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Abstract: Oncology has emerged as a crucial field of study in the domain of medicine. Computed
tomography has gained widespread adoption as a radiological modality for the identification and
characterisation of pathologies, particularly in oncology, enabling precise identification of affected
organs and tissues. However, achieving accurate liver segmentation in computed tomography
scans remains a challenge due to the presence of artefacts and the varying densities of soft tissues
and adjacent organs. This paper compares artificial intelligence algorithms and traditional medical
image processing techniques to assist radiologists in liver segmentation in computed tomography
scans and evaluates their accuracy and efficiency. Despite notable progress in the field, the limited
availability of public datasets remains a significant barrier to broad participation in research studies
and replication of methodologies. Future directions should focus on increasing the accessibility of
public datasets, establishing standardised evaluation metrics, and advancing the development of
three-dimensional segmentation techniques. In addition, maintaining a collaborative relationship
between technological advances and medical expertise is essential to ensure that these innovations
not only achieve technical accuracy, but also remain aligned with clinical needs and realities. This
synergy ensures their applicability and effectiveness in real-world healthcare environments.
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1. Introduction

As one of the most important organs in the digestive system, the liver performs
critical functions such as breaking down nutrients, producing bile and eliminating toxic
substances. However, liver-related diseases, particularly oncological diseases, pose health
risks, and liver cancer is a leading cause of cancer-related mortality worldwide [1,2].
Computed tomography (CT) has become an integral part of diagnosis, treatment planning
and monitoring the progress of oncological diseases [3,4], providing detailed cross-sectional
images for accurate visualisation of internal structures, including liver tumours [5,6].

With the advancement of technology and artificial intelligence (AI) in medicine, there
is a growing need to optimise the identification of oncological diseases [7]. Medical image
segmentation is emerging as a fundamental step in the pipeline [8–11]. Liver segmentation
in CT scans has emerged as a critical area, requiring accurate identification and delimitation
of the liver region for treatment planning and progress monitoring, as well as for early
detection of liver lesions and metastases to other organs [12–14]. However, accurate liver
segmentation on CT scans is challenging due to factors such as artefacts, varying soft tissue
densities and the complexity caused by adjacent organ proximity [15,16].
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The aim of this paper is to provide an overview of the state of the art in the application
of AI, as well as traditional methods and techniques, for liver segmentation in CT scans to
enable an understanding of which factors most influence the performance of the models
and methods used by the selected studies and lead them to perform differently for the
same objective.

Some of the aspects that will be compared include datasets considerations, algorithms
used, robustness, performance and evaluation. Specifically, we aim to answer the following
research questions (RQs):

• RQ1—What are the challenges and limitations associated with accurate liver segmen-
tation in CT scans?

• RQ2—How does the choice of the method impact the accuracy and efficiency of liver
segmentation in CT scans?

• RQ3—What are the evaluation metrics commonly used to assess the performance of
AI models and traditional methods for liver segmentation in CT scans?

A systematic review of the literature was conducted to address these research ques-
tions. Google Scholar was used for document retrieval, and the most representative docu-
ments from each year were selected. It is worth noting that only a few studies were found
that provided an intuitive and visual approach for healthcare professionals to manipulate
and interpret the segmentation results.

This paper reviews studies on liver segmentation from CT scans, organised according
to the methods used. The paper’s selection methodology is detailed in Section 2, followed
by a categorisation of AI models and medical image processing methods in Section 3.
Section 4 summarises the main findings, while Section 5 provides a discussion of the results
of the methods used. The paper concludes in Section 6 with the conclusions and directions
for future work.

2. Methodology

This section outlines the approach taken in conducting the literature review, which
involved synthesising existing knowledge, critically assessing methodologies and analysing
the results to compare the performance of each AI model and traditional methods for liver
segmentation in CT scans.

2.1. Data Sources

Google Scholar (https://scholar.google.com/, accessed on 20 January 2024) has devel-
oped over the years and has become a robust database for the scientific literature [17]. It
was therefore chosen as the research tool for the present study.

2.2. Search Queries

A search performed on 30 January 2024, with the query “intitle:Liver + intitle:segmentation +
(intitle: CT OR + intitle:tomography)” returned approximately 980 results in just 0.04 s.

2.3. Inclusion Criteria

The most relevant papers from each year have been included in this historical overview.
In the context of Google Scholar, relevance refers to the degree to which the search results
match the criteria or the context of the query. The sorting algorithm takes into account
several factors to determine the order of the results, including the presence of search terms
and citation counts. In addition, the review papers were all included in the current state of
the art, which amounted to a further five documents.

https://scholar.google.com/
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2.4. Exclusion Criteria

Papers that did not meet the criteria defined in Section 2.3 were not included. Pa-
pers written in languages other than English, Portuguese and Spanish were also excluded.
As a final exclusion criterion, papers were excluded if the full document was not pub-
licly available.

2.5. Characterisation of Selected Papers

The earliest paper dates to 1990, and thus, a potential total of 35 papers could be
selected (the most relevant per year between the years of 1990 and 2024). The distribution
of the total number of papers retrieved per year is given in Figure 1. As can be seen, some
years do not have any papers, and thus a total of 30 documents were finally included in the
historical review. It is also clear that interest in the topic has increased over the years.

Figure 1. Distribution of the retrieved papers over the years.

A word cloud constructed from the titles of the selected papers is shown on the left
side of Figure 2. On the right side is a pie chart showing the number of journals, conference
proceedings and reports.

Figure 2. Characterisation of the selected papers.

Several taxonomies can be used to characterise the reviewed papers. We decided
to adopt the taxonomy introduced in a recent paper by Sakshi and Kukreja (2023) [18],
published in the reputable journal Archives of Computational Methods in Engineering (Im-
pact Factor of 9.7). Figure 3 shows the selected papers categorised by image segmentation
technique according to this taxonomy.
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Figure 3. Selected paper distribution according to the categories of image segmentation techniques.

3. Literature Review

Based on the selected papers, this literature review provides a historical overview of
different methods and approaches for liver segmentation in medical imaging (Section 3.1).
It covers neuronal-network-based segmentation, region-based segmentation, edge-based
segmentation, threshold segmentation, semantic segmentation and cluster-based segmen-
tation techniques. This review includes a comparison of the results and discusses the
potential applications and strengths of each method. Section 3.2 compares this review with
other existing summaries of the state of the art.

3.1. Historical Overview

As mentioned in Section 2, one paper per year between the years of 1990 and 2024 was
selected, summing to a total of 35 documents. For five years, the search retrieved no results
(see Figure 1), resulting in 30 documents. Unfortunately, the full texts of two works were
not available. The remaining 28 documents are briefly described below.

The oldest work found to tackle liver segmentation is the one by Bae et al. (1993) [19],
presenting a similar sequential image-by-image segmentation technique using a reference
image, where the liver occupies a significant portion of the abdomen cross-section. Image
processing techniques, including grey-level thresholding, Gaussian smoothing and con-
nectivity tracking, are employed to extract the liver boundaries. The resulting boundaries
are then smoothed using mathematical morphology techniques and B-splines. This study
focuses on a living-donor liver transplant program, and the computer-determined bound-
aries are compared with those drawn by a radiologist, showing agreement within 10% of
the calculated areas.

Gao et al. (1996) [20] focus on facilitating 3D visualisations for surgical planning.
Their method employs a global histogram analysis, morphologic operations and a para-
metrically deformable contour model to delineate the liver boundary. Ten cases were
used to validate the approach and promising results were found with minimal operator
intervention required.

Soler et al. (1997) [21] propose an automatic method for segmenting the portal vein,
with the primary objective of achieving accurate segmentation with detailed branching and
topological information, facilitating the localisation of liver tumours concerning Couinaud’s
anatomical segmentation. This approach involves the initial detection of liver contours
using 3D deformable models, followed by limiting the CT images to a liver mask containing
hepatic tissue, vascular trees and potential tumours. Classification of anatomical structures
is performed using Gaussian curves fitted to an intensity histogram. The vascular trees and
tumours are segmented through a hysteresis thresholding technique based on a distance map,
considering the Gaussian parameters. An isotropic image is obtained through shape-based
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interpolation and the portal vein is reconstructed using skeletonization, eliminating short
branches and correcting errors. Results demonstrate that the algorithm automatically extracts
the first three main bifurcations of the portal vein, comparable to manual segmentation.

Yoo et al. (2000) [22] focus on the use of pixel ratios. By analysing the grey value range
of a normal liver in CT images, a binary image is generated and then processed into four
mesh images based on hole ratios to eliminate noise. A template representing the general
outline of the liver is generated from the union image of these mesh images and subtracted
from the binary image to accurately represent the organ boundary. The pixel ratio, which
takes into account the distribution of organ pixels, was used to discriminate between the
organ and noise, especially in cases where organs have similar grey value ranges. The
proposed method reduced the processing time compared to existing methods and was
validated against manual segmentation by medical experts.

Pan and Dawant (2001) [23] introduce a level-set approach, which addresses the
challenge of defining appropriate speed functions for contour propagation. A speed
function is proposed to stop the propagation of the contour at organ boundaries with
weak edges by incorporating the accumulative speed based on the path of the contour,
enhancing the robustness of segmentation in noisy images. The method also leverages
a priori anatomical information to improve the accuracy. Tested on five CT datasets,
including cases with abnormal livers, tise method demonstrates good agreement with
manual delineations.

Saitoh et al. (2002) [24] present an automated method for segmenting the liver region
from the third phase of abdominal CT scans. Their approach involves the extraction of blood
vessels using a threshold, followed by morphological dilation to define an approximate
liver region useful for the removal of adjacent organs. The final liver region is then extracted
using a threshold. The method is thus based on mathematical morphology and thresholding
techniques, using the unique characteristics of blood vessels to functionally identify the
liver region. The experiments performed on eight CT datasets show a good agreement
between the automatically and manually detected liver regions.

Masumoto et al. (2003) [25] use multislice CT images. Their method uses two time-
varying images acquired during the contrast medium circulation phase, highlighting the
liver region through CT value changes. The proposed scheme involves generating a
liver likelihood image by analysing CT value changes and subsequently extracting the
liver region while considering the geometric characteristics of blood vessels and tumours.
The evaluation, based on receiver operating characteristic (ROC) analyses, demonstrates
the superiority of the proposed method over other approaches, especially when using
information from both phases.

The scheme proposed by Lim et al. (2004) [26] uses an ROI approach to optimise
computational efficiency. Morphological filters, incorporating a priori knowledge of liver
location and intensity, detect the initial boundary. The algorithm then generates a gradient
image using the weighted initial boundary and employs an immersion-based watershed
algorithm for segmentation. Post-processing includes region merging based on statistical
information to refine the segmentation.

Liu et al. (2005) [27] present a gradient vector flow (GVF) snake-based method for
the semi-automatic segmentation of liver volumes in contrast-enhanced CT images. The
algorithm follows a stepwise approach, starting with the computation of an initial edge
map using the Canny edge detector and the estimation of a liver template. The edge map is
then modified to suppress edges within the liver using the liver template, and a concavity
removal algorithm is applied to refine the liver boundary. The GVF field is computed based
on the modified edge map, and the initial liver contour is determined by considering the
candidate initial contour and the computed GVF field. The final liver contour is obtained
by deforming the initial contour using the snake. The method was evaluated on 20 contrast-
enhanced volumetric liver images, and the results were compared with a radiologist’s
manual delineation. The median difference ratio between the computer-generated results
and manual results is 5.3%, with a range of 2.9% to 7.6%.
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A three-stage approach is used by Lim et al. (2006) [28]. The first stage involves
image simplification as preprocessing, where an ROI is identified and thresholds are
determined using multilevel thresholding. The second stage detects a search range using
multiscale morphological filtering, region labelling, and partition clustering. The third
stage uses a contour-based segmentation approach with a labelling-based search algorithm
to refine the initial liver boundary. The effectiveness of the algorithm is demonstrated
through experimental results on contrast-enhanced abdominal CT images, with an average
segmentation accuracy of 96%. Volume measurement is performed based on the segmented
liver regions, with an average error rate of 3%.

Beichel et al. (2007) [29] introduce a two-step process. First, initial segmentation is per-
formed using graph cuts, overcoming challenges such as the high variability in liver shape
and grey-value appearance. Second, an interactive refinement step is introduced, allowing
users to correct segmentation errors in a 3D environment. The refinement is facilitated by a
hybrid desktop/virtual reality (VR) user interface. This approach is demonstrated on ten
contrast-enhanced liver CT scans, demonstrating robustness to variations in patient data.
The results also indicate an improved segmentation quality with low interaction times.

Massoptier and Casciaro (2008) [30] present a fully automated method that uses a
statistical-model-based approach to distinguish liver tissue from other abdominal organs.
An active contour technique using gradient vector flow is used for smoother segmentation
of the liver surface. Automatic classification is performed to isolate hepatic lesions from
liver parenchyma. The method was evaluated on 21 datasets and demonstrated robust
and efficient liver and lesion segmentations close to the ground truth, with an average
processing time of 11.4 s per 512 × 512 pixel slice. The volume overlap for liver surface
segmentation is 94.2%, and the accuracy is 3.7 mm. Tumour detection achieved a sensitivity
and specificity of 82.6% and 87.5%, respectively.

Heimann et al. (2009) [31] focus on the comparison and evaluation of different methods.
The image data, acquired from different CT scanners, consisted of contrast-dye-enhanced
scans showing pathological conditions like tumours and cysts. Radiology experts manually
delineated the liver contours in transversal slices to create reference segmentations. A total
of 40 images were divided into training and test sets for algorithm evaluation. Evaluation
measures included volumetric overlap, relative volume difference, and surface distances.
Fully automated and interactive segmentation methods were employed, with the former
showing discernible performance differences. The best-performing automated approaches
used statistical shape models. Interactive methods achieved higher scores with more user
interaction. A combined approach using majority voting from the best-performing methods
outperformed individual automated and interactive results.

A three-step procedure is outlined by Akram et al. (2010) [32]. Firstly, a pre-processing
step involves converting the image to greyscale and applying a 3 × 3 median filter to reduce
noise. The second step focuses on liver segmentation, with a global threshold and mor-
phological operations to obtain the final segmented liver region. Finally, post-processing
steps include adaptive histogram equalisation, Gaussian smoothing, and grey-level trans-
formations to enhance the segmented liver region. Experimental tests on 100 CT images
demonstrate the accuracy of the proposed method by comparing automated segmentation
results with images manually segmented by hepatologists and oncologists.

The approach of Oliveira et al. (2011) [33] involves a sequence of four steps. First, the
liver is segmented using level sets with parameters optimised by a genetic algorithm (GA).
A Gaussian fit is employed to define the speed image for level set propagation. Secondly,
vessels and nodules are segmented using a Gaussian mixture model, focusing on adipose
nodules. A region-growing method with information from the Gaussian model is applied.
Thirdly, vessels are classified into portal veins or hepatic veins using a vein tracking method.
Finally, a geometric approach based on the identified veins is used to segment the liver
into different Couinaud regions. Liver segmentation is based on the assumption that the
liver parenchyma homogeneity and veins are mainly inside the liver. The parameters are
estimated using a GA, and the fitness evaluation involves comparing the segmentation with
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a reference using five disparity metrics. The proposed method shows good performance,
ranking among the top methods in the MICCAI-SLiver07 conference evaluation.

The method developed by Linguraru et al. (2012) [34] uses a robust parametrisation of
3D surfaces for point-to-point correspondence, overcoming challenges such as inconsistent
contrast enhancements and imaging artefacts. A shape descriptor that is invariant under
rotation and scale is used to compare the local shape features of organs. Initial liver
segmentation is refined using a shape-driven geodesic active contour, and hepatic tumours
are detected and segmented using graph cuts and support vector machines (SVMs). This
technique is evaluated on a dataset of 101 CT scans and shows improvements in the liver
segmentation accuracy, particularly in cases with large tumours and segmentation errors.
Furthermore, the method identifies liver tumours with a low rate of false positives.

Li et al. (2013) [35] discuss a method that makes use of fuzzy clustering and level set
techniques. The Fuzzy C-Means (FCM) clustering algorithm is employed, which assigns
pixels to different categories based on fuzzy memberships, considering both the grey
level intensity and spatial information. The FCM algorithm is iteratively optimised by
minimising a cost function, allowing the fuzziness of the resulting partition. To overcome
the limitations of standard FCM, a spatial FCM algorithm is introduced that incorporates
spatial information into fuzzy membership functions. This paper also introduces the
level set method, a continuous deformable model for segmentation. Distance-Regularized
Level Set Evolution (DRLSE) is proposed to address reinitialisation issues and improve the
efficiency. The proposed method is evaluated using accuracy, sensitivity, and specificity
metrics and demonstrates a high performance in liver segmentation, especially in cases
with unclear boundaries. A comprehensive review of abdominal image segmentation using
soft and hard computing approaches is provided in [36].

Platero et al. (2014) [37] integrate a multi-atlas segmentation approach with graph
cuts. Their method includes several steps: (1) obtaining an initial solution using low-
level operations to define the ROI around the liver; (2) constructing a fast probabilistic
atlas for the ROI and computing a coarse binary segmentation using segmentation-affine
registration; (3) ranking the atlases based on segmentation similarity and propagating
selected atlases to the target image; (4) improving the segmentation accuracy through
label fusion, minimising the discrete energy function; and (5) evaluating the approach
using a public liver segmentation database. The experimental results show a high accuracy,
competitive with human expert segmentation.

Artificial Bee Colony (ABC) optimisation is used by Mostafa et al. (2015) [38]. Their
algorithm use ABC optimisation to cluster different intensity values in abdominal CT im-
ages, followed by mathematical morphological operations to manipulate and separate the
clusters. This process eliminates small and thin regions, such as flesh regions or organ edges.
The extracted regions form an initial estimate of the liver area, which is further enhanced
using a region-growing technique. The proposed approach demonstrates a segmentation
accuracy of 93.73% on a test dataset of 38 CT images, taken in the pre-contrast phase.

A 3D deeply supervised network (DSN) is introduced by Dou et al. (2016) [39]. The
proposed architecture consists of 11 layers, including 6 convolutional layers, 2 max-pooling
layers, 2 deconvolution layers, and 1 softmax layer. The network is designed in a 3D format
to effectively capture spatial information. The 3D DSN employs deep supervision via
additional deconvolutional layers to counteract vanishing gradients, thus improving the
training process. The learning objective is to minimise per-voxel-wise binary classification
errors, with deep supervision injected at specific layers. The MICCAI-SLiver07 dataset is
used for evaluation, demonstrating that the 3D DSN has a faster convergence and lower
errors when compared to traditional 3D convolutional neuronal networks (CNNs).

Christ et al. (2017) [14] propose a cascaded fully CNN (CFCN) on CT slices that
sequentially segments the liver and lesions. First, various preprocessing steps, including
Hounsfield unit windowing and contrast enhancement, are applied. Then, the cascaded
approach involving two U-Net architectures is used for liver and lesion segmentation.
Finally, 3D conditional random fields (CRFs) are used to refine the segmentation results.
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Generalisation and scalability to different modalities and real-life datasets, including a
diffusion-weighted magnetic resonance imaging (MRI) dataset and a large multi-centre CT
dataset, are shown.

Hiraman (2018) [40] presents a slice alignment method that addresses the challenges
through optimal threshold selection, skeletonization, and enhanced correlation coefficient
(ECC) alignment. Next, a CNN-based liver region of interest detection method is proposed
to classify 2D slices for focused processing.

The study presented by Wang et al. (2019) [41] investigates the application of a gener-
alised CNN for automated liver segmentation and biometry using cross-sectional data from
abdominal CT and MRI scans. Their retrospective study included a sample of 563 abdomi-
nal scans from 530 adults, covering different imaging modalities. The CNN was initially
trained on 300 unenhanced multiecho 2D SPGR MRI sets and then subjected to transfer
learning for generalisation across different imaging methods. The accuracy of the CNN
was evaluated using internal and external validation datasets. This study also investigates
the impact of training data size on the segmentation accuracy and explores the feasibility
of using automated liver segmentation for volumetry and hepatic PDFF quantification.

Almotairi et al. (2020) [42] explore the application of the SegNet architecture. The
proposed modified SegNet model uses the VGG-16 network as an encoder. Tests were
performed on a standard dataset for liver CT scans (3D-IRCADb01 [43]), achieving a tumour
accuracy of up to 99.9% in the training phase and 86% for tumour identification.

Ayalew et al. (2021) [44] present a modified U-Net architecture and introduce a new
class balancing method. To address the class imbalance between the liver and tumours, a
weighting factor is applied and slices without a tumour are removed during data prepara-
tion. The U-Net-based network architecture includes batch normalisation, dropout layers,
and filter size reduction. Training involves tuning hyperparameters, such as the learn-
ing rate and batch size. The datasets used are derived from the 3D-IRCADb01 [43] and
LiTS [45] databases and the results achieve a Dice Similarity Coefficient (DSC) of 0.96
and 0.74, respectively. The algorithm also introduces a novel approach for direct tumour
segmentation from abdominal CT scan images, with a comparable performance to existing
two-step methods.

The study of Scicluna (2022) [46] is motivated by challenges such as the Combined
Healthy Abdominal Organ Segmentation (CHAOS) Challenge [47], which focuses on
healthy abdominal organs. The study focuses on replicating the v16pUNet1.1C model,
which demonstrated a superior performance in Task 2 of the CHAOS Challenge. Results
from the v16pUNet1.1C model are presented and compared with variations in the loss
function and scaling transformation. The application of a 3D largest-connected-component
filter is discussed, showing improvements in mean scores.

A deep semantic segmentation CNN is used by Ezzat et al. (2023) [48]. A three-stage
architecture is proposed, including pre-processing with data augmentation, deep CNN
training, and testing. The CNN-based semantic segmentation model is shown to be robust,
achieving a test accuracy of 98.8%. The approach does not require user input, making it
accessible to non-experts.

Shao et al. (2024) [49] present the Attention Connect Network (AC-Net) for liver
tumour segmentation in CT and MRI images. The AC-Net consists of two main modules:
an axial attention module (AAM) and a Vision Transformer module (VTM). The AAM uses
an axial attention mechanism to merge features of matching dimensions, maximising the
use of spatial features extracted by a CNN. The VTM processes high-level semantic features
extracted by the CNN using a methodology similar to Vision Transformers (ViTs) [50]. The
network achieves a DSC of 0.90, a Jaccard coefficient (JC) of 0.82, a recall of 0.92, a precision
of 0.89, a Hausdorff distance (HD) of 11.96, and an average symmetric surface distance
(ASSD) of 4.59.
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3.2. Other Review Papers

The search described in Section 2 retrieved six literature review documents. For one of
the works, however, the full document was not available. The remaining five are briefly
presented in the following.

A comparative analysis of various available techniques, focusing on their advantages
and disadvantages, is given in [51]. Recognising the challenges posed by the variable shape
of the liver and the weak edges in adjacent organ regions, this survey covers approaches
such as threshold, model, level set, region, active contour, and clustering. This paper also
divides its investigation into sections, covering both image pre-processing and segmenta-
tion techniques, providing an overview of the current landscape in liver segmentation from
CT images.

Study [52] provides a survey of 3D image segmentation methods, focusing on selected
binarization and segmentation techniques suitable for processing volume images. For
thresholding methods, both global and local techniques are considered, and challenges such
as hysteresis in dealing with voxel value distributions are addressed. The region growing
section explores voxel-based procedures, including growing by grey value and adaptive
region growing. In addition, deformable surfaces and level set methods are discussed,
before other segmentation concepts such as fuzzy connectedness and watershed algorithms
are introduced. The concluding remarks underline the complexity of image segmentation,
emphasising the absence of a universal solution and the need to carefully evaluate and
select methods based on specific tasks and dataset characteristics. The challenges posed
by 3D data, including the data volume and issues of interactivity and visualisation, are
also acknowledged.

Study [53] reviews the literature on methods for segmenting liver images, distinguish-
ing between semi-automatic and fully automated techniques. The challenges of liver image
segmentation, such as low contrast, blurred edges, and the complexity of the liver morphol-
ogy, are discussed. Different approaches are reviewed, including neuronal-network-based
methods, support-vector-machine-based methods, clustering-based methods, and hybrid
methods. It is concluded that, despite progress, liver image segmentation remains a chal-
lenging task, and the authors encourage further development of hybrid approaches for
more accurate segmentation.

Various segmentation methods, including statistical shape models, probabilistic atlas-
based approaches, geometric deformable models, and machine-learning-based methods, are
reviewed in [54]. This review includes information on avaliable databases and challenges
in liver tumour segmentation, highlighting the scarcity of public datasets and the need for
improved segmentation methods. Liver blood vessel segmentation and computer-assisted
diagnosis (CAD) systems are also reviewed. The conclusion highlights the importance of
segmentation, particularly in pathological cases, and the need for improved CAD systems
with accurate segmentation for comprehensive analysis of liver treatment.

The survey paper [55] provides a comparative analysis of various available techniques,
focusing on their advantages and disadvantages. Grey-level-based techniques, such as
region growing and active contour methods, are highlighted as effective for liver segmen-
tation. This survey acknowledges the challenges of detecting early-phase liver lesions
and emphasises the need for a combination of methods to achieve seamless segmentation,
with region growing and active contour methods considered more efficient than other
segmentation techniques.

This survey differs from the other documents in this section in a number of ways.
Firstly, the most recent of the review papers found dates to 2022. One of the contributions
of this work is to present a more up-to-date view of the works published since then. In
addition, none of the other works present a historical perspective on the subject, starting
from 1990, as is the case in the present review.
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4. Findings

A summary of the papers reviewed in Section 3.1 is given in Table 1. The columns of
the table contain the following information: identification of each study (column Authors);
publication year (column Year); general category or approach used in the segmentation
method as defined in [18] (column Segmentation Category); the specific segmentation
technique or algorithm (column Method); whether the method is fully-automatic or semi-
automatic (column Autom. Level for Automation Level); whether the segmentation is
performed in 2D or 3D (column Dim. for Dimensionality); the dataset or database used for
evaluation (column Database); and the key results of the best segmentation method in each
paper (column Results). Graphical depictions of the metrics used in one or more studies
are shown in Figure 4.

Figure 4. Summary of the quantitative results presented in the reviewed documents.
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Table 1. Summary of reviewed documents.

Authors Year Segmentation Category Method Autom. Level Dim. Database Results

Bae et al. [19] 1993 Threshold Grey-level thresholding Semi 2D Private 0.985 DSC with mean percent error within 10%.

Gao et al. [20] 1996 Edge Parametrically deformable
contour model Fully 3D Private 13.2% of the results required user modifications.

Soler et al. [21] 1997 Edge Deformable models Fully 3D Private Claimed to be comparable to manual segmentations.
Yoo et al. [22] 2000 Threshold Threshold Fully 2D Private 3.41% error.
Pan and Dawant [23] 2001 Edge Level sets Fully Both Private [0.874, 0.963] average similarities.
Saitoh et al. [24] 2002 Threshold Threshold Fully 3D Private ∼20 min computation time.

Masumoto et al. [25] 2003 Region Differences between
time-phase images Fully 3D Private 67% volume ratio average; 32% in the worst cases.

Lim et al. [26] 2004 Region Watershed Fully 2D Private Only qualitative.
Liu et al. [27] 2005 Edge GVF snake Semi 2D Private 5.3% median value of the difference ratios.
Lim et al. [28] 2006 Semantic Labeling-based search Fully 2D Private 96% average correctness; 3% average error rate.
Beichel et al. [29] 2007 Region Graph cuts Semi 3D Private 5.2% average overlap error.
Massoptier and
Casciaro [30] 2008 Edge Active contour Fully 3D Private 94.2% mean DSC.

Heimann et al. [31] 2009 Several Majority Voting Both Both Private 5% overlap error; −0.7 volume difference; 0.8 average distance;
1.7 RMS distance; 19.1 max distance.

Akram et al. [32] 2010 Threshold Global Threshold Fully 3D Private 0.96 average accuracy; 0.0017 std; 96% accurately segmented; 4%
poorly segmented.

Oliveira et al. [33] 2011 Edge Level sets Semi 2D SLiver07 82.05 overall score.
Linguraru et al. [34] 2012 Region Graph cuts Fully 3D Private; SLiver07 2.2 VOE.
Li et al. [35] 2013 Edge Fuzzy clustering and level set Fully 2D Private 0.9986 average accuracy; 0.9989 average specificity.
Platero et al. [37] 2014 Region Graph cuts Semi 3D SLiver07 76.3 maximum score; 0.973 DSC.
Mostafa et al. [38] 2015 Cluster ABC optimization Fully 2D Private 93.73% accuracy; 84.82% average SI.
Dou et al. [39] 2016 NN 3D DSN Fully 3D SLiver07 5.42% VOE; 0.79 mm ASSD.
Christ et al. [14] 2017 NN CFCN Fully 2D 3D-IRCADb01 94.3% mean DSC.

Hiraman [40] 2018 NN CNN Fully 2D SLiver07 12.07% average VOE; −1.96% RVD; 2.25 mm ASSD; 2.60 mm RMSD;
43.01 mm MSSD.

Wang et al. [41] 2019 NN CNN Fully 3D Private 0.94 ± 0.06 DSC.
Almotairi et al. [42] 2020 NN SegNet Fully 3D 3D-IRCADb01 94.57% overall accuracy.

Ayalew et al. [44] 2021 NN U-Net Fully 2D 3D-IRCADb01;
LiTS 0.9612 DSC.

Scicluna [46] 2022 NN UNet; VGG16UNetC Fully 2D CHAOS 85.84 mean score; 97.85 DSC; 80.33 RAVD; 94.80 ASSD score; 70.38
MSSD.

Ezzat et al. [48] 2023 NN CNN Fully 2D Private 98.80% accuracy.
Shao et al. [49] 2024 NN AC-Net Fully 3D Private; LiTS 0.90 DSC; 0.82 JC; 0.92 recall; 0.89 precision; 11.96 HD; 4.59 ASSD.

ABC: Artificial Bee Colony; AC-Net: Attention Connect Network; ASSD: average symmetric surface distance; CFCN: cascaded fully CNN; CNN: convolutional neuronal network; DSC:
Dice Similarity Coefficient; DSN: deeply supervised network; GVF: gradient vector flow; HD: Hausdorff distance; JC: Jaccard coefficient; MSSD: maximum symmetric surface distance;
NN: neuronal network; RAVD: relative absolute volume difference; RMS: root mean square; RMSD: root mean square Symmetric Surface Distance; RVD: relative volume difference; SI:
similarity index; std: standard deviation; VOE: volumetric overlap error.
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Table 2 presents a brief description of each segmentation category, highlights its main
advantages and disadvantages, and presents some application details. It is clear from
Table 1 that prior to 2016 there was no predominant category. Region-based segmentation,
edge-based segmentation, threshold segmentation, semantic segmentation, cluster-based
segmentation, and even combinations of several methods were tried. However, since 2016,
neuronal-network-based techniques have dominated the field. Remembering the huge
impact that AlexNet [56] had in winning the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012 [57], it is clear that liver segmentation in CT scans took a few
years to catch up with the state-of-the-art research. This is probably due to the arrival
of U-Net [58], which was proposed in 2015, that is specifically designed for biomedical
image segmentation.

Table 2. Comparison of segmentation categories.

Category Description Main Advantages Main Limitations Applicability

Threshold Segments based on
intensity thresholds

Simple, fast, easy to
implement

Sensitivity to threshold
selection, suffers from

noise and artefacts

Commonly used in cases where
clear intensity differences between

the ROI and other regions exist

Edge
Segments based on
intensity transitions

between regions

Accurate delineation of
organ boundaries and

structures

Sensitive to noise,
difficulties with

capturing complex
structures

Suitable for images with clear
organ boundaries and

well-defined edges, but may
struggle with low-contrast areas

Region
Segments based on

homogeneous regions
within an image

Simple implementation,
intuitive methodology

Sensitive to
initialisation

Often used in cases where
interpretability is a concern, but
may struggle with fine details

Semantic
Segments based on

semantic meaning of
pixels

Pixel-level
segmentation,

fine-grained structural
detail

Complex to implement,
resource-intensive, and

computationally
expensive

Suitable for segmenting
anatomical structures with distinct

features

Cluster
Segments based on

similar data patterns or
clusters

Efficient grouping and
identification of similar

data patterns

Sensitivity to
initialisation and noise,
limited to specific data

distributions

Useful for identifying patterns and
groups within the data, but can
struggle with irregular shapes

NN
Learns models to

segment images based
on learned features

High accuracy, efficient
learning from data

Requires large training
datasets,

computationally
intensive

Suitable for different types of data
due to its flexibility and

adaptability

In terms of automation, both fully automated and semi-automated techniques have
been explored (Figure 5). While it is nice to have fully-automatic, accurate and fast tech-
niques, the final decision should always belong to the specialist. Thus, we advocate fully
automatic methods for contour initialisation, together with the development of intuitive
tools that allow specialists to modify the fully automatically generated contour if they
feel the need to do so. This point of view is in line with current clinical practice, where
the specialist follows contouring guidelines from respected entities such as the European
Society for Radiotherapy and Oncology, the American Society for Radiation Oncology, or
the Global Harmonization Group [59], while being allowed to use built-in auto-delineation
and interpolation tools [60]. We therefore agree with Sarria et al. [60] in that, while AI can
improve the accuracy and consistency of contouring, it cannot replace the knowledge and
clinical judgement of radiation oncologists, physicists, or radiation therapists. AI should be
used as a tool to support and optimise clinical decision making and not as a substitute for
human expertise.
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Figure 5. Percentage of studies according to their level of automation (semi-automatic, fully automatic,
or both).

Both slice-based (2D) and volume-based (3D) methods have been developed (Figure 6).
As an anatomical structure, we believe that liver segmentation methods should be inher-
ently three-dimensional. This would have two main advantages. On the one hand, fully
3D methods would make use of more contextual information and thus potentially provide
better segmentations. On the other hand, the development of fully three-dimensional tech-
niques would avoid the need for slice-based methods to aggregate all of the segmentations
into a coherent volume. This aggregation could not only lead to errors and anatomically
incorrect structures, but would also increase the computational time. Although we do
advocate for true three-dimensional methods, we recognise their drawbacks, notably the
increased complexity of implementation, the need for more computational resources, the
possibly lower efficiency, the increased data requirements, and difficulties in visualisation.
The choice must be an informed one, and made on a case-by-case basis.

Figure 6. Percentage of studies according to their image dimensionality (2D vs. 3D).

Data availability is a major concern, as most methods use private datasets (Figure 7).
This inhibits reproducibility of the results. In addition, researchers who do not have
access to hospitals or other facilities with CT scanners cannot develop new techniques for
this particular problem. We advocate making the data available, while respecting all the
ethical considerations that are important when dealing with medical data and properly
anonymising any sensitive information. Some notable exceptions to publicly available
datasets are listed in Section 5.1.

5. Discussion

As seen in the previous section, significant advances in liver segmentation techniques
have been presented, with particular impact due to the adoption of AI methods, more
specifically neuronal network techniques. In this section, we provide some considerations
of publicly available databases (Section 5.1), the impact of the widespread adoption of
neuronal networks since 2017 (Section 5.2), a comparison between 2D and 3D implementa-
tions (Section 5.3), and Section 5.4 present answers to the research questions posed in the
introductory section.
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Figure 7. Percentage of database types.

5.1. Public Dataset Analysis

The most common public datasets used in studies of liver segmentation on CT scans
include 3D-IRCADb01, LiTS17, and MICCAI-SLiver07 (Figure 8). According to a dataset
comparison provided by Al-Saeed et al. [61] (shown in Table 3), it is possible to identify
several key differences that may have implications for data processing and analysis, such
as different formats and differences in resolution between datasets which may require
different approaches to processing and interpretation.

Figure 8. Number of studies using each public dataset.

Table 3. Characteristics of each dataset used by the main analysed studies (based on [61]).

Dataset Date Format Number of
Subjects

Slices per
Subject Resolution

MICCAI-SLiver07 [62] 2007 RAW 30 74 to 260 512 × 512
3D-IRCADb01 [43] 2010 DICOM 20 74 to 260 512 × 512

LiTS17 [45] 2017 RAW 200 42 to 1024 Variable

5.2. Impact of the Adoption of Neuronal-Network-Based Methods

The growth of neuronal-network-based approaches has led to remarkable progress
in liver segmentation, particularly with respect to CT scans. These models have led to a
new era of accuracy and efficiency, significantly outperforming traditional methods [56,58].
This improved accuracy has become critical in the field of medical imaging, where the
correct interpretation of CT scans can directly affect the diagnosis and treatment plans
of patients. Furthermore, the efficiency of these neuronal network models translates into
faster processing times, allowing for more agile decision making in clinical settings.

Another positive aspect of neuronal networks in liver segmentation is their ability to
cope with the complexity of the liver anatomy. Neuronal networks, with their systematic
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and complex pattern recognition capabilities, are able to navigate these anatomical vari-
ations. As a result, they are better able to deal with the variety of appearances that liver
tissue can have on CT scans. This ability to handle complex datasets ensures that neuronal
networks can provide consistent and accurate segmentation in a wide range of cases.

5.3. Comparison between 2D and 3D Methods for Liver Segmentation

• Importance of Choosing between 2D and 3D Methods

– In medical imaging, and in particular liver segmentation, the choice between
slice-based 2D and volume-based 3D segmentation methods is crucial. This
decision is highly dependent on the anatomical structure of the liver. Given the
complex, three-dimensional nature of the liver, 3D segmentation techniques often
prove to be the most appropriate choice [21,40]. These methods are inherently
designed to understand and process the volumetric characteristics of the liver,
which is a critical consideration for accurate segmentation results.

• Two-Dimensional Segmentation Limitations

– Although 2D slice-based segmentation is widely used, it has limitations, par-
ticularly when it comes to dealing with complex organs such as the liver. The
main challenge with 2D methods is their inability to fully capture all the regions
of the liver. They involve working with individual slices, which can provide a
fragmented understanding of the organ structure, but this fragmentation can
lead to inconsistencies and errors when these individual slices are aggregated to
form a complete image [41].

• Three-Dimensional Segmentation Advantages

– In order to overcome the limitations of 2D segmentation, 3D segmentation has the
ability to use more contextual information. Unlike 2D methods, which visualise
the liver in individual slices, 3D techniques consider the organ as a whole, as
they have the ability to ensure anatomical correctness by processing the liver as a
single, continuous volume, avoiding errors that can arise from the aggregation of
2D slices [14,39]. In 2D segmentation, inconsistencies can occur when individual
slices are combined, leading to inaccuracies in the representation of the liver
anatomy. The holistic view provided by 3D segmentation results in more accurate
segmentation, as it takes into account the spatial relationships and continuity
between the different sections of the liver. The inclusion of this additional
contextual information can potentially lead to segmentation results, especially in
complex cases where the shape and size of the liver can vary considerably.

5.4. Exploring Research Questions

Following the specific analysis of the studies presented and their main findings, the
questions raised in Section 1 are answered as follows.

• RQ1—What are the challenges and limitations associated with accurate liver segmen-
tation in CT scans?

– The challenges and limitations associated with accurate liver segmentation in
CT images include under-segmentation, over-segmentation, low contrast, poor
boundary detection, and background segmentation due to noise. In addition,
liver segmentation in CT scans is further challenged by the presence of artefacts,
such as partial volumes, noise, and low sharpness and contrast between organs,
making it difficult to identify the boundaries between different tissues.

• RQ2—How does the choice of the method impact the accuracy and efficiency of liver
segmentation in CT scans?

– The choice of the method has an important impact on the accuracy and efficiency
of liver segmentation in CT scans. Traditional techniques such as image process-
ing and region growing approaches have shown varying degrees of sensitivity
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and specificity, with some challenges in dealing with large injuries. In contrast,
newer methods such as FCN and DBN-DNN and techniques like ResU-Net
and SegNet showed a higher accuracy, with some reaching the highest accuracy
levels. Notably, the use of GPUs has reduced processing times, thus contributing
towards more efficient and accurate liver segmentation methods.

• RQ3—What are the evaluation metrics commonly used to assess the performance of
AI models and traditional methods for liver segmentation in CT scans?

– Some of the key metrics used to measure the outcome of segmentation techniques
include the Dice Similarity Coefficient (DSC), accuracy, precision, sensitivity,
specificity, and the segmentation speed. There is not much consistency in the
metrics presented by the various studies except for the DSC.

6. Conclusions and Future Work

The evolution of liver segmentation techniques throughout history reflects the broad
impact of AI technologies across a wide range of disciplines. The transition to fully
automated segmentation methods has been an important breakthrough in the process,
although the indispensable involvement of medical experts continues to play a key role in
ensuring the accuracy and clinical relevance of these techniques. The emerging prevalence
of 3D segmentation methods, which follow the structure of the liver, promises more accurate
and anatomically consistent results.

However, there are a number of challenges that need to be addressed in order to
advance the field. The lack of public datasets is one of the main barriers to the advancement
of liver segmentation technologies. Research has mainly been conducted on private datasets,
often restricted to specific medical centres, which limits wider participation in research and
makes it difficult to replicate.

In terms of future developments, the outlook for the evolution of liver segmentation is
unfolding in several core areas that promise to impact research and application in this field.
The increasing availability of public datasets is key to fostering innovation, enabling the
contribution of researchers from diverse backgrounds and promoting a dynamic research
environment. In addition, the definition of specific standardised evaluation metrics is
crucial to allow meaningful comparisons between segmentation methods and to guide the
development towards more efficient, accurate, and user-friendly solutions, such as contour-
and region-based metrics, performance metrics, and user intervention metrics.

The further application of 3D segmentation techniques may be a good investment, as
they can provide more anatomically accurate and consistent anatomical results, overcom-
ing the limitations of 2D segmentation. Furthermore, the effective integration of medical
expertise in segmentation automation is indeed essential, with the aim of developing inter-
faces that allow specialists to interact with automated segmentation results, ensuring that
liver segmentation tools are both technically advanced and clinically relevant and feasible.
Collaboration between cutting-edge technology and human expertise is a good approach,
combining the efficiency of automation with the refined understanding of healthcare pro-
fessionals, whose oversight remains critical to maintain the accuracy and reliability of the
final results.
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