Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Equipment
2.2. One-Step Synthesis of Silver @ Reduced Graphene Oxide Nanocomposite
2.3. Preparation of Modified Electrodes
3. Results and Discussion
3.1. Characterization
3.1.1. Morphology and Component Characterization
3.1.2. Characterization of Modified Electrodes
3.2. Electrochemical Response of L-Cysteine on Different Modified Electrodes
3.3. Effect of Scanning Rate on Oxidation Reduction in L-Cysteine
3.4. Effect of pH on L-Cysteine Electrocatalysis
3.5. Amperometric Detection of L-Cysteine at Ag@rGO/GCE
3.6. Influence of Interference, Reproducibility, and Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadnavaz, A.; Beitollahi, H.; Modiri, S. Electro-catalytic determination of L-Cysteine using multi-walled carbon nanotubes-Co3O4 nanocomposite/benzoylferrocene/ionic liquid modified carbon paste electrode. Inorg. Chim. Acta 2023, 548, 121340. [Google Scholar] [CrossRef]
- Paul, B.D. Cysteine metabolism and hydrogen sulfide signaling in Huntington’s disease. Free Radic. Biol. Med. 2022, 186, 93–98. [Google Scholar] [CrossRef]
- Bak, D.W.; Bechtel, T.J.; Falco, J.A.; Weerapana, E. Cysteine reactivity across the subcellular universe. Curr. Opin. Chem. Biol. 2019, 48, 96–105. [Google Scholar] [CrossRef]
- Gowtham, S.M.; Dhivya, R.; Muthulakshmi, L.; Sureshkumar, S.; Ashraf, M.; Pandi, M.; Mayandi, J.; Annaraj, J.; Sagadevan, S. Environmentally benign and biocompatible CuO@Si core-shell nanoparticles: As electrochemical L-cysteine sensor, antibacterial and anti-lung cancer agents. Ceram. Int. 2023, 49, 10023–10031. [Google Scholar] [CrossRef]
- Plaza, N.C.; García-Galbis, M.R.; Martínez-Espinosa, R.M. Effects of the Usage of LCysteine (L-Cys) on Human Health. Molecules 2018, 23, 575. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Xia, N.; Liu, P.; Wang, Y.; Qu, L. High performance electrochemical L-cysteine sensor based on hierarchical 3D straw-bundle-like Mn-La oxides/reduced graphene oxide composite. J. Electroanal. Chem. 2020, 877, 114654. [Google Scholar] [CrossRef]
- Zhang, R.; Yong, J.; Yuan, J.; Xu, Z.P. Recent advances in the development of responsive probes for selective detection of cysteine. Coord. Chem. Rev. 2020, 48, 213182. [Google Scholar] [CrossRef]
- Cao, F.; Huang, Y.; Wang, F.; Kwak, D.; Dong, Q.; Song, D.; Zeng, J.; Lei, Y. A highperformance electrochemical sensor for biologically meaningful L-cysteine based on a new nanostructured L-cysteine electrocatalyst. Anal. Chim. Acta 2018, 1019, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Forgacsova, A.; Galba, J.; Mojzisova, J.; Mikus, P.; Piestansky, J.; Kovac, A. Ultra-high performance hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinylglycine and glutathione in rat plasma. J. Pharmaceut. Biomed. 2019, 164, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.Z.; Fu, X.X.; Yu, X.J.; Qiu, Y.H.; Ren, S.B.; Wang, Y.C.; Han, D.M.; Zhao, W.W. Biological transformation of AgI on MOF-on-MOF-Derived heterostructures: Toward polarity- switchable photoelectrochemical biosensors for neuron-specific enolase. Anal. Chem. 2023, 95, 9052–9059. [Google Scholar] [CrossRef]
- Vieira, I.d.C.; Fatibello-Filho, O. L-Cysteine determination using a polyphenol oxidase-based inhibition flow injection procedure. Anal. Chim. Acta 1999, 399, 287–293. [Google Scholar] [CrossRef]
- Chen, J.D.; Li, H.; Shao, D.; Long, T.; Xu, L.Y.; Zhu, J.L. A photoelectrochemical sensor based on copper-based metal organic framework derivatives for the homogeneous detection of L-cysteine. Microchem. J. 2024, 197, 109768. [Google Scholar] [CrossRef]
- Cui, M.L.; Liu, J.M.; Wang, X.X.; Lin, L.P.; Jiao, L.; Zhang, L.H.; Zheng, Z.Y.; Lin, S.Q. Selective determination of cysteine using BSA-stabilized gold nanoclusters with red emission. Analyst 2012, 137, 5346–5351. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Chen, C.S.; Yang, Z.; Chen, X.A.; Chen, X.H.; Liu, T.G. Synthetization and electrochemical performance of pomegranate-like microspheres. J. Alloys Compd. 2020, 826, 154084. [Google Scholar] [CrossRef]
- Huang, J.F.; Tao, F.H.; Sun, Z.Z.; Li, F.Y.; Cai, Z.Y.; Zhang, Y.; Fan, C.G.; Pei, L.Z. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine. Microchem. J. 2022, 182, 107915. [Google Scholar] [CrossRef]
- Wu, H.L.; Shen, Q.Q.; Dong, J.P.; Zhang, G.; Sun, F.G.; Li, R.X. Anion-regulated cobalt coordination polymer: Construction, electrocatalytic hydrogen evolution and L-cysteine electrochemical sensing. Electrochim. Acta 2022, 420, 140442. [Google Scholar] [CrossRef]
- Liu, Z.N.; Zhang, H.C.; Hou, S.F.; Ma, H.Y. Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold. Microchim. Acta 2012, 177, 427–433. [Google Scholar] [CrossRef]
- Fei, S.D.; Chen, J.H.; Yao, S.Z.; Deng, G.H.; He, D.L.; Kuang, Y.F. Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal. Biochem. 2005, 339, 29–35. [Google Scholar] [CrossRef]
- Khaloo, S.S.; Amini, M.K.; Tangestaninejad, S.; Shahrokhian, S.; Kia, R. Voltammetric and potentiometric study of cysteine at cobalt(II) phthalocyanine modified carbonpaste electrode. J. Iran. Chem. Soc. 2004, 1, 128–135. [Google Scholar] [CrossRef]
- Beitollahi, H.; Khalilzadeh, M.A.; Tajik, S.; Safaei, M.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent advances in applications of voltammetric sensors modified with ferrocene and its derivatives. ACS Omega 2020, 5, 2049–2059. [Google Scholar] [CrossRef]
- Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 2020, 566, 463–472. [Google Scholar] [CrossRef]
- Pushpanjali, P.A.; Manjunatha, J.G.; Hareesha, N. An overview of recent developments of carbon-based sensors for the analysis of drug molecules Review. J. Electrochem. Sci. Eng. 2021, 11, 161–177. [Google Scholar]
- Khosravanian, A.; Moslehipour, A.; Ashrafian, H. A review on Bioimaging, Biosensing, and Drug Delivery Systems Based on Graphene Quantum Dots. Prog. Chem. Biochem. Res. 2021, 4, 44–56. [Google Scholar]
- Li, Y.J.; Gao, W.; Ci, L.J.; Wang, C.M.; Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methonal electro-oxidation. Carbon 2010, 48, 1124–1130. [Google Scholar] [CrossRef]
- Yan, S.H.; Zhang, S.C.; Lin, Y.; Liu, G.R. Electrocatalytic performance of gold nanoparticles supported on activated carbon for methanol oxidation in alkaline solution. J. Phys. Chem. C 2011, 115, 6986–6993. [Google Scholar] [CrossRef]
- Yuan, W.; Gu, Y.; Li, L. Green synthesis of graphene/Ag nanocomposite. Appl. Surf. Sci. 2012, 261, 753–758. [Google Scholar] [CrossRef]
- Yao, Y.Z. Facile Synthesis of Copper-Coated-Reduced-Graphene-Oxide and Its Application as a Highly Sensitive Electrochemical Sensor for Hydroquinone. J. Chem. 2022, 2022, 6894049. [Google Scholar] [CrossRef]
- Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z. Self-assembled TiO2-graphene hybrid nanostrutcures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shen, X.; Jiang, L.; Wang, K.; Chen, K. Solvothermal synthesis and characterization of sandwich like graphene/ZnO nanocomposite. Appl. Surf. Sci. 2010, 256, 2826–2830. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene oxide-MnO2 nanocomposite for supercapacitors. ACS Nano 2009, 4, 2822–2830. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.Y.; Wu, J.L.; Shen, X.P.; Zhou, H.; Xi, H.T. Preparation and characterization of graphene/NiO nanocomposite. J. Mater. Sci. 2011, 46, 1190–1195. [Google Scholar] [CrossRef]
- Hsieh, C.; Lin, C.Y.; Chen, Y.F.; Lin, J.S.; Teng, H. Silver Nanorods Attached to Graphene Sheets as Anode Materials for Lithium-Ion Batteries. Carbon 2013, 62, 109–116. [Google Scholar] [CrossRef]
- Tran, M.H.; Jeong, H.K. Synthesis and characterization of silver nanoparticles doped reduced graphene oxide. Chem. Phys. Lett. 2015, 630, 80–85. [Google Scholar] [CrossRef]
- Han, X.W.; Guo, S.; Li, T.; Peng, J.; Pan, H. Construction of Ag/3D-Reduced Graphene Oxide Nanocomposite with Advanced Catalytic Capacity for 4-Nitrophenol and Methylene Blue. Colloids Surf. A Physicochem Eng. Asp 2022, 650, 128688. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Y.; Zhao, Y.; Wang, D.; Luan, Y. Microwave Synthesis of Graphene Oxide Decorated with Silver Nanoparticles for Slow-Release Antibacterial Hydrogel. Mater. Today Commun. 2022, 31, 103663. [Google Scholar] [CrossRef]
- Barjola, A.; Tormo-Mas, M.A.; Sahuquillo, O.; Bernabé-Quispe, P.; Pérez, J.M.; Giménez, E. Enhanced Antibacterial Activity through Silver Nanoparticles Deposited onto Carboxylated Graphene Oxide Surface. Nanomaterials 2022, 12, 1949. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.K.; Tseng, W.B.; Wu, M.J.; Huang, Y.Y.; Tseng, W.L. L-cysteine linked BODIPY-adsorbed monolayer MoS2 quantum dots for radiometric fluorescence sensing of biogols based on the inner filter effect. Anal. Chim. Acta 2020, 1113, 43–51. [Google Scholar] [CrossRef]
- Liu, L.H.; Gao, J.; Liu, P.Y.; Duan, X.G.; Han, N.; Li, F.P.; Sofianos, M.V.; Wang, S.B.; Tan, X.Y.; Liu, S.M. Novel applications of perovskite oxide via catalytic peroxymonosulfate advanced oxidation in aqueous systems for trace L-cysteine detection. J. Colloid Interface Sci. 2019, 545, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Papageorgiou, A.C.; Marshall, M.; Reichert, J.; Diller, K.; Klappenberger, F.; Allegretti, F.; Nefedov, A.; Woll, C.; Barth, J.V. L-Cysteine on Ag(111): A Combined STM and X-ray Spectroscopy Study of Anchorage GE and Deprotonation. J. Phys. Chem. C 2012, 116, 20356–20362. [Google Scholar] [CrossRef]
- Hai, N.D.; Dat, N.M.; Nam, N.T.H.; An, H.; Tai, L.T.; Huong, L.M.; Cong, C.Q.; Giang, N.T.H.; Tinh, N.T.; Hieu, N.H. A review on the chemical and biological synthesis of silver nanoparticles@graphene Oxide nanocomposite: A comparison. Mater. Today Sustain. 2023, 24, 100544. [Google Scholar] [CrossRef]
- Thu, T.V.; Ko, P.J.; Phuc, N.H.H.; Sandhu, A. RoomTemperature Synthesis and Enhanced Catalytic Performance of Silver-Reduced Graphene Oxide Nanohybrids. J. Nanopart. Res. 2013, 15, 1975. [Google Scholar] [CrossRef]
- Fan, B.; Guo, H.; Shi, J.; Shi, C.; Jia, Y.; Wang, H.; Chen, D.; Yang, Y.; Lu, H.; Xu, H.; et al. Facile One-Pot Preparation of Silver/Reduced Graphene Oxide Nanocomposite for Cancer Photodynamic and Photothermal Therapy. J. Nanosci. Nanotechnol. 2016, 16, 7049–7054. [Google Scholar] [CrossRef]
- Devi, A.P.; Padhi, D.K.; Mishra, P.M.; Behera, A.K. BioSurfactant Assisted Room Temperature Synthesis of Cubic Ag/RGO Nanocomposite for Enhanced Photoreduction of Cr (VI) and Antibacterial Activity. J. Environ. Chem. Eng. 2021, 9, 104778. [Google Scholar] [CrossRef]
- Kumar, A.; Sadanandhan, A.M.; Jain, S.L. Silver doped reduced graphene oxide as a promising plasmonic photocatalyst for oxidative coupling of benzylamines under visible light irradiation. New J. Chem. 2019, 43, 9116–9122. [Google Scholar] [CrossRef]
- Chi, G.J.; Yao, S.W.; Fan, J.; Zhang, W.G.; Wang, H.Z. TEM characterization of silver nanowires. Acta Phys.-Chim. Sin. 2002, 18, 532–535. [Google Scholar]
- Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qian, J.; Chen, J.; Yan, J.; Cen, K. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 2014, 4, 4684. [Google Scholar] [CrossRef]
- Mondal, J.; Srivastava, S.K. Room-Temperature One-Step Synthesis of Silver/Reduced GrapheneOxide nanocomposite as an Excellent Microwave Absorber. Langmuir 2021, 37, 13409–13419. [Google Scholar] [CrossRef]
- Geng, D.; Li, M.; Bo, X.J.; Gu, L.P. Molybdenum nitride/nitrogen-doped multi-walled carbon nanotubes hybrid nanocomposite as novel electrochemical sensor for detection L-cysteine. Sens. Actuators B 2016, 237, 581–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, A.K.; Zhang, X.F.; Zhao, H.; Li, X.J.; Yuan, Z.B. Highly selective and sensitive biosensor for cysteine detection based on in situ synthesis of gold nanoparticles/graphene nanocomposite. Colloid. Surface A 2013, 436, 815–822. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, W.; Li, G.F.; Liu, Q.; Wei, T.; Li, B.S.; Jiang, C.Y.; Sun, Y.M. Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchim. Acta 2016, 183, 3221–3228. [Google Scholar] [CrossRef]
- Cao, P.F.; Wang, N.; Chen, D.; Sun, S.J.; Ma, H.Y.; Lin, M. Size-dependent optical and electrochemical properties of gold nanoparticles to L-cysteine. Gold Bull. 2021, 54, 97–103. [Google Scholar] [CrossRef]
- Ralph, T.R.; Hitchman, M.L.; Millington, J.P.; Walsh, F.C. The electrochemistry of L-cystine and L-cysteine: Part 1: Thermodynamic and kinetic studies. J. Electroanal. Chem. 1994, 375, 1–15. [Google Scholar] [CrossRef]
- Vãrdaru, A.; Huminic, G.; Huminic, A.; Fleacã, C.; Dumitrache, F.; Morjan, I. Aqueous hybrid nanofluids containing silver-reduced graphene oxide for improving thermo-physical properties. Diam. Relat. Mater. 2023, 132, 109688. [Google Scholar] [CrossRef]
- Atacan, K. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for L-cysteine detection. J. Alloys Compd. 2019, 791, 391–401. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, L.L.; Miao, L.X.; Kan, M.X.; Kong, L.L.; Zhang, H.M. Oxidation and detection of L-cysteine using a modified Au/Nafion/glassy carbon electrode. Sci. China Chem. 2011, 54, 521–525. [Google Scholar] [CrossRef]
- Salimi, A.; Hallaj, R. Catalytic oxidation of thiols at preheated glassy carbon electrode modified with abrasive immobilization of multiwall carbon nanotubes: Applications to amperometric detection of thiocytosine, L-cysteine and glutathione. Talanta 2005, 66, 967–975. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, J.B. A nonenzymatic L-cysteine sensor based on SnO2-MWCNTs nanocomposite. J. Mol. Liq. 2014, 196, 280–284. [Google Scholar] [CrossRef]
- Xin, Y.M.; Wang, Z.; Yao, H.Z.; Liu, W.T.; Miao, Y.Q.; Zhang, Z.H.; Wu, D. Au-mediated Z-scheme TiO2-Au-BiOI photoelectrode for sensitive and selective photoelectrochemical detection of L-cysteine. Sens. Actuators B 2023, 393, 134285. [Google Scholar] [CrossRef]
Electrodes | Linear Range (μM) | Detection Limit (μM) | Ref. |
---|---|---|---|
CuFe2O4/reduced graphene oxide/Au nanoparticles modified GCE | 50–200 | 0.383 | [54] |
Pt/Fe3O4 nanoparticles/reduced grapheme oxide modified GCE | 100–1000 | 10 | [50] |
BiPr composite nanosheets modified GCE | 1–2000 | 0.21 | [15] |
Pt/carbon nanotubes modified electrode | 0.5–100 | 0.3 | [18] |
Au/Nafion modified GCE | 2–80 | 1.0 | [55] |
Multi-walled carbon nanotubes modified GCE | 10–500 | 5.4 | [56] |
Boron-doped carbon nanotubes modified GCE | 0.78–200 | 0.26 | [57] |
This work | 0.1–470 | 0.057 |
Sample | Add (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Serum | 0 | 5.17 ± 0.42 | ̶ | 4.7 |
5 | 10.26 ± 0.36 | 103.3 | 3.1 | |
10 | 15.78 ± 0.65 | 98.5 | 2.6 | |
20 | 25.42 ± 0.31 | 99.2 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, F.; Yao, T.; Yao, Y. Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine. Sensors 2024, 24, 1789. https://doi.org/10.3390/s24061789
Hua F, Yao T, Yao Y. Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine. Sensors. 2024; 24(6):1789. https://doi.org/10.3390/s24061789
Chicago/Turabian StyleHua, Fei, Tiancheng Yao, and Youzhi Yao. 2024. "Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine" Sensors 24, no. 6: 1789. https://doi.org/10.3390/s24061789
APA StyleHua, F., Yao, T., & Yao, Y. (2024). Spherical Silver Nanoparticles Located on Reduced Graphene Oxide Nanocomposites as Sensitive Electrochemical Sensors for Detection of L-Cysteine. Sensors, 24(6), 1789. https://doi.org/10.3390/s24061789