
Citation: Wen, X.; Zhou, M.; Albeshri,

A.; Huang, L.; Luo, X.; Ning, D.

Improving Classification Performance

in Dendritic Neuron Models through

Practical Initialization Strategies.

Sensors 2024, 24, 1729. https://

doi.org/10.3390/s24061729

Academic Editor: Marcin Woźniak

Received: 24 January 2024

Revised: 21 February 2024

Accepted: 29 February 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving Classification Performance in Dendritic Neuron
Models through Practical Initialization Strategies
Xiaohao Wen 1,2 , Mengchu Zhou 2,3,* , Aiiad Albeshri 4 , Lukui Huang 5 , Xudong Luo 1 and Dan Ning 1

1 Teachers College for Vocational and Technical Education, Guangxi Normal University, Guilin 541001, China;
wenxiaohao@gxnu.edu.cn (X.W.); luoxudong@gxnu.edu.cn (X.L.); ningdan@stu.gxnu.edu.cn (D.N.)

2 Faculty of Innovation Engineering, Macau University of Science and Technology, Macau 999078, China
3 Department of Electrical and Computer Engineering, New Jersey Institute of Technology,

Newark, NJ 07102, USA
4 Department of Computer Science, King Abdulaziz University, Jeddah 21481, Saudi Arabia;

aaalbeshri@kau.edu.sa
5 School of Accounting and Audit, Guangxi University of Finance and Economics, Nanning 530031, China;

lukui-hua59@tbs.tu.ac.th
* Correspondence: zhou@njit.edu

Abstract: A dendritic neuron model (DNM) is a deep neural network model with a unique dendritic
tree structure and activation function. Effective initialization of its model parameters is crucial for
its learning performance. This work proposes a novel initialization method specifically designed to
improve the performance of DNM in classifying high-dimensional data, notable for its simplicity,
speed, and straightforward implementation. Extensive experiments on benchmark datasets show
that the proposed method outperforms traditional and recent initialization methods, particularly
in datasets consisting of high-dimensional data. In addition, valuable insights into the behavior of
DNM during training and the impact of initialization on its learning performance are provided. This
research contributes to the understanding of the initialization problem in deep learning and provides
insights into the development of more effective initialization methods for other types of neural
network models. The proposed initialization method can serve as a reference for future research on
initialization techniques in deep learning.

Keywords: dendritic neuron model; initialization methods; deep learning; neural networks

1. Introduction

Deep learning has achieved remarkable success in a variety of machine learning tasks,
such as image recognition, speech recognition, and natural language processing [1–3]. One of
the key reasons for this success is the ability of deep neural networks to automatically extract
complex features from raw data collected from various sensors and other means [4]. However,
their training is a non-trivial task. One of the main challenges is the proper initialization of their
network weights. It has a significant impact on their learning performance. Poor initialization
can lead to gradient vanishing or explosion, which can severely impede a learning process [5].
Gradient vanishing occurs when the gradients propagated through the network become too
small, and the weights are not updated effectively. Gradient explosion, on the other hand,
occurs when the gradients become too large, causing the weights to update too much and
destabilizing a learning process.

The initialization issue for deep neural networks has been widely studied in the
literature, and various initialization methods have been proposed to improve their learning
performance. Random initialization is one of the most commonly used initialization
methods. In this method, their weights are randomly initialized from a uniform or Gaussian
distribution. However, this method has several limitations, including the inability to take

Sensors 2024, 24, 1729. https://doi.org/10.3390/s24061729 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24061729
https://doi.org/10.3390/s24061729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4368-1443
https://orcid.org/0000-0002-5408-8752
https://orcid.org/0000-0003-3796-0294
https://orcid.org/0000-0001-8778-743X
https://orcid.org/0000-0002-3650-8450
https://orcid.org/0009-0008-9131-7076
https://doi.org/10.3390/s24061729
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24061729?type=check_update&version=1

Sensors 2024, 24, 1729 2 of 20

into account network structures and the lack of control over the magnitude of weights.
Moreover, random initialization may lead to gradient vanishing or explosion problems
in training. Pre-training is another initialization method that has been widely used in
deep learning. This method involves training a shallow network layer by layer and
using the learned weights to initialize deep networks [6]. While pre-training can improve
their learning performance, it is computationally expensive and may not be effective for
certain types of neural network models. Other advanced initialization methods have been
proposed in recent years to address the limitations of traditional methods. The Xavier
initialization [5] and He initialization [7] are two widely used ones, which take into account
network structures and activation functions. The former sets the variance of weights based
on the number of input and output neurons, while the latter sets the variance based on the
number of input neurons. Abbe et al. [8] introduce an approach to control the overfitting
problem in neural networks by aligning the initialization process with the target function.
However, the issue of gradient vanishing or explosion in deep network training may
still occur.

In addition to the above methods, there have been several studies on initialization
methods for special neural network models, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). For example, He et al. [9] presented a variant of
the He initialization for CNNs, taking into account the spatial dimensions of the filters.
Mayer et al. [10] utilized the input sequences as a fractal dimension to optimize the recurrent
neural network initialization. Humbird et al. [11] proposed initializing deep feedforward
neural networks with decision trees for performance enhancement. Gabrielli et al. [12]
presented an actuarial loss reserving technique, taking into account both claim counts and
claim amounts.

However, these initialization methods may not be directly applicable to a dendritic
neuron model (DNM), which has a unique neuron structure and activation function. DNM
is a deep neural network model with a dendritic tree structure, which enables it to perform
complex logic operations and approximate functions more accurately than traditional neuron
models [13–15]. Its dendritic structure provides a rich set of features that can be leveraged
to enhance its learning performance. However, the complex dendritic structure of DNM
also poses new challenges. In particular, when processing high-dimensional data, DNMs
are more prone to issues of gradient vanishing/exploding. While great research efforts have
been devoted to improving the learning performance of original DNM [16–20], the challenges
related to gradients and computational costs when handling high-dimensional data remain to
be addressed.

Therefore, the objective of this work is to investigate initialization methods with a
special focus on gradient vanishing related to handling high-dimensional data, and to
evaluate their effectiveness in improving its learning performance. This work aims to make
the following novel contributions:

1. A novel but simple initialization method for DNM, which takes into account its
unique characteristics, such as its dendritic structures and activation functions. It can
effectively initialize the weights of DNM for its optimal learning performance.

2. Performing extensive experiments on benchmark datasets to evaluate the effectiveness
of the proposed initialization method and comparing it with traditional and advanced
initialization methods, in order to provide a comprehensive understanding of the
impact of different initialization techniques on the learning performance of the DNM.

This research contributes to the understanding of the initialization problem in deep
learning, and provides valuable insights into the development of more effective initializa-
tion methods for other types of models.

The remainder of this paper is organized as follows. Section 1 introduces the back-
ground and related work of DNM. Section 2 reviews the model derivation and analysis
of DNM. Section 3 presents the proposed initialization method for DNM. Section 4 shows
experimental results and their discussions. Finally, Section 5 concludes the paper and
outlines future research directions.

Sensors 2024, 24, 1729 3 of 20

2. Dendritic Neuron Model

Contemporary artificial neural networks (ANNs) are intricately designed, utilizing a
myriad of simplistic units to build their architecture. The prevalent model employed within
ANN is the feedforward multilayer perceptron (MLP), deriving its foundational concepts
from the classic McCulloch–Pitts neuron [21–23]. Cutting-edge research has revealed
that individual neurons—when factoring in the nonlinear dynamic processes occurring
in synapses and the adaptability of dendritic structures—can match the computational
prowess exhibited by networks composed of multiple neurons [24–26]. Such revelations
have guided the conceptualization of DNMs as delineated in. They demonstrate a strong
ability to deal with nonlinear problems [27,28].

Mirroring the functions of biological neurons, a DNM is stratified into four layers:
synaptic layer, dendrite layer, membrane layer, and soma layer. The initial layer encodes
external inputs into neural signals through a sigmoid activation function. These signals
then converge along dendritic branches, with each dendrite multiplying the outputs from
the synaptic juncture. The subsequent membranous layer aggregates these multiplicative
outputs before forwarding them to the somatic layer, employing another sigmoid function
to culminate the neural computation process. DNMs are engineered to mimic the structural
intricacies and signal propagation mechanisms observed in natural neurons, characterized
by their straightforward architecture, ease of implementation, and notable clarity in in-
terpretability. By emulating biological paradigms, DNMs forge a meaningful nexus with
artificial intelligence, providing a platform to decipher the complexities of biological neural
networks, which merits in-depth exploration. Its detailed structure is illustrated in Figure 1,
as described next.

Dendrite 1

Dendrite 2

Dendrite 3

Dendrite 𝑗

Dendrite 𝑚

.

.

.

𝑥1 𝑥2 𝑥3 𝑥!……

Dendrite

Soma layer

Membrane layer

Synaptic layer

.

.

.

𝑥"……

Figure 1. An m-dendrite and n-input dendritic neuron model [27–30].

Recent studies have significantly advanced our understanding of DNMs, exploring
their applicability across a wide range of fields. Ji et al. [14] introduced an approximate logic
neuron model with a dendritic structure, which was later trained using states of matter
search algorithm [29]. Gao et al. [30] presented a DNM with effective learning algorithms
that excel in classification, approximation, and prediction tasks. He et al. [31] employed
a DNM for financial time series prediction, harnessing seasonal-trend decomposition to
enhance its predictive capabilities.

Furthermore, the work of Xu et al. [32] and Gao et al. [33] not only illustrated inno-
vative methodologies in the training of DNMs—such as the use of information feedback-
enhanced differential evolution and the creation of a fully complex-valued DNM—but
also catalyzed a series of subsequent studies that leveraged these advanced techniques to
push the boundaries of what DNMs could achieve in various fields of application [34–36].
Yilmaz and Yolcu [37] leveraged a modified particle swarm optimizer to train DNM for

Sensors 2024, 24, 1729 4 of 20

time-series forecasting, while Egrioglu et al. [38] introduced a recurrent DNM aimed at the
same application.

The practical applications of DNMs are notably diverse, as demonstrated by Tang et al. [39],
who adopted a dendritic neural model for predicting stock price index movement, and Al-
qaness et al. [40], who utilized an optimized DNM for wind power forecasting. A comprehensive
survey by Ji et al. [41] provides an in-depth look at the mechanisms, algorithms, and practical
applications of DNMs, highlighting the extensive research and development in this field. Fur-
thermore, Yu et al. [42] improved DNM with a dynamic scale-free network-based differential
evolution, and Ji et al. [43] proposed a competitive decomposition-based multiobjective architec-
ture search for DNM. The latest network of dendritic neurons by Peng et al. [44] showcases the
ongoing efforts to enhance the functionality and efficiency of DNMs.

2.1. Synaptic Layer

The synaptic layer serves as the communication hub within a neuron, where signals are
transmitted and received. It plays a crucial role in regulating and controlling the activities
of neurons. Synapses can be classified into excitatory ones, which excite a postsynaptic
neuron, and inhibitory ones, which inhibit it. When the accumulated neurotransmitters
released from the presynaptic neuron exceed a certain threshold, an action potential is
generated. This process determines whether a synapse is excitatory or inhibitory. We use a
sigmoid function to represent the connection state between the i-th (i = 1, 2, ..., N) synaptic
input and the j-th (j = 1, 2, ..., M) synaptic layer:

sij = σ(wijxi − θij) =
1

1 + e−k(wijxi−θij)
, (1)

where sij denotes the output from the i-th synaptic input to the j-th synaptic layer, σ
represents the sigmoid function, and xi ∈ [0, 1] indicates the input of a synapse. k is a
positive scaling factor. The connection weight, wij, and threshold, θij, are parameters to
be learned.

2.2. Dendrite Layer

Within a branch, a dendrite conducts multiplicative functions across its array of
synaptic junctions. This mechanism encapsulates the nonlinear interplay among synaptic
communications that unfold along individual dendritic pathways—effectively realized
through multiplication. The transference of signals within dendrites adheres to a binary
schema, with the inputs and outputs being restricted to the values of 1 or 0. Consequently,
the synaptic interconnections along the dendritic branches fundamentally equate to logical
AND operations:

dj =
N

∏
i=1

sij, (2)

where dj represents the output of the j-th dendrite.

2.3. Membrane Layer

The membrane layer aggregates the signals from all dendrites. The inputs received
from M dendritic branches are combined, analogous to a logical OR operation. The output
of the membrane layer m is expressed as follows:

m =
M

∑
j=1

dj, (3)

The resulting output is then transmitted to the soma layer.

Sensors 2024, 24, 1729 5 of 20

2.4. Soma Layer

The soma layer generates the final output. When the output from the membrane layer
surpasses a threshold, the neuron elicits a spike. A sigmoid function is used as follows:

o = σs(m − θs) =
1

1 + e−ks(m−θs)
, (4)

where θs ∈ [0, 1] represents the threshold of the soma layer and ks is a positive scaling factor.

2.5. Learning Algorithm

Given that DNM operates as a feedforward architecture and incorporates differentiable
functions, it is well-suited for employing the error back-propagation algorithm (BP) for
learning. The BP algorithm systematically updates the parameters wij and θij by leveraging
the learning rate and gradient descent to minimize the disparity between the actual output
o and the target output ô. The squared error, representing the discrepancy between o and ô,
is quantified as follows:

E =
1
2
(ô − o)2, (5)

In DNM, E is minimized by modifying the connection parameters in the negative
gradient direction in an iterative process. Therefore, differential changes of these connection
parameters need to be collected, i.e.,

∆wij = −η
∂E

∂wij
, (6)

∆θij = −η
∂E
∂θij

, (7)

where η is a learning rate whose values range from 0.01 to 0.1. BP updates wij and θij
according to the following:

wij(t + 1) = wij(t) + ∆wij (8)

θij(t + 1) = θij(t) + ∆θij (9)

3. Model Derivation and Analysis
3.1. Gradient Vanishing

To simplify our analysis work, we assume that DNM only has one dendritic layer and
one output neuron. The dendritic layer has n synaptic inputs with corresponding synaptic
weights, wi, and threshold values, θi. The output neuron has a sigmoid activation function,
characterized by a weight, ws, and a threshold, θs.

The output of the i-th synapse can be simplified from (1) into the following:

si =
1

1 + e−k(wixi−θi)
, (10)

where xi ∈ [0, 1] is the input of the synapse, and k is a positive constant. The output of the
dendritic layer can be calculated as follows:

d =
n

∏
i=1

si (11)

The output of the output neuron is as follows:

o =
1

1 + e−ks(wd−θs)
, (12)

where wd = d − θs, ks, and θs are positive constants.

Sensors 2024, 24, 1729 6 of 20

The gradient of the output neuron, with respect to the weight, wi, can be calculated
as follows:

∂o
∂wi

=
∂o
∂d

∂d
∂si

∂si
∂wi

(13)

The partial derivative ∂o
∂d can be expressed as follows:

∂o
∂d

=
kse−ks(wd−θs)

(1 + e−ks(wd−θs))2
(14)

The partial derivative ∂d
∂si

can be expressed as follows:

∂d
∂si

=
n

∏
j ̸=i

sj (15)

The partial derivative ∂si
∂wi

can be expressed as follows:

∂si
∂wi

= kxie−k(wixi−θi)/(1 + e−k(wixi−θi))2 (16)

Therefore, the gradient of the output neuron with respect to weight, wi, can be calculated
as follows:

∂o
∂wi

=
kse−ks(wd−θs)

(1 + e−ks(wd−θs))2

n

∏
j ̸=i

sj
kxie−k(wixi−θi)

(1 + e−k(wixi−θi))2
(17)

We can see that the gradient calculation in DNM with multiplication in the dendritic
layer involves a product of all the output values, which is multiplied with the partial
derivative of the ith output value. As the number of inputs increases, the product of all the
output values can become very small, leading to gradient vanishing. This is the reason why
gradient vanishing occurs when training a dendritic neuron model with multiplication
in the dendritic layer. Therefore, it can be concluded that DNM training is prone to
gradient vanishing.

3.2. Gradient Vanishing with Different Initialization Methods

In this section, we analyze the gradient vanishing issue for different weight initial-
ization methods in the context of DNM. Specifically, we calculate the expected values,
mean values, and variances of the outputs after passing through the synaptic layer for each
initialization method. By relating these values to the gradient vanishing discussion, we can
assess their susceptibility to the gradient vanishing issue.

For each initialization method, let si denote the output of the i-th synapse, and recall
the expression for si:

si =
1

1 + e−k(wixi−θi)
(18)

We assume that input xi follows a uniform distribution over the interval [0, 1].
With the expected values of si for each initialization method, we can assess the gra-

dient vanishing issue by referring to the methodology used in the gradient vanishing
discussion. Additionally, we provide a graphical representation of the gradient expectation
and variance for each initialization method, as shown in the provided Python code.

Sensors 2024, 24, 1729 7 of 20

3.2.1. Random Initialization

In this case, we assume that the synaptic weight, wi, and threshold value, θi, are
initialized randomly over the interval (−1, 1), and xi is in the interval (0, 1). The expected
value of si can be derived as follows:

E[si] =
∫ 1

0

∫ 1

−1

∫ 1

−1

1
1 + e−k(wixi−θi)

· 1
4

dwidθidxi (19)

3.2.2. Normal Initialization

In this case, we assume that the synaptic weight, wi, and threshold value, θi, are
initialized with a Gaussian distribution with a mean of 0 and a standard deviation, σ, and xi
is in the interval (0, 1). The expected value of si is as follows:

E[si] =
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2πσ2 e−

w2+θ2

2σ2 dwdθdx (20)

3.2.3. He Initialization

In this method, the synaptic weight, wi, and threshold value, θi, are initialized with

a Gaussian distribution with a mean of 0 and standard deviation,
√

2
nin

, where nin is

the number of input neurons, and xi is in the interval (0, 1). The expected value of si is
as follows:

E[si] =
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2π(2

nin
)

e−
nin(w

2+θ2)
4 dwdθdx (21)

3.2.4. Xavier Initialization

In this method, the synaptic weight, wi, and threshold value, θi, are initialized with

a Gaussian distribution with a mean of 0 and standard deviation
√

1
nin

, where nin is the

number of input neurons, and xi is in the interval (0, 1). The expected value of si is
as follows:

E[si] =
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2π(1

nin
)

e−
nin(w

2+θ2)
2 dwdθdx (22)

The expected values of si for each initialization method are summarized in Table 1.
By comparing the expected values, we can evaluate the performance of different initial-
ization methods in mitigating the gradient vanishing issue. Furthermore, the graphical
results provided in the Python code can help one visualize the effects of these initialization
methods on the gradient expectation and variance.

Table 1. List of symbols used in the equations.

Symbol Description

o Output neuron
wi Weight associated with the i-th input
ks Scaling factor for the soma layer
k Scaling factor for the synaptic layer

wd Weighted sum of dendritic inputs
θs Threshold for the soma
θi Threshold for the i-th synapse
sj Output from the j-th synapse
xi i-th input value to the synapse

Sensors 2024, 24, 1729 8 of 20

3.3. Gradient Vanishing after Dendrite Layer

After we calculate the expected values, mean values, and variances of the outputs after
passing through the synaptic layer, we can analyze the possibility of gradient vanishing
after passing through the dendrite layer. Recall the expression of the output of the dendrite
layer. We can study the gradient vanishing problem by looking at the variance of product d.
If it is small, then the gradient of the output neuron with respect to weight, wi, would also
be small, leading to gradient vanishing.

3.3.1. Random Initialization

The product of all output values, ∏n
j ̸=i sj, can be highly variable due to the random

nature of the synaptic weights and threshold values. This variability increases the chances
of the product becoming very small, leading to gradient vanishing.

The expected value of the product of the output values is as follows:

E[
n

∏
j ̸=i

sj] =

(∫ 1

0

∫ 1

−1

∫ 1

−1

1
1 + e−k(wx−θ)

· 1
4

dwdθdx
)n−1

(23)

As the number of inputs, n, increases, it becomes smaller, thus increasing the likelihood
of gradient vanishing.

3.3.2. Normal Initialization

With normal initialization, the product of all output values, ∏n
j ̸=i sj, is subject to the

variability introduced by the Gaussian distribution of synaptic weights and threshold
values. This variability could cause the product of the output values to become very small,
leading to gradient vanishing.

The expected value of the product of the output values is as follows:

E[
n

∏
j ̸=i

sj] =

(∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2πσ2 e−

w2+θ2

2σ2 dwdθdx)n−1 (24)

As the number of inputs, n, increases, it becomes smaller, making the gradient vanish-
ing problem more likely.

3.3.3. He Initialization

With He initialization, the product of all output values, ∏n
j ̸=i sj, is subject to the

variability introduced by the Gaussian distribution of synaptic weights and threshold

values with standard deviation,
√

2
nin

. This variability could cause the product of the
output values to become very small, leading to gradient vanishing.

The expected value of the product of the output values is as follows:

E[
n

∏
j ̸=i

sj] =

(∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2π(2

nin
)

e−
nin(w

2+θ2)
4 dwdθdx

)n−1

(25)

As the number of inputs, n, increases, it becomes smaller, causing a gradient vanish-
ing problem.

3.3.4. Xavier Initialization

With Xavier initialization, the product of all output values, ∏n
j ̸=i sj, is subject to the

variability introduced by the Gaussian distribution of synaptic weights and threshold

values with standard deviation,
√

1
nin

. This variability could cause the product of the
output values to become very small, leading to gradient vanishing.

Sensors 2024, 24, 1729 9 of 20

The expected value of the product of the output values is as follows:

E[
n

∏
j ̸=i

sj] =

(∫ 1

0

∫ ∞

−∞

∫ ∞

−∞

1
1 + e−k(wx−θ)

· 1
2π(1

nin
)

e−
nin(w

2+θ2)
2 dwdθdx

)n−1

(26)

As the number of inputs, n, increases, the expected value of the product of the output
values can become very small, making the gradient vanishing problem more likely.

3.4. Proposed Initialization Method

In order to mitigate the gradient vanishing problem in training a DNM with multipli-
cation in the dendritic layer, we propose a new initialization method called non-negative
initialization. For the i-th synapse, we initialize weight, wi, as a random non-negative value,
for example, by following a uniform distribution within the range of [0, b], where b is a
positive number. In the following, we will provide a mathematical analysis to justify why
this strategy can mitigate the gradient vanishing issue.

As previously discussed, the gradient of the output neuron with respect to the synaptic
weight, wi, involves the product of all the output values. When these output values
become too small, the product term can quickly approach zero, leading to the vanishing
gradient issue.

Now, consider the initialization of wi within the range of [0, b]. Denote fi = wixi − θi.
If wi and xi are both uniformly distributed within their respective ranges, the expected
value of fi is then b

2 × 1
2 − θi =

b
4 − θi.

Consequently, the expected value of the output from the ith synapse, given by
si =

1
1+e−k fi

, is as follows:

E[si] =
1

1 + e−k(b
4−θi)

(27)

If we choose θi =
b
4 , then E[si] =

1
1+e0 = 1

2 , which is well-centered in its possible
output range of [0, 1]. This means that, on average, si is neither too small nor too large,
thereby avoiding the problem of vanishing or exploding gradients.

Furthermore, since the synaptic weights, wi, are initialized as non-negative values,
the product term in the gradient formula, ∏n

j ̸=i sj, is ensured to be non-negative. This
further helps mitigate the gradient vanishing issue.

3.5. Non-Negative Initialization: Detailed Analysis

In this section, we provide a more detailed analysis of the non-negative initialization
method, incorporating the expected values, mean values, and variances. We aim to provide
a thorough and well-founded explanation of our proposed method.

3.5.1. Analysis of Synaptic Outputs

Considering the non-negative initialization method—the weight, wi, is initialized
within the range of [0, b]. Assume that wi follows a uniform distribution in this range.
Therefore, the expected value of wi is as follows:

E[wi] =
b
2

(28)

Assume that xi also follows a uniform distribution in the range of [0, 1]. Then, the ex-
pected value of xi is as follows:

E[xi] =
1
2

(29)

Thus, the expected value of the product wixi can be calculated as follows:

E[wixi] = E[wi]E[xi] =
b
4

(30)

Sensors 2024, 24, 1729 10 of 20

As a result, the expected value of the synaptic output, si, is as follows:

E[si] =
1

1 + e−k(E[wixi]−θi)
(31)

The mean value and variance of si can be derived from the distribution of si. Since
wi and xi follow uniform distributions, their product, wixi, has a mean value of b

4 and a
variance of b2

48 . Consequently, we can calculate the mean value and variance of si.

3.5.2. Analysis of Dendritic Layer Output

We analyze the dendritic layer output, d. Since the synaptic outputs are multiplied
to obtain the dendritic layer output, the expected value, mean value, and variance of the
dendritic layer output, d, can be calculated given the distribution of si. As we have derived
the expected value of si, we can calculate the expected value of the dendritic layer output, d,
as follows:

E[d] =
n

∏
i=1

E[si] (32)

Similarly, the mean value and variance of d can be derived from the distribution of si.

3.5.3. Gradient Vanishing Analysis

The gradient of the output neuron with respect to weight, wi, is as follows:

∂o
∂wi

=
ke−kwd

(1 + e−kwd)2

n

∏
j ̸=i

sj
kxie−k(wixi−θi)

(1 + e−k(wixi−θi))2
(33)

To analyze the gradient vanishing problem, we need to consider the magnitude of a
gradient. Since the gradient is a product of terms involving the synaptic outputs, si, we need
to ensure that the magnitudes of these terms do not become too small, which would cause
the gradient to vanish. From our derived expected values, mean values, and variances of the
synaptic outputs and dendritic layer output, we can see that the non-negative initialization
method yields a balanced distribution of synaptic outputs, si. This balance helps prevent
the magnitudes of the terms in the gradient from becoming too small, thus alleviating the
gradient vanishing problem. Moreover, since the weights are initialized within the range of
[0, b], the influence of negative weights causing a gradient vanishing problem is eliminated.
In summary, the non-negative initialization method, which initializes the weights within
the range of [0, b], successfully addresses the gradient vanishing problem. Through a
thorough mathematical analysis of the expected values, mean values, and variances of the
synaptic outputs and dendritic layer output, we demonstrated the effectiveness of this
initialization method in mitigating the gradient vanishing problem.

Each symbol used throughout our equations and mathematical formulations is listed
along with a detailed description in Table 1. This table is intended to assist readers in
understanding the mathematical models and analyses more intuitively, preventing any
ambiguity that might arise from the use of symbols.

4. Experimental Results
4.1. Experimental Setup

In this study, we evaluate the performance of various weight initialization methods for
DNM on four different UCI datasets: Ionosphere (D1), Parkinson’s (D2), Sonar (D3), and
Vertebral Column (D4), whose data have been collected by various sophisticated sensors
and devices. The experimental setup is designed to ensure a comprehensive analysis
of DNM’s performance under various initialization conditions. In particular, these four
datasets are chosen to represent classification tasks with various levels of data dimensions,
from 6 features in the Vertebral Column dataset (low dimension) to 60 features in the Sonar
dataset (relatively high dimension). The main characteristics of the four UCI datasets are

Sensors 2024, 24, 1729 11 of 20

summarized in Table 2, and the main parameters of DNM are provided in Table 3. To ensure
the reproducibility of our experiments and provide clarity on the experimental setup, we
include comprehensive details regarding the software and hardware used in our study.
The DNMs were implemented using Python version 3.10, with the deep learning framework
PyTorch version 2.0.0. The experiments were executed on a workstation equipped with
an Intel Core i9-13900K CPU, 64GB of Kingston RAM, and an NVIDIA GeForce RTX 4090
GPU. All the components, including the CPU, RAM, and GPU, are manufactured by Intel,
Kingston, and NVIDIA, respectively, with their headquarters located in the United States.

Table 2. Characteristics of the UCI datasets.

Dataset Instances Attributes Classes Task

Ionosphere 351 34 2 Binary Classification
Vertebral column 309 6 2 Binary Classification

Parkinson’s 195 22 2 Binary Classification
Sonar 208 60 2 Binary Classification

Table 3. The main parameters and initialization methods.

Method Parameter Value

DNM Activation function Sigmoid
Synaptic layer parameter k 5
Soma layer parameter ks 2

Threshold θs 0.3
The number of dendrites M 8

Epoch 600

To ensure a comprehensive evaluation of the model, we randomly split each dataset
into 70% training data and 30% testing data. The model was trained for 600 epochs, and we
conducted 10 runs for each weight initialization method to account for potential variability
in the results.

4.2. Evaluation Metrics

The primary goal of classification tasks is to assign objects to one of several predefined
categories or classes based on their features. In our experiments, we focus on binary
classification problems. To evaluate the performance of DNM and the impact of different
initialization methods, we use various evaluation metrics. These metrics help us gain
a deeper understanding of the model’s strengths and weaknesses, as well as provide
quantitative insights into its performance.

In the realm of classification tasks, accuracy represents a fundamental metric, quanti-
fying the percentage of instances that are classified correctly relative to the entire dataset.
Despite its intuitive nature and widespread use, accuracy might not always offer a clear
picture of performance, particularly in scenarios with imbalanced datasets where its in-
terpretation could be misleading. Complementing accuracy, learning curves offer critical
insight into a model’s performance dynamics in relation to the size of the training set and
against increasing training periods. By visualizing how training and validation accuracies
evolve through successive epochs, these curves become indispensable tools for detecting
overfitting or underfitting trends, providing an understanding of how the model matures
with added data.

Furthermore, the receiver operating characteristic (ROC) curve serves as an essential
evaluative graph that illustrates a classifier’s discernment capacity at various threshold
levels. It contrasts the true positive rate against the false positive rate, revealing the
nuanced trade-offs faced when adjusting the classification threshold. The integral of this
curve, known as the area under the ROC curve (AUC-ROC), distills the classifier’s overall
effectiveness into a singular metric, with a score of 1 symbolizing an impeccable model,

Sensors 2024, 24, 1729 12 of 20

while 0.5 denotes no discriminative power—akin to random guessing. Equally pivotal,
especially in scenarios of class imbalance, the precision–recall (PR) curve sheds light on
the balance between the precision (the positive predictive value) and the recall rate (the
true positive rate). This curve directs focus onto the performance concerning the positive
class. Analogous to AUC-ROC, the area under the PR curve (AUC-PR) encapsulates the
curve’s information into a singular value, indicative of the model’s precision and recall
efficacy—with higher scores correlating to superior performance.

Deploying this suite of evaluation metrics allows for a multi-faceted analysis of DNM
efficacy. These tools are indispensable for revealing the nuanced impacts of diverse weight
initialization techniques on the capabilities of DNMs to navigate and succeed in classifica-
tion challenges.

4.3. Experimental Results

In this section, we present the experimental results obtained by training DNM via the
four datasets by using different weight initialization methods.

4.3.1. Loss Curves

Figure 2 shows the loss curves for the DNM with different weight initialization
methods. The loss curves provide insights into the optimization process and the stability of
training. It can be observed that the proposed initialization methods lead to a smoother
decrease in the loss values, suggesting more stable training dynamics than its four peers.

0 100 200 300 400 500 600
Epoch

0.10

0.15

0.20

0.25

0.30

Lo
ss

Loss Curves using Different Initialization Methods on Ionosphere Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Lo

ss

Loss Curves using Different Initialization Methods on Parkinsons Dataset
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Lo
ss

Loss Curves using Different Initialization Methods on Sonar Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Lo
ss

Loss Curves using Different Initialization Methods on Vertebral_column Dataset
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

Figure 2. Loss curves for different weight initialization methods in the four datasets.

4.3.2. Accuracy and Learning Curves

Figures 3–6 illustrate the learning curves for each weight initialization method in
the training and testing datasets. It is evident that different initialization methods have
varying impacts on the convergence and final accuracy of DNM. The proposed initialization
methods demonstrate the fastest convergence and achieve the highest accuracies, indicating
their effectiveness in initializing DNM.

Sensors 2024, 24, 1729 13 of 20

0.2 0.4 0.6 0.8 1.0
Training examples

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Ionosphere Dataset Training Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Parkinsons Dataset Training Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

60

70

80

90

100

Ac
cu

ra
cy

Sonar Dataset Training Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

82

84

86

88

Ac
cu

ra
cy

Vertebral_column Dataset Training Accuracy
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

Figure 3. Comparison of Training Accuracies for Different Weight Initialization Methods Across Four
Datasets with Varying Training Examples.

0 100 200 300 400 500 600
Epoch

30

40

50

60

70

80

90

100

110

Tr
ai

n
Ac

cu
ra

cy

Train Accuracies using Different Initialization Methods on Ionosphere Dataset
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

20

40

60

80

100

Tr
ai

n
Ac

cu
ra

cy

Train Accuracies using Different Initialization Methods on Parkinsons Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

55

60

65

70

75

80

85

90

Tr
ai

n
Ac

cu
ra

cy

Train Accuracies using Different Initialization Methods on Sonar Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

30

40

50

60

70

80

Tr
ai

n
Ac

cu
ra

cy

Train Accuracies using Different Initialization Methods on Vertebral_column Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

Figure 4. Training accuracies of different weight initialization methods in the four datasets.

Sensors 2024, 24, 1729 14 of 20

0.2 0.4 0.6 0.8 1.0
Training examples

40

50

60

70

80

90

Ac
cu

ra
cy

Ionosphere Dataset Test Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

30

40

50

60

70

80

90

Ac
cu

ra
cy

Parkinsons Dataset Test Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

50

55

60

65

70

75

80

Ac
cu

ra
cy

Sonar Dataset Test Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0.2 0.4 0.6 0.8 1.0
Training examples

80

81

82

83

84

85

86

87

Ac
cu

ra
cy

Vertebral_column Dataset Test Accuracy

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

Figure 5. Comparison of Test Accuracies for Different Weight Initialization Methods Across Four
Datasets with Varying Training Examples.

0 100 200 300 400 500 600
Epoch

40

60

80

100

Te
st

 A
cc

ur
ac

y

Test Accuracies using Different Initialization Methods on Ionosphere Dataset
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Test Accuracies using Different Initialization Methods on Parkinsons Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

50

55

60

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Test Accuracies using Different Initialization Methods on Sonar Dataset
Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

0 100 200 300 400 500 600
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Test Accuracies using Different Initialization Methods on Vertebral_column Dataset

Random Initialization
Normal Initialization
He Initialization
Xavier Initialization
Proposed Initialization

Figure 6. Test accuracies for different weight initialization methods in the four datasets.

Comparison of convergence speeds for various initialization methods on Dataset D2.
The shaded regions denote the 95% confidence intervals around the mean convergence
epochs, illustrating the expected range of variability in convergence times

Sensors 2024, 24, 1729 15 of 20

4.3.3. ROC Curves and PR Curves

The confusion matrices, ROC curves, and PR curves offer additional insights into the
classification performance of DNM with different weight initialization methods. Figures 7 and 8
display these evaluation metrics for each dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Different Initialization Methods on Ionosphere Dataset

Random Initialization (AUC = 0.50)
Normal Initialization (AUC = 0.98)
He Initialization (AUC = 0.50)
Xavier Initialization (AUC = 0.50)
Proposed Initialization (AUC = 0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Different Initialization Methods on Parkinsons Dataset

Random Initialization (AUC = 0.90)
Normal Initialization (AUC = 0.93)
He Initialization (AUC = 0.91)
Xavier Initialization (AUC = 0.92)
Proposed Initialization (AUC = 0.93)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Different Initialization Methods on Sonar Dataset

Random Initialization (AUC = 0.50)
Normal Initialization (AUC = 0.50)
He Initialization (AUC = 0.50)
Xavier Initialization (AUC = 0.50)
Proposed Initialization (AUC = 0.92)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curves for Different Initialization Methods on Vertebral_column Dataset

Random Initialization (AUC = 0.90)
Normal Initialization (AUC = 0.91)
He Initialization (AUC = 0.90)
Xavier Initialization (AUC = 0.90)
Proposed Initialization (AUC = 0.92)

Figure 7. ROC curves for different weight initialization methods in the four datasets.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Precision-Recall Curves for Different Initialization Methods on Ionosphere Dataset

Random Initialization (AP = 0.65)
Normal Initialization (AP = 0.98)
He Initialization (AP = 0.65)
Xavier Initialization (AP = 0.65)
Proposed Initialization (AP = 0.98)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Precision-Recall Curves for Different Initialization Methods on Parkinsons Dataset

Random Initialization (AP = 0.97)
Normal Initialization (AP = 0.98)
He Initialization (AP = 0.97)
Xavier Initialization (AP = 0.98)
Proposed Initialization (AP = 0.98)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Precision-Recall Curves for Different Initialization Methods on Sonar Dataset

Random Initialization (AP = 0.49)
Normal Initialization (AP = 0.49)
He Initialization (AP = 0.49)
Xavier Initialization (AP = 0.49)
Proposed Initialization (AP = 0.93)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Precision-Recall Curves for Different Initialization Methods on Vertebral_column Dataset

Random Initialization (AP = 0.97)
Normal Initialization (AP = 0.98)
He Initialization (AP = 0.97)
Xavier Initialization (AP = 0.97)
Proposed Initialization (AP = 0.98)

Figure 8. PR curves for different weight initialization methods in the four datasets.

Sensors 2024, 24, 1729 16 of 20

These results demonstrate that the proposed initialization methods consistently yield
superior performance in terms of classification metrics, such as precision, recall, and
F1 score, compared to their peers. This highlights the benefits of employing the proposed
initialization techniques in training DNMs for classification tasks.

We also summarized the experimental results in the form of a single comprehensive
table, including accuracy, F1 score, recall, precision, and other relevant metrics for each
dataset and weight initialization method in Table 4. To ensure the reliability of our exper-
imental findings, we employed statistical tests to assess the significance of the observed
differences in performance between our proposed method and the existing methods. Specif-
ically, we use the t-statistic and corresponding p-value to determine whether the differences
in mean performance metrics are statistically significant.

T-statistic is a ratio of the departure of an estimated parameter from its hypothesized
value to its standard error. It is defined as follows:

t =
X̄ − µ

s/
√

n
(34)

where X̄ is the sample mean, µ is the hypothesized population mean, s is the sample
standard deviation, and n is the sample size.

The p-value represents the probability of observing a test statistic at least as extreme as
the one observed, under the assumption that the null hypothesis is true. A lower p-value
indicates stronger evidence against the null hypothesis. In our experiments, we considered
a p-value of less than 0.05 to be statistically significant.

Table 4. Comparing the classification performances for different initialization methods (D1–4 corre-
sponds to the Ionosphere, Parkinson’s, Sonar, and Vertebral Column). Bold values indicate the best
experimental results among the compared datasets/conditions.

Train Test

Dataset Method Accuracy Precision F1 Score Recall Accuracy Precision F1 Score Recall t-Stat. p-Test

D1

Random 0.36 ± 0 0 ± 0 0 ± 0 0 ± 0 0.35 ± 0 0 ± 0 0 ± 0 0 ± 0 135.65 1.51 × 10−28

Normal 0.89 ± 0.18 0.85 ± 0.29 0.86 ± 0.29 0.88 ± 0.3 0.90 ± 0.18 0.85 ± 0.29 0.87 ± 0.29 0.90 ± 0.3 0.67 0.51
He 0.36 ± 0 0 ± 0 0 ± 0 0 ± 0 0.35 ± 0 0 ± 0 0 ± 0 0 ± 0 135.65 1.51 × 10−28

Xavier 0.71 ± 0.28 0.56 ± 0.46 0.57 ± 0.47 0.59 ± 0.48 0.71 ± 0.29 0.56 ± 0.46 0.58 ± 0.47 0.59 ± 0.49 2.38 0.03
Proposed 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.94 ± 0.01 0.92 ± 0.01 0.95 ± 0.01 0.99 ± 0.01 - -

D2

Random 0.73 ± 0.25 0.68 ± 0.35 0.73 ± 0.37 0.78 ± 0.39 0.7 ± 0.23 0.67 ± 0.34 0.71 ± 0.36 0.74 ± 0.38 2.47 0.02
Normal 0.90 ± 0.02 0.93 ± 0.01 0.93 ± 0.01 0.94 ± 0.03 0.88 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 0.92 ± 0.02 0.77 0.44

He 0.62 ± 0.31 0.52 ± 0.43 0.55 ± 0.45 0.58 ± 0.48 0.6 ± 0.28 0.51 ± 0.42 0.53 ± 0.44 0.55 ± 0.45 3.15 0.01
Xavier 0.9 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.02 0.88 ± 0.02 0.91 ± 0.03 0.92 ± 0.01 0.93 ± 0.03 1.60 0.13

Proposed 0.94 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.89 ± 0.02 0.91 ± 0.03 0.93 ± 0.01 0.95 ± 0.02 - -

D3

Random 0.55 ± 0 0 ± 0 0 ± 0 0 ± 0 0.51 ± 0 0 ± 0 0 ± 0 0 ± 0 11.43 1.10 × 10−9

Normal 0.55 ± 0 0 ± 0 0 ± 0 0 ± 0 0.51 ± 0 0 ± 0 0 ± 0 0 ± 0 11.43 1.10 × 10−9

He 0.55 ± 0 0 ± 0 0 ± 0 0 ± 0 0.51 ± 0 0 ± 0 0 ± 0 0 ± 0 11.43 1.10 × 10−9

Xavier 0.55 ± 0 0 ± 0 0 ± 0 0 ± 0 0.51 ± 0 0 ± 0 0 ± 0 0 ± 0 11.43 1.10 × 10−9

Proposed 0.89 ± 0.04 0.93 ± 0.02 0.86 ± 0.05 0.81 ± 0.08 0.78 ± 0.07 0.85 ± 0.07 0.75 ± 0.09 0.67 ± 0.12 - -

D4

Random 0.84 ± 0.02 0.87 ± 0.01 0.88 ± 0.01 0.87 ± 0.03 0.84 ± 0.02 0.91 ± 0.02 0.90 ± 0.02 0.89 ± 0.04 0.39 0.70
Normal 0.83 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.02 0.84 ± 0.01 0.89 ± 0.01 0.90 ± 0.01 0.90 ± 0.01 0.47 0.64

He 0.84 ± 0.01 0.87 ± 0.01 0.88 ± 0.01 0.87 ± 0.03 0.83 ± 0.01 0.90 ± 0.01 0.89 ± 0 0.89 ± 0.01 1.34 0.20
Xavier 0.85 ± 0.01 0.88 ± 0.01 0.87 ± 0.01 0.89 ± 0.02 0.85 ± 0.02 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.03 −0.38 0.70

Proposed 0.84 ± 0.01 0.87 ± 0.01 0.87 ± 0.02 0.88 ± 0.04 0.85 ± 0.03 0.90 ± 0.01 0.90 ± 0.02 0.90 ± 0.03 - -

4.4. Experimental Results Analysis

In this section, we analyze the experimental results obtained from the four datasets.
Our primary focus is on the impact of the proposed initialization methods on the conver-
gence and accuracy of DNM. Building upon the initial analysis of the experimental results,
we delve deeper into the performance of the proposed initialization method and highlight
several key findings:

1. The proposed initialization method demonstrates consistently high performance
across all four datasets. It effectively initializes DNM and enables it to achieve DNM’s
full potential, regardless of a dataset’s specific characteristics.

2. For datasets with a larger number of features, such as the Sonar and Ionosphere
datasets, the proposed initialization method exhibits superior performance to its
peers. This is particularly evident in the Sonar dataset, where our method is the

Sensors 2024, 24, 1729 17 of 20

only initialization method that makes the model converge successfully. The results
suggest that our method is well-suited for handling high-dimensional datasets and
can overcome the challenges posed by complex feature space.

3. From the loss curves, it is evident that our proposed initialization method converges
faster than its peers. This indicates that our method not only helps us address the
gradient vanishing problem but also facilitates rapid training of DNMs, allowing for
efficient model optimization and potentially reducing the overall training time.

4. The experimental results reveal that for datasets with fewer features, all initialization
methods perform well in training DNM. This suggests that the impact of the initializa-
tion methods is less pronounced in handling lower-dimensional datasets. However,
the consistency of our proposed method across diverse datasets still underlines its
effectiveness and general applicability.

5. Our proposed initialization method achieves higher accuracy with fewer iterations
than its peers. This finding further underscores the efficiency of our methods, as they
enable DNMs to reach excellent performance more quickly. In practice, this may
result in substantial computational savings, especially in scenarios where rapid model
training is crucial.

6. While our method did not achieve the highest accuracy on dataset D4, the results
were competitive and closely aligned with the best-reported outcome. Such a finding
is typical in machine learning research, where no single method consistently outper-
forms others across all datasets. The slight variance in performance can be attributed
to the unique characteristics of dataset D4, as well as the randomness in the training
process inherent to neural networks.

In summary, the extended analysis of the experimental results reinforces the value of
our proposed initialization method in addressing a gradient vanishing problem, accelerat-
ing a convergence process, and enhancing the overall performance of DNMs across various
datasets. The versatility and robustness of our method make it a valuable addition to the
repertoire of weight initialization techniques for deep neural networks.

5. Conclusions and Future Directions

In this study, we developed a novel and practical initialization technique tailored specifi-
cally for DNMs. This straightforward and effective method leverages the unique characteristics
of DNMs to enhance their training dynamics and convergence potential. Our comprehensive
experiments, utilizing a range of benchmark datasets with varying dimensional complexities,
highlighted the method’s superior performance, especially in high-dimensional contexts
where it effectively combats the issue of gradient vanishing. Notably, in the Sonar dataset
featuring 60 attributes, our method is the only one to achieve successful model convergence.
Our experiments on various datasets (D1–D4) reveal the proposed method’s robustness and
efficacy. For instance, in the Ionosphere dataset (D1), our method achieves an impressive
test accuracy of 94% with a standard deviation of 0.01, outperforming other methods signifi-
cantly. Similarly, in the Parkinson’s dataset (D2), we observe a test accuracy of 89%, which is
indicative of the method’s reliability. Even in cases where our method achieves the highest
scores, such as in the Vertebral Column dataset (D4), it delivers competitive results with a test
accuracy of 85% ± 3% and a test precision of 90% ± 1%, closely trailing the best-performing
method, with its corresponding value of 85% ± 2% and 90% ± 1%. These quantitative
outcomes underscore the proposed method’s capacity to maintain high performance across
varying high-dimensional datasets and validate its potential as a reliable initialization strategy
for DNMs.

Looking forward, the applicability of our initialization method is poised to broaden
significantly, encompassing the evolving and complex domains of DNM applications.
Recent studies such as those by Liu et al. [45], Zhang et al. [46], and Ding et al. [47] have
expanded the horizon of DNMs into areas of medical segmentation, vision transformers
for image recognition, and multi-input–multi-output models. These advancements signify
the fertile ground for future research, where our initialization technique could be pivotal

Sensors 2024, 24, 1729 18 of 20

in unlocking the full computational prowess of DNMs. We anticipate that our work will
act as a catalyst for further research endeavors, contributing to the evolution of neural
network initialization methods and enhancing their effectiveness across a diverse array of
real-world applications.

Author Contributions: Conceptualization: X.W. and M.Z.; methodology and software development:
X.W.; validation of research: M.Z., A.A., L.H. and X.L.; formal analysis: X.W.; oversaw investigation
and resource management: M.Z.; data curation: D.N.; original draft of the manuscript: X.W. and
M.Z.; review and editing: A.A.; visualization of results: X.W.; supervised and oversaw project
administration: M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the 2023 Guangxi Colleges and Universities Young and Middle-
Aged Teachers’ Scientific Research Basic Ability Improvement Project (2023KY0055), the “Scientific
Research Engineering—Special Project on Artificial Intelligence” of the Guangxi Humanities and
Social Sciences Development Research Center in 2018 (ZN2018007), and Institutional Fund Projects
under grant no. IFPIP-1481-611-1443.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data utilized in this article were sourced exclusively from the open-
access datasets provided by UCI. These datasets are freely available to the public, facilitating a wide range
of research and analysis. For ease of access and transparency, the specific UCI datasets utilized in this
study can be found at the following link, accessed on 10 November 2023: https://archive.ics.uci.edu/.
We acknowledge and appreciate the contributions of UCI in making these valuable resources available
to the research community.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Huang, W.; Zhang, P.; Chen, Y.; Zhou, M.; Al-Turki, Y.; Abusorrah, A. QoS prediction model of cloud services based on deep

learning. IEEE/CAA J. Autom. Sin. 2022, 9, 564–566. [CrossRef]
2. Li, H.; Hu, G.; Li, J.; Zhou, M. Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks

and random forests. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1109–1119. [CrossRef]
3. Zhang, Z.; Liu, H.; Zhou, M.; Wang, J. Solving dynamic traveling salesman problems with deep reinforcement learning. IEEE

Trans. Neural Netw. Learn. Syst. 2023, 34, 2119–2132. [CrossRef]
4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
5. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy,
13–15 May 2010; pp. 249–256.

6. Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU neural network. In Proceedings
of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, CA, USA, 8–12 September 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–8.

7. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

8. Abbe, E.; Cornacchia, E.; Hazla, J.; Marquis, C. An initial alignment between neural network and target is needed for gradient
descent to learn. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 June
2022; pp. 33–52.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Mayer, N.M.; Obst, O. Analyzing Echo-state Networks Using Fractal Dimension. In Proceedings of the 2022 International Joint
Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

11. Humbird, K.D.; Peterson, J.L.; McClarren, R.G. Deep neural network initialization with decision trees. IEEE Trans. Neural Netw.
Learn. Syst. 2018, 30, 1286–1295. [CrossRef]

12. Gabrielli, A. A neural network boosted double overdispersed Poisson claims reserving model. ASTIN Bull. J. IAA 2020, 50, 25–60.
[CrossRef]

13. Todo, Y.; Tamura, H.; Yamashita, K.; Tang, Z. Unsupervised learnable neuron model with nonlinear interaction on dendrites.
Neural Netw. 2014, 60, 96–103. [CrossRef]

14. Ji, J.; Gao, S.; Cheng, J.; Tang, Z.; Todo, Y. An approximate logic neuron model with a dendritic structure. Neurocomputing 2016,
173, 1775–1783. [CrossRef]

https://archive.ics.uci.edu/
http://doi.org/10.1109/JAS.2021.1004392
http://dx.doi.org/10.1109/TASE.2020.3048056
http://dx.doi.org/10.1109/TNNLS.2021.3105905
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TNNLS.2018.2869694
http://dx.doi.org/10.1017/asb.2019.33
http://dx.doi.org/10.1016/j.neunet.2014.07.011
http://dx.doi.org/10.1016/j.neucom.2015.09.052

Sensors 2024, 24, 1729 19 of 20

15. Todo, Y.; Tang, Z.; Todo, H.; Ji, J.; Yamashita, K. Neurons with multiplicative interactions of nonlinear synapses. Int. J. Neural Syst.
2019, 29, 1950012. [CrossRef] [PubMed]

16. Wen, X.; Zhou, M.; Luo, X.; Huang, L.; Wang, Z. Novel Pruning of Dendritic Neuron Models for Improved System Implementation
and Performance. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne,
Australia, 17–20 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1559–1564.

17. Luo, X.; Wen, X.; Zhou, M.; Abusorrah, A.; Huang, L. Decision-tree-initialized dendritic neuron model for fast and accurate data
classification. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4173–4183. [CrossRef]

18. Luo, X.; Ye, L.; Liu, X.; Wen, X.; Zhou, M.; Zhang, Q. Interpretability Diversity for Decision-Tree-Initialized Dendritic Neuron
Model Ensemble. IEEE Trans. Neural Netw. Learn. Syst. 2023. [CrossRef] [PubMed]

19. Luo, X.; Wen, X.; Li, Y.; Li, Q. Pruning method for dendritic neuron model based on dendrite layer significance constraints. CAAI
Trans. Intell. Technol. 2023, 8, 308–318. [CrossRef]

20. Luo, X.; Ye, L.; Liu, X.; Wen, X.; Zhang, Q. Pruning of Dendritic Neuron Model with Significance Constraints for Classification.
In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 8–23 June 2023;
pp. 1–8.

21. Tran, D.T.; Kiranyaz, S.; Gabbouj, M.; Iosifidis, A. Heterogeneous multilayer generalized operational perceptron. IEEE Trans.
Neural Netw. Learn. Syst. 2019, 31, 710–724. [CrossRef]

22. Ohata, E.F.; Bezerra, G.M.; das Chagas, J.V.S.; Neto, A.V.L.; Albuquerque, A.B.; de Albuquerque, V.H.C.; Reboucas Filho, P.P.
Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA J. Autom. Sin. 2021,
8, 239–248. [CrossRef]

23. Ieracitano, C.; Paviglianiti, A.; Campolo, M.; Hussain, A.; Pasero, E.; Morabito, F.C. A novel automatic classification system based
on hybrid unsupervised and supervised machine learning for electrospun nanofibers. IEEE/CAA J. Autom. Sin. 2021, 8, 64–76.
[CrossRef]

24. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

25. Koch, C. Computation and the single neuron. Nature 1997, 385, 207–210. [CrossRef]
26. Legenstein, R.; Maass, W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J.

Neurosci. 2011, 31, 10787–10802. [CrossRef] [PubMed]
27. Tang, Z.; Tamura, H.; Ishizuka, O.; Tanno, K. A neuron model with interaction among synapses. IEEJ Trans. Electron. Inf. Syst.

2000, 120, 1012–1019.
28. Tang, Z.; Tamura, H.; Kuratu, M.; Ishizuka, O.; Tanno, K. A model of the neuron based on dendrite mechanisms. Electron.

Commun. Jpn. Part III Fundam. Electron. Sci. 2001, 84, 11–24. [CrossRef]
29. Ji, J.; Song, S.; Tang, Y.; Gao, S.; Tang, Z.; Todo, Y. Approximate logic neuron model trained by states of matter search algorithm.

Knowl.-Based Syst. 2019, 163, 120–130. [CrossRef]
30. Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic neuron model with effective learning algorithms for

classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 601–614. [CrossRef] [PubMed]
31. He, H.; Gao, S.; Jin, T.; Sato, S.; Zhang, X. A seasonal-trend decomposition-based dendritic neuron model for financial time series

prediction. Appl. Soft Comput. 2021, 108, 107488. [CrossRef]
32. Xu, Z.; Wang, Z.; Li, J.; Jin, T.; Meng, X.; Gao, S. Dendritic neuron model trained by information feedback-enhanced differential

evolution algorithm for classification. Knowl.-Based Syst. 2021, 233, 107536. [CrossRef]
33. Gao, S.; Zhou, M.; Wang, Z.; Sugiyama, D.; Cheng, J.; Wang, J.; Todo, Y. Fully complex-valued dendritic neuron model. IEEE

Trans. Neural Netw. Learn. Syst. 2021, 34, 2105–2118. [CrossRef] [PubMed]
34. Wang, Y.; Wang, Z.; Huang, H. Stochastic adaptive CL-BFGS algorithms for fully complex-valued dendritic neuron model.

Knowl.-Based Syst. 2023, 277, 110788. [CrossRef]
35. Wang, Y.; Huang, H. Adaptive Accelerated Gradient Algorithm for Training Fully Complex-Valued Dendritic Neuron Model.

In Proceedings of the International Conference on Neural Information Processing, Changsha, China, 20–23 November 2023;
Springer: Singapore, 2023; pp. 258–269.

36. Wang, Z.; Wang, Y.; Huang, H. Error Selection Based Training of Fully Complex-Valued Dendritic Neuron Model. In Proceedings
of the Chinese Intelligent Automation Conference, Ningbo, China, 14–15 October 2023; Springer: Singapore, 2023; pp. 683–690.

37. Yilmaz, A.; Yolcu, U. Dendritic neuron model neural network trained by modified particle swarm optimization for time-series
forecasting. J. Forecast. 2022, 41, 793–809. [CrossRef]

38. Egrioglu, E.; Baş, E.; Chen, M.Y. Recurrent dendritic neuron model artificial neural network for time series forecasting. Inf. Sci.
2022, 607, 572–584. [CrossRef]

39. Tang, Y.; Song, Z.; Zhu, Y.; Hou, M.; Tang, C.; Ji, J. Adopting a dendritic neural model for predicting stock price index movement.
Expert Syst. Appl. 2022, 205, 117637. [CrossRef]

40. Al-qaness, M.A.; Ewees, A.A.; Elaziz, M.A.; Samak, A.H. Wind power forecasting using optimized dendritic neural model based
on seagull optimization algorithm and aquila optimizer. Energies 2022, 15, 9261. [CrossRef]

41. Ji, J.; Tang, C.; Zhao, J.; Tang, Z.; Todo, Y. A survey on dendritic neuron model: Mechanisms, algorithms and practical applications.
Neurocomputing 2022, 489, 390–406. [CrossRef]

http://dx.doi.org/10.1142/S0129065719500126
http://www.ncbi.nlm.nih.gov/pubmed/31189391
http://dx.doi.org/10.1109/TNNLS.2021.3055991
http://dx.doi.org/10.1109/TNNLS.2023.3290203
http://www.ncbi.nlm.nih.gov/pubmed/37410644
http://dx.doi.org/10.1049/cit2.12234
http://dx.doi.org/10.1109/TNNLS.2019.2914082
http://dx.doi.org/10.1109/JAS.2020.1003393
http://dx.doi.org/10.1109/JAS.2020.1003387
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1038/385207a0
http://dx.doi.org/10.1523/JNEUROSCI.5684-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21795531
http://dx.doi.org/10.1002/ecjc.1024
http://dx.doi.org/10.1016/j.knosys.2018.08.020
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://www.ncbi.nlm.nih.gov/pubmed/30004892
http://dx.doi.org/10.1016/j.asoc.2021.107488
http://dx.doi.org/10.1016/j.knosys.2021.107536
http://dx.doi.org/10.1109/TNNLS.2021.3105901
http://www.ncbi.nlm.nih.gov/pubmed/34487498
http://dx.doi.org/10.1016/j.knosys.2023.110788
http://dx.doi.org/10.1002/for.2833
http://dx.doi.org/10.1016/j.ins.2022.06.012
http://dx.doi.org/10.1016/j.eswa.2022.117637
http://dx.doi.org/10.3390/en15249261
http://dx.doi.org/10.1016/j.neucom.2021.08.153

Sensors 2024, 24, 1729 20 of 20

42. Yu, Y.; Lei, Z.; Wang, Y.; Zhang, T.; Peng, C.; Gao, S. Improving dendritic neuron model with dynamic scale-free network-based
differential evolution. IEEE/CAA J. Autom. Sin. 2021, 9, 99–110. [CrossRef]

43. Ji, J.; Zhao, J.; Lin, Q.; Tan, K.C. Competitive decomposition-based multiobjective architecture search for the dendritic neural
model. IEEE Trans. Cybern. 2022, 53, 6829–6842. [CrossRef]

44. Peng, Q.; Gao, S.; Wang, Y.; Yi, J.; Yang, G.; Todo, Y. An Extension Network of Dendritic Neurons. Comput. Intell. Neurosci. 2023,
2023, 7037124. [CrossRef]

45. Liu, Z.; Zhang, Z.; Lei, Z.; Omura, M.; Wang, R.L.; Gao, S. Dendritic Deep Learning for Medical Segmentation. IEEE/CAA J.
Autom. Sin. 2024, 11, 803–805. [CrossRef]

46. Zhang, Z.; Lei, Z.; Omura, M.; Hasegawa, H.; Gao, S. Dendritic Learning-Incorporated Vision Transformer for Image Recognition.
IEEE/CAA J. Autom. Sin. 2024, 11, 539–541. [CrossRef]

47. Ding, Y.; Yu, J.; Gu, C.; Gao, S.; Zhang, C. A multi-in and multi-out dendritic neuron model and its optimization. Knowl.-Based
Syst. 2024, 286, 111442. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JAS.2021.1004284
http://dx.doi.org/10.1109/TCYB.2022.3165374
http://dx.doi.org/10.1155/2023/7037124
http://dx.doi.org/10.1109/JAS.2023.123813
http://dx.doi.org/10.1109/JAS.2023.123978
http://dx.doi.org/10.1016/j.knosys.2024.111442

	Introduction
	Dendritic Neuron Model
	Synaptic Layer
	Dendrite Layer
	Membrane Layer
	Soma Layer
	Learning Algorithm

	Model Derivation and Analysis
	Gradient Vanishing
	Gradient Vanishing with Different Initialization Methods
	Random Initialization
	Normal Initialization
	He Initialization
	Xavier Initialization

	Gradient Vanishing after Dendrite Layer
	Random Initialization
	Normal Initialization
	He Initialization
	Xavier Initialization

	Proposed Initialization Method
	Non-Negative Initialization: Detailed Analysis
	Analysis of Synaptic Outputs
	Analysis of Dendritic Layer Output
	Gradient Vanishing Analysis

	Experimental Results
	Experimental Setup
	Evaluation Metrics
	Experimental Results
	Loss Curves
	Accuracy and Learning Curves
	ROC Curves and PR Curves

	Experimental Results Analysis

	Conclusions and Future Directions
	References

