technique incor-
porates a normalized hyperbolic function for ransomware early detection models. Our
approach addresses the challenges associated with the insufficiency of attack patterns in
the dataset and the difficulty in perceiving common characteristics among features.

By individually evaluating candidate features using the hyperbolic tangent function
(tanh), we have improved the redundancy coefficient estimation and adapted the MIFS
technique for early ransomware detection. We have named this improved technique eMIFS
to emphasize an enhanced ransomware detection capability because of the typical sparsity
of characteristic behavior data, especially when early detection is crucial.

The experimental results have demonstrated the efficacy of our proposed method in
detecting ransomware attacks at an early stage, outperforming traditional MIFS techniques.
The integration of the normalized hyperbolic function has significantly improved the feature
selection process, leading to a tailored, more robust, and accurate ransomware detection
model. The improvement has been demonstrated by the results shown in Figure 3a–e. It
suggests that the eMIFS has better performance characteristics compared to results from
either of the EMRMR and MIFS model techniques proposed in prior studies.

The use of the tangent function in eMIFS for calculating the Beta (β) coefficient, how-
ever, may cause several challenges, such as volatility in the feature selection phase due to
unbounded outputs, which can lead to overfitting in varied or noisy data. Regularization
techniques are needed to maintain model generalizability. Additionally, the tangent func-
tion can increase computational complexity and resource demands, particularly with larger
datasets, which may affect scalability and require more efficient algorithms or computing
power for practical applications.

Future research directions include exploring alternative functions and approaches to
further enhance feature selection and redundancy estimation in the context of ransomware
detection. Additionally, it would be beneficial to investigate the applicability of the pro-
posed method to other types of cybersecurity threats and intrusion detection scenarios.
Ultimately, our work contributes to the ongoing efforts to develop more effective and
efficient methods for ransomware early detection, helping to mitigate the ever-growing
risks posed by these malicious attacks.
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