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Abstract: Multispectral and 3D LiDAR remote sensing data sources are valuable tools for characteriz-
ing the 3D vegetation structure and thus understanding the relationship between forest structure,
biodiversity, and microclimate. This study focuses on mapping riparian forest species in the canopy
strata using a fusion of Airborne LiDAR data and multispectral multi-source and multi-resolution
satellite imagery: Sentinel-2 and Pleiades at tree level. The idea is to assess the contribution of each
data source in the tree species classification at the considered level. The data fusion was processed
at the feature level and the decision level. At the feature level, LiDAR 2D attributes were derived
and combined with multispectral imagery vegetation indices. At the decision level, LiDAR data
were used for 3D tree crown delimitation, providing unique trees or groups of trees. The segmented
tree crowns were used as a support for an object-based species classification at tree level. Data
augmentation techniques were used to improve the training process, and classification was carried
out with a random forest classifier. The workflow was entirely automated using a Python script,
which allowed the assessment of four different fusion configurations. The best results were obtained
by the fusion of Sentinel-2 time series and LiDAR data with a kappa of 0.66, thanks to red edge-based
indices that better discriminate vegetation species and the temporal resolution of Sentinel-2 images
that allows monitoring the phenological stages, helping to discriminate the species.

Keywords: multispectral; Sentinel-2; Pleiades; LiDAR; data fusion; forest biodiversity; species
classification

1. Introduction

Forests, which cover around one-third of continental surfaces [1,2], constitute a source
of materials and renewable energy; they also provide major ecosystemic services such as
soil preservation, biodiversity conservation and climate regulation [3]. In order to ensure
sustainable management of forest resources, the study of their functioning and dynamics
is essential. Multispectral and 3D LiDAR remote sensing data sources have proven to
be valuable tools for modeling forest structure [4–8] and detecting vegetation strata [9],
thus helping to understand the relationship between forest structure, tree species diversity,
and microclimate.

The global objective of this work is to produce relevant information from multi-source
LiDAR and optical multispectral data such as spectral indices, Digital Terrain Models
(DTM), species classification, 3D structures, and vegetation profiles in order to link them to
tree biodiversity indicators. This study mainly focuses on mapping riparian forest species
in the canopy strata using a fusion of Airborne LiDAR data and multispectral multi-source
satellite imagery: Sentinel-2 and Very High Resolution (VHR) Pleiades at tree level.

Previous studies [4,10,11] revealed that Sentinel-2’s narrow bands located in the red
edge (B6, B7 and B 8a) and indices derived from them, such as NDVIre [5], help to overcome
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the well-known problem of saturation of the vegetation. This has provided support for the
use of such spectral indices in the forest species classification to conquer the complex spatial
properties (complexity of the forest environment, variability of crown diameters, overlaps
of vegetation) and very similar radiometric properties (shades of green and shadows) as
well as the spatial resolution that is not sufficient to discern species with the bare eye. In
addition, some other studies [6,12] have shown that the results of multi-date classification
based on seasonal analysis [7] surpassed those of single-date classification, pointing out
the importance of Sentinel-2 temporal resolution for mapping forests.

As for VHR imagery, their advantage is exploiting geometric information using ori-
ented object methods thanks to segmentation algorithms. Individual tree crown de-
lineation algorithms based on 2.5 D Canopy Height Models (CHMs), such as itcSeg-
ment [8], SEGMA [13], and eCognition [14], are faster than those based on 3D point clouds
(AMS3D [15], Graph-Cut [16,17], Profiler [18,19]). Conversely, 3D algorithms showed better
crown delineation results than counting on CHM only, especially with dense 3D point
clouds [14].

The most innovative idea of this work is the establishment of multi-level data fusion
methodology for mapping riparian forests at tree level in a fully automated scheme devel-
oped by means of the Python programming language. It consists of data co-registration,
feature fusion, and finally, decision-making fusion stages. The contribution of each data
source in the mapping process was assessed by testing four data fusion configurations. This
paper provides the study findings through the following structure: Materials and Methods
are presented in Section 2, Results and Discussion are respectively given in Sections 3 and 4,
and finally, conclusions are drawn in the Section 5.

2. Materials and Methods
2.1. Study Area

The study area is located in southwestern France (Figure 1). The Ciron watershed
and its riparian forest is a tributary of the Garonne, known as a climatic refuge for the
beech, on the warm margin of its European range [20]. This riparian forest is made up of
an assemblage of species such as oak, beech, locust, pine, etc. Twenty-eight plots forming a
gradient of three-dimensional vegetation structure are defined. They are distributed along
a 30 km stretch of the Ciron and along a 5 km tributary of the Ciron in which the riparian
forest is lined with pine forests (maritime pine) in order to homogenize the potential impact
of the surrounding landscape on the biodiversity of fauna and flora in the riverine.

2.2. Remote Sensing Data

In order to take advantage of the complementarity between the spectral information
resulting from optical data and geometric information from LiDAR data for the charac-
terization of forest species, three types of multi-source and multi-resolution data were
processed. They are based on Sentinel-2 image time series, Pleiades VHR images, and
LiDAR 3D point clouds.

2.2.1. Satellite Images
Sentinel-2 Images

The Sentinel-2 mission is a high-resolution optical mission of the European Space
Agency (ESA). It is a constellation of two identical satellites, Sentinel-2A and Sentinel-2B,
for Earth observation and launched since 2015.

French public institutions involved in Earth observation and environmental sciences
created the Theia continental surface data and services hub [21]. This center provides the
international scientific community with a panoply of satellite images, including Sentinel-2
images with different levels of pre-processing.
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Figure 1. Study area, Ciron Valley, France.

The Sentinel-2 sensor provides 10 spectral bands dedicated to earth observation at
10 m and 20 m, covering Vis-NIR, red edge, and SWIR domains, which are useful for
vegetation classification. In addition, Sentinel-2 A and B allow us to have a free and easy
downloadable time series with a 5-day frequency, allowing us to perform classifications on
multi-temporal image series.

A collection of 11 Sentinel-2 satellite images was used, ranging from January to
December 2019, and processed in level 2A, thus providing top-of-canopy reflectance and
reducing the effects of slopes and shadows. Information about the scenes used is provided
in Table 1, and a sample of a Sentinel-2 image covering site 1 is provided in Figure 2a.

Table 1. Sentinel-2 scenes technical information.

Product Tile
Reference Sensor Radiometric

Processing Dimensions

T30TYQ Sentinel-2A,
Sentinel-2B

Level 2A,
top-of-canopy (TOC)

reflectance
10,980 × 10,980

VHR Pleiades Images

Pleiades is an environment-focused constellation consisting of two satellites (referred
to as 1A and 1B) from CNES (French center of spatial studies) that were launched on
17 December 2011 (Pleiades 1A) and 2 December 2012 (Pleiades 1B). It is characterized
by a very high spatial resolution of 50 cm for the panchromatic band and 2 m for multi-
spectral bands, as well as four spectral bands B, G, R, and NIR and a temporal resolution of
26 days [19]. Pleiades images were processed in top-of-the-atmosphere reflectance (TOA).
Figure 2b shows the Pleiades image covering site 01’s extent.
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Figure 2. Raw data used covering site 01’s extent: (a) multispectral Sentinel-2 image; (b) multispectral
Pleiades image; (c) LiDAR 3D point cloud displayed in black-red-yellow-white color pallet.

2.2.2. LiDAR Data

LiDAR is the only remote sensing technology that allows the user to get 3D information
underneath the vegetation canopy and to model the 3D vegetation structure since the laser
impulsion penetrates the vegetation. In this work, a 250 m vertical height flight acquisition
mission with a 190 kHz measurement rate provided a very dense point cloud of 68 pts/m2.
This helps with modeling the soil underneath vegetation and the 3D vegetation structure.
Table 2 and Figure 2c, respectively, summarize the LiDAR mission details and show a
sample of the LiDAR point cloud clipped on site 01’s extent.

Table 2. Airborne LiDAR mission details.

Parameters Description

Date 03/10/2019–04/10/2019

Acquisition system
Laser scan: RIEGL VQ580

Inertial unit: IXSEA AirINS
Camera: iXUR 1000–50 mm NIR

Accuracy Planimetry: 5 cm
Altimetry: 5 cm

Density 68 pts/m2

Projection RGF 93 Lambert 93 (EPSG: 2154)

Altimetry IGN69—RAF18
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2.2.3. Ground Truth Data

Joint airborne acquisition and in-field observations were conducted in the autumn (3
and 4 October 2019) with tree foliage on. All the measurements were carried out on each
site within a 15 m radius plot (2229 trees in total), including all the riparian forest, as well as
a part of the pine forest adjacent to the riparian forest. Differential GNSS (DGNSS, Trimble,
Westminster, CO, USA) was used to measure the plot center coordinates. For all the trees
with a diameter at breast height (DBH) above 7.5 cm, trunk circumferences at breast height
were measured with a tape, and tree heights were measured using a hypsometer Vertex
(Haglöf Sweden, Långsele, Sweden). The data processing then required a delimitation of
the 28 sites. The sites were chosen to represent a gradient in the width and density of the
riparian forest. Table 3 summarizes some field plot measurements [22].

Table 3. Summary of average slope and field plot measurements for basal area, stem volume, and
total volume for study sites.

Min Mean Max

Slope (degrees) 4.9 8.9 21.0
Basal area (m2/ha) 17.2 28.5 47.6

Stem volume (m3/ha) 118.7 272.7 475.5
Total volume (m3/ha) 135.9 296.2 552.9

Square-shaped vector layers with a side of 200 m each were used to crop optical and
LiDAR data. These layers were projected into the “RGF 93 Lambert 93” coordinate system.
In-field work led to more than 31 unbalanced classes. However, in this study, we only
focused on five major canopy classes. Training and Testing data (Figure 3) were selected
using individual tree crowns generated after the segmentation process (see Section 2.3.3).
They consist of 165 and 73 samples, respectively.
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2.3. Methodology

In this paper, an automated workflow is proposed for airborne LiDAR and multi-
spectral satellite imagery fusion to map riparian forest species biodiversity at tree level, as
illustrated in the scheme below (Figure 4).
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Figure 4. Multi-source data fusion process.

It consists of three levels of processing: LiDAR and multispectral data were first co-
registered, exploiting the high accuracy of LiDAR data. Each data source was processed
separately and then fused at the feature and decision-making levels [6].

2.3.1. LiDAR and Multispectral Images Co-Registration

Co-registration is essential to manipulate multi-source data. However, the digital
elevation models used for satellite image ortho-rectification are less accurate than those
generated from LiDAR point clouds due to the differences between their spatial resolutions.
This leads to a misregistration between the image and the LiDAR-derived elevation models.
We, therefore, opted for a data co-registration as a geometric correction that consists of
translation of spectral bands in order to assign them the same planimetric location as the
2D representations of LiDAR data and match their pixels with accurate tree positions.

In the context of species characterization in a forest environment, the most widely
used 2D representation is the Canopy Height Model (CHM), as it represents the height
of trees. It is obtained by subtracting the Digital Terrain Model from the Digital Surface
Model. However, DSM, DTM, and CHM (Figure 5) were derived from dense LiDAR point
clouds, leading to 2D elevation maps at a resolution of 0.25 m. Spectral bands were then
upsampled to the CHM resolution using nearest neighbor interpolation and clipped over
the plots’ extents.
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Figure 5. LiDAR 2D attributes: (a) density; (b) number of echoes; (c) elevation range.

Field data and tree measurements had a major role in the co-registration process, as the
trees’ geographical coordinates and measured heights helped with pointing out the trees
in the most geometrically accurate data source, i.e., LiDAR data (CHM). On the contrary,
Sentinel-2 imagery suffers from a degraded spatial resolution (10 m) and an absolute
geolocation accuracy (CE95) of 8 m [23]. The points corresponding to in-field trees were
pointed in the image pixel centers. Finally, a 1st polynomial transformation was applied
for the co-registration process. Figure 6 shows the translation step of co-registration of a
spectral band and a 2D representation of LiDAR data CHM (base layer).
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2.3.2. Feature Fusion

Fusion at the feature level was first processed by generating and then stacking spectral
and geometric LiDAR 2D attributes, which are intended to be used in the classification of
forest species. We mainly used three LiDAR attributes, as shown in Table 4 and Figure 7.
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Table 4. LiDAR attributes used and their utility in tree species classification.

LiDAR Attributes Definition Utility

Density Number of LiDAR points per area unit
Characterizing biodiversity and

providing information on the number of
strata present in each zone

Number of Echoes Number of backscatters of the laser pulse Tree species characterization according to
their spatial distribution

Elevation range Altitude difference between the first and
last echo

Tree species discrimination according to
their thickness and height

Seven vegetation indices [3] were derived for each date based on near-infrared and
red-edge channels: NDVI, GRVI1, CIre, NDVIre3, NDre2, SAVI, MSAVI2 [24]. Soil-adjusted
indices such as SAVI and MSAVI2 were used to better handle non-dense tree species
(Table 5).

Table 5. Spectral indices: formulas and descriptions for Sentinel-2 imagery.

Spectral Index Formula Description

NDVI PIR−R
PIR+R = B8−B4

B8+B4
Assesses the importance of biomass and

chlorophyll activity.

GRVI1 G−R
G+R = B3−B4

B3+B4

- In addition to spring greening, it allows for the
detection of autumn coloration, which can be a
differentiating factor between hardwoods
and softwoods

- Robust with misleading signals due to water on
the ground surface

CIre REDedge3
REDedge1 − 1 = B7

B5 − 1
Sensitive to small variations in chlorophyll content,
helping differentiation between vegetation classes.

NDVIre3 PIR−REDedge1
PIR+REDedge1 = B8−B5

B8+B5

Exploits red-edge bands to differentiate between
vegetation classes based on the chlorophyll content of

the leaves.

Dre2 REDedge3−REDedge1
REDedge3+REDedge1 = B7−B5

B7+B5
Exploits the red-edge strips to assess the health status of

vegetation according to chlorophyll content.

SAVI 1.5∗(PIR−R)
PIR+R+0.5 =

1.5∗(B8−B4)
B8+B4+0.5

Sensitive to floor’s color and shine, thus minimizing the
ground effect.

MSAVI2
2∗PIR+1−

√
(2∗PIR+1)2−8∗(PIR−R)

2 =

2∗B8+1−
√
(2∗B8+1)2−8∗(B8−B4)

2

Study in vegetation detection in areas with high bare
soil composition.

2.3.3. Decision-Making Fusion

At the decision-making level, 3D LiDAR point clouds were segmented using the
PyCrown method [25], which is a re-implementation of the itcSegment crown delimitation
algorithms. It provides a 3D segmentation of individual trees besides a raster segmentation.
It is based on local maximum search (i.e., treetops) and region growth with regard to
user-defined parameters (distance of a crown point from its top and point height with
respect to crown average heights). These parameters are defined for each site individually
with the aim of maximizing the compactness [26].

Segmented LiDAR regions were first used to select training and testing samples by
inspecting the ground truth data and assigning the appropriate classes to tree crowns. Then,
spectral attributes at an object level (tree crowns) were derived using the attributes’ mean
and standard deviation over each segmented region. An object-oriented classification was
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then carried out on labeled tree crowns. This is where the decision-making fusion between
LiDAR and multispectral data lies.

Due to few training data, data augmentation techniques such as Gaussian Noise
filtering were applied on each spectral band and each attribute to double them in order to
allow the classifier to learn more robust features [27].

Different feature combinations were used to assess the importance of spectral, tempo-
ral, or spatial information:

• Single date Sentinel-2 and LiDAR fusion
• Sentinel-2 time series and LiDAR fusion
• Pleiades and LiDAR fusion
• Single date Sentinel-2, Pleiades, and LiDAR fusion

Finally, the classification was processed using a random forest classifier. Results were
evaluated using overall accuracy, kappa, and per-class precision and recall.

2.3.4. Data Fusion Process Automation

A Python script was developed for automating data fusion for tree species classification
using GDAL, otbApplication, Numpy, Whitebox, and PyCrown (Table 6).

Table 6. Python modules used for data fusion process automating.

Python Library Description

GDAL v1.23.5.1 Translator library for raster and vector geospatial
data formats [28].

otbApplication Python API for Orfeo ToolBox 8.1.0 applications. It
is used for image processing and classification [29].

Numpy v1.18
Scientific package for manipulating

multidimensional arrays and computing
mathematical operations [30].

Whitebox

Package built on WhiteboxTools v1.5.0 [31], an
advanced geospatial data analysis platform. It is

used to perform common geographical
information systems (GIS) analysis operations and

LiDAR data processing.

PyCrown
PyCrown [25] is a Python package for identifying

treetop positions in a Canopy Height Model
(CHM) and delineating individual tree crowns.

3. Results
3.1. Tree Crown Delineation

The individual tree crown delineation process provided good results in both 2D and
3D segmentation, as shown in Figures 8 and 9.
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3.2. Classification

Object-based classification was carried out on individual trees generated previously.
A random forest algorithm was applied for classification using 200 trees. Gini measure
was used for splitting the nodes using

√
M random features, with M the number of input

features. Table 7 summarizes the overall classification accuracies with different fusion
configurations and measures data augmentation impact, which improved kappa and
overall accuracy by 15% and 8%, respectively. Table 8 presents the precision and recall
values per species for Sentinel-2 time series and LiDAR fusion with data augmentation,
which had the best classification results.
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Table 7. Comparison of classification accuracies using different fusion configurations with and
without data augmentation.

Classification Kappa OA

Without
data augmentation

Sentinel-2 (single date) + LiDAR 0.48 0.59
Pleiades + LiDAR 0.43 0.55
Sentinel-2 (time series) + LiDAR 0.51 0.61
Sentinel-2 (single date) + Pleiades + LiDAR 0.49 0.59

With
data augmentation

Sentinel-2 (mono-date) + LiDAR 0.53 0.62
Pleiades + LiDAR 0.49 0.60
Sentinel-2 (time series) + LiDAR 0.66 0.69
Sentinel-2 (mono-date) + Pleiades + LiDAR 0.58 0.66

Table 8. Comparison of precision and recall per species using data augmentation.

Pedunculate
Oak Tauzin Oak Black Alder Maritime

Pine Other

Precision 0.47 0.91 0.54 0.73 0.85
Recall 0.56 0.71 0.89 0.80 0.48

Some classification maps for different sites are given in Figures 10–12.
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4. Discussion
4.1. Quantitative Interpretations
4.1.1. Evaluation of the Best Fusion Configuration

The best classification results were obtained by the combination of multi-temporal
Sentinel-2 images and LiDAR data. We obtained 0.66 as kappa and 0.69 as overall accuracy.
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It was also shown that Tauzin Oak, Maritime Pine, and the class Other have precision values
superior to 0.73, which means that at least 73% of these species were correctly labeled.
Otherwise, less than 54% of Pedunculate Oak and Black Alder were correctly labeled.
Results have also shown low recall values for the class Other compared to other classes,
which means that it is sub-estimated by the classifier. In fact, this class is heterogeneous, as
it assembles many minority tree species that do not essentially have similar characteristics.
Thus, confusion occurred in the learning process, causing lower classification results.

4.1.2. Contribution of Data Augmentation

The results obtained by increasing training and validation samples are more relevant.
Indeed, this allowed us to have more training data to better optimize the classification model
parameters. Moreover, the initial training and testing polygons respectively correspond to
0.35% and 0.15% only of the total number of tree crowns. The small number of polygons
selected is mainly related to the fact that the in-field data provided are point-geometry
shapefiles (Figure 13) covering only 15 m radius circular plots. Each point corresponds to
a location of a tree trunk. The density of these points is important so that some canopy
crowns could cover sub-canopy trees. This makes the choice of polygons critical in order
to avoid the interference of several classes within the same polygon and consequently
avoid misleading the learning process. Hence, the number of training and testing samples
was reduced.
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4.2. Qualitative Interpretations
4.2.1. Spectral vs. Spatial Resolution Contribution

By comparing the results of “LiDAR—Sentinel-2 mono-date” and “LiDAR—Pleiades”
fusion configurations, one can notice that the first combination using Sentinel-2 imagery
was better despite a lower spatial resolution than Pleiades imagery (2 m). This can be
explained by the fact that the forestry environment is dominated by vegetation, leading to
low reflectance variance in visible and near-infrared spectral bands of Pleiades. In addition,
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the higher the spatial resolution is, the more the satellite sensor is able to discern small
details. Therefore, shadows and ground through the vegetation are detected, which makes
discriminating species more challenging.

However, Sentinel-2 images are characterized by spectral richness (10 bands). Thanks
to its high spectral resolution, and especially the red-edge domain, many attributes are
calculated that highlight information related to chlorophyll activity, chlorophyll content,
internal leaf structure, and leaf health while minimizing the effect of disturbing signals
(shadows and soil).

Therefore, it turns out that the spectral resolution impact on the characterization of
forest species is more important than that of spatial resolution.

4.2.2. Contribution of Image Time Series

The best obtained results correspond to multi-temporal classifications. Indeed, time
series make it possible not only to multiply the number of attributes but also to extract
information related to the different phenological stages of the forest. They thus allow for
taking into account the phenomenon of changes in leaf color during the seasons and loss of
foliage, which differ from one species to another.

4.2.3. Tree Species Assemblage Interpretations

By observing the charts, we notice that the class “Other” is a minority compared to
other classes. This is, in fact, related to previous interpretations concerning the low recall
values of this class. Another interesting remark concerns the spatial distribution of classes,
such that the presence of certain classes is linked to the characteristics of the environment,
such as Black Alder, which is often present at the edge of the river. All these data are
consistent with a study carried out in the same place [32], which showed that alder trees
are specifically located along the river bank and that this riparian forest mainly consists of
Pedunculate Oak trees, whereas Maritime Pines and Tauzin Oaks are more often located
further from the river. This approach can then be used to test many hypotheses concerning
the functioning and dynamics of the forest ecosystem, and conversely, this information
could be used as an a priori to enhance the prediction of related classes such as Black Alder.

5. Conclusions

This paper focused on tree crown delineation in 2D and 3D and the mapping of forest
species by exploiting multi-source spectral and high point-density LiDAR data. Thanks
to an automated workflow, several features and data source combinations were tested to
assess the contribution of the characteristics of each of them.

The key findings of this study are, first, the contribution of data augmentation by
Gaussian noise filtering to overcoming the lack and imbalance of training and testing data.
This helped with reaching a 15% increase in validation metrics, as it allowed for the learning
of more robust features by the classifier.

Secondly, the study showed the assessment of Sentinel-2 resolution’s impact on forest
species classification. In fact, Sentinel-2 high temporal resolution allows for multiplying the
number of attributes and getting more relevant information about the different phenological
stages, such as leaf color changes during seasons and foliage loss.

Equally important to the temporal resolution contribution, Sentinel-2 spectral richness,
especially the red-edge domain, allows for computing numerous attributes that highlight
relevant features related to chlorophyll activity, chlorophyll content, internal leaf structure,
and leaf health, added to minimizing disturbing signal effects (shadows and soil).

In addition, high-density LiDAR data have great importance in this process. Indeed,
it allows for individual tree crown delineation, elevation attribute generation, and pixel
co-registration to match Sentinel-2 pixels with accurate positions.

Further work will focus on providing spatial metrics from species patterns and measur-
ing their relationships with biodiversity taxa, especially canopy and sub-strata associations.
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