On the Search for Potentially Anomalous Traces of Cosmic Ray Particles in Images Acquired by Cmos Detectors for a Continuous Stream of Emerging Observational Data
Abstract
:1. Introduction
1.1. Novelty of This Research
1.2. Paper Structure
2. Material and Methods
2.1. Datasets
2.2. Image Prepossessing (Aligning)
- Input image is converted to grayscale;
- PCA is computed on a dataset constructed from pixels of grayscale image. Each pixel has its coordinate in the image. If the pixel is black (has value equals 0) its coordinates are not included in the dataset. If the pixel has a value greater than zero, we add to the dataset as many points with coordinates of that pixel as the value of that pixel (from 1 to 255). This means that the brighter the pixel is, the more data it appends to the dataset from which the PCA is calculated;
- Most significant PCA axis is used to rotate image while dataset mean is used to translate image;
- After image rotation and translation result image is cropped to original size of input image. Due to this fact some pixels in image borders might not have calculated pixels value. In order to calculate those border pixels we perform pixel extrapolation. We have used following pixel extrapolation methods which are defined in OpenCV [106] (see Table 1).
- -
- B. Constant–no matter of image colors “abcd”, border (not defined by transform) pixels are assigned to have constants color “o”.
- -
- B. Reflect–border pixels (not defined by transform) are reflections of image colors. For example if image colors are “abcd” left border will have extrapolated values “…dcb” and right border will have extrapolated values “cba…”.
- -
- B. Replicate–border pixels (not defined by transform) are the same pixels that are positioned on the edge of image which has pixels defined by a transform. For example if image colors are “abcd” left border will have extrapolated values “…aaa” and right border will have extrapolated values “ddd…”.
2.3. PCA-Based Features
Algorithm 1: Image aligning PCA-based algorithm [109] |
2.4. Potential Anomalies Detection
2.5. Querying the Object Database for the Most Similar Objects
2.6. Approximation of PCA for Big Data
2.7. Detecting Potential Anomalies in Big Dataset under Condition of Continuously Incoming Objects
Algorithm 2: Incremental PCA algorithm |
3. Results
- basic PCA (calculated on full dataset),
- Incremental PCA calculated on images.
- Incremental PCA calculated on images,
- Incremental PCA calculated on images,
- Incremental PCA calculated on images,
- Incremental PCA calculated on images,
- Incremental PCA calculated on images,
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [Google Scholar] [CrossRef]
- Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2016; pp. 1–15. [Google Scholar] [CrossRef]
- Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [Google Scholar] [CrossRef]
- Ben-Gal, I. Outlier detection. In Data Mining and Knowledge Discovery Handbook; Springer: Boston, MA, USA, 2005; pp. 131–146. [Google Scholar]
- Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A Unifying Review of Deep and Shallow Anomaly Detection. Proc. IEEE 2021, 109, 756–795. [Google Scholar] [CrossRef]
- Pimentel, M.A.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249. [Google Scholar] [CrossRef]
- Boukerche, A.; Zheng, L.; Alfandi, O. Outlier detection: Methods, models, and classification. ACM Comput. Surv. (CSUR) 2020, 53, 1–37. [Google Scholar] [CrossRef]
- Nassif, A.B.; Talib, M.A.; Nasir, Q.; Dakalbab, F.M. Machine Learning for Anomaly Detection: A Systematic Review. IEEE Access 2021, 9, 78658–78700. [Google Scholar] [CrossRef]
- Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep Learning for Anomaly Detection: A Review. ACM Comput. Surv. 2021, 54. [Google Scholar] [CrossRef]
- Goldman, A.; Cohen, I. Anomaly detection based on an iterative local statistics approach. Signal Process. 2004, 84, 1225–1229. [Google Scholar] [CrossRef]
- Ahmed, T. Online anomaly detection using KDE. In Proceedings of the GLOBECOM 2009–2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–8. [Google Scholar]
- Kim, J.; Scott, C.D. Robust kernel density estimation. J. Mach. Learn. Res. 2012, 13, 2529–2565. [Google Scholar]
- Pang, G.; Aggarwal, C. Toward explainable deep anomaly detection. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 4056–4057. [Google Scholar]
- Yuan, S.; Wu, X. Trustworthy anomaly detection: A survey. arXiv 2022, arXiv:2202.07787. [Google Scholar]
- Kwon, D.; Kim, H.; Kim, J.; Suh, S.C.; Kim, I.; Kim, K.J. A survey of deep learning-based network anomaly detection. Clust. Comput. 2019, 22, 949–961. [Google Scholar] [CrossRef]
- Fernandes, G.; Rodrigues, J.J.; Carvalho, L.F.; Al-Muhtadi, J.F.; Proença, M.L. A comprehensive survey on network anomaly detection. Telecommun. Syst. 2019, 70, 447–489. [Google Scholar] [CrossRef]
- Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic anomaly detection. IEEE Access 2020, 8, 30387–30399. [Google Scholar] [CrossRef]
- Burgueño, J.; de-la Bandera, I.; Mendoza, J.; Palacios, D.; Morillas, C.; Barco, R. Online anomaly detection system for mobile networks. Sensors 2020, 20, 7232. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, K.; Velivassaki, T.H.; Voulkidis, A.; Skias, D.; Tsekeridou, S.; Zahariadis, T. Network traffic anomaly detection via deep learning. Information 2021, 12, 215. [Google Scholar] [CrossRef]
- Joudaki, H.; Rashidian, A.; Minaei-Bidgoli, B.; Mahmoodi, M.; Geraili, B.; Nasiri, M.; Arab, M. Using data mining to detect health care fraud and abuse: A review of literature. Glob. J. Health Sci. 2015, 7, 194. [Google Scholar] [CrossRef]
- Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 2016, 60, 19–31. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Zhou, X.H.; Sheng, W.G.; Xue, Y.; Chen, S.Y. Generative adversarial network based telecom fraud detection at the receiving bank. Neural Netw. 2018, 102, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, J.; Gu, T.; Choo, K.K.R.; Liu, C.; Yu, M.; Huang, W.; Mohapatra, P. Anomaly detection with graph convolutional networks for insider threat and fraud detection. In Proceedings of the MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; pp. 109–114. [Google Scholar]
- Pourhabibi, T.; Ong, K.L.; Kam, B.H.; Boo, Y.L. Fraud detection: A systematic literature review of graph-based anomaly detection approaches. Decis. Support Syst. 2020, 133, 113303. [Google Scholar] [CrossRef]
- Hilal, W.; Gadsden, S.A.; Yawney, J. Financial fraud: A review of anomaly detection techniques and recent advances. Expert Syst. Appl. 2022, 193, 116429. [Google Scholar] [CrossRef]
- Favarelli, E.; Giorgetti, A. Machine learning for automatic processing of modal analysis in damage detection of bridges. IEEE Trans. Instrum. Meas. 2020, 70, 1–13. [Google Scholar] [CrossRef]
- Chow, J.K.; Su, Z.; Wu, J.; Tan, P.S.; Mao, X.; Wang, Y.H. Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. 2020, 45, 101105. [Google Scholar] [CrossRef]
- Hong, G.; Suh, D. Supervised-learning-based intelligent fault diagnosis for mechanical equipment. IEEE Access 2021, 9, 116147–116162. [Google Scholar] [CrossRef]
- Fourlas, G.K.; Karras, G.C. A survey on fault diagnosis and fault-tolerant control methods for unmanned aerial vehicles. Machines 2021, 9, 197. [Google Scholar] [CrossRef]
- Schmidt, S.; Gryllias, K.C. The anomalous and smoothed anomalous envelope spectra for rotating machine fault diagnosis. Mech. Syst. Signal Process. 2021, 158, 107770. [Google Scholar] [CrossRef]
- Velasco-Gallego, C.; Lazakis, I. RADIS: A real-time anomaly detection intelligent system for fault diagnosis of marine machinery. Expert Syst. Appl. 2022, 204, 117634. [Google Scholar] [CrossRef]
- Adams, D.M.; Ricci, K.W. Vascular anomalies: Diagnosis of complicated anomalies and new medical treatment options. Hematol. Clin. 2019, 33, 455–470. [Google Scholar]
- Anyamba, A.; Chretien, J.P.; Britch, S.C.; Soebiyanto, R.P.; Small, J.L.; Jepsen, R.; Forshey, B.M.; Sanchez, J.L.; Smith, R.D.; Harris, R.; et al. Global disease outbreaks associated with the 2015–2016 El Niño event. Sci. Rep. 2019, 9, 1930. [Google Scholar] [CrossRef]
- Ouyang, X.; Karanam, S.; Wu, Z.; Chen, T.; Huo, J.; Zhou, X.S.; Wang, Q.; Cheng, J.Z. Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis. IEEE Trans. Med. Imaging 2020, 40, 2698–2710. [Google Scholar] [CrossRef]
- Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep learning for medical anomaly detection–a survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.Á.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S. MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 2021, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Bondur, V.; Mokhov, I.; Voronova, O.; Sitnov, S. Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes. Dokl. Earth Sci. 2020, 492, 370–375. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Tang, M.; Ji, W.Q.; Chu, X.; Wu, A.; Chen, C. Reconstructing crustal thickness evolution from europium anomalies in detrital zircons. Geology 2021, 49, 76–80. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Zhu, X.X.; Reichstein, M. Deep Learning for the Earth Sciences: A Comprehensive Approach to Remote Sensing, Climate Science and Geosciences; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Xu, J.; Zheng, Y.; Mao, Y.; Wang, R.; Zheng, W.S. Anomaly detection on electroencephalography with self-supervised learning. In Proceedings of the 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Seoul, Republic of Korea, 16–19 December 2020; pp. 363–368. [Google Scholar]
- Liu, Y.; Chen, Y.; Han, L. Bioinformatics: Advancing biomedical discovery and innovation in the era of big data and artificial intelligence. Innov. Med. 2023, 1, 100012. [Google Scholar] [CrossRef]
- Mandal, A.K.; Sarma, P.K.D.; Dehuri, S. A Study of Bio-inspired Computing in Bioinformatics: A State-of-the-art Literature Survey. Open Bioinform. J. 2023, 16, e187503622305100. [Google Scholar]
- Ohkura, N.; Sakaguchi, S. Transcriptional and epigenetic basis of Treg cell development and function: Its genetic anomalies or variations in autoimmune diseases. Cell Res. 2020, 30, 465–474. [Google Scholar] [CrossRef]
- Bedei, I.; Wolter, A.; Weber, A.; Signore, F.; Axt-Fliedner, R. Chances and challenges of new genetic screening technologies (NIPT) in prenatal medicine from a clinical perspective: A narrative review. Genes 2021, 12, 501. [Google Scholar] [CrossRef]
- Nachman, B.; Shih, D. Anomaly detection with density estimation. Phys. Rev. D 2020, 101, 075042. [Google Scholar] [CrossRef]
- Andreassen, A.; Nachman, B.; Shih, D. Simulation assisted likelihood-free anomaly detection. Phys. Rev. D 2020, 101, 095004. [Google Scholar] [CrossRef]
- Finke, T.; Krämer, M.; Morandini, A.; Mück, A.; Oleksiyuk, I. Autoencoders for unsupervised anomaly detection in high energy physics. J. High Energy Phys. 2021, 2021, 161. [Google Scholar] [CrossRef]
- Atkinson, O.; Bhardwaj, A.; Englert, C.; Ngairangbam, V.S.; Spannowsky, M. Anomaly detection with convolutional graph neural networks. J. High Energy Phys. 2021, 2021, 80. [Google Scholar] [CrossRef]
- Mikuni, V.; Nachman, B.; Shih, D. Online-compatible unsupervised nonresonant anomaly detection. Phys. Rev. D 2022, 105, 055006. [Google Scholar] [CrossRef]
- Reyes, E.; Estévez, P.A. Transformation based deep anomaly detection in astronomical images. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Lochner, M.; Bassett, B.A. ASTRONOMALY: Personalised active anomaly detection in astronomical data. Astron. Comput. 2021, 36, 100481. [Google Scholar] [CrossRef]
- Dere, S.; Fatima, M.; Jagtap, R.; Inamdar, U.; Shardoor, N.B. Anomaly Detection in Astronomical Objects of Galaxies Using Deep Learning. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1, pp. 702–706. [Google Scholar]
- Villar, V.A.; Cranmer, M.; Berger, E.; Contardo, G.; Ho, S.; Hosseinzadeh, G.; Lin, J.Y.Y. A deep-learning approach for live anomaly detection of extragalactic transients. Astrophys. J. Suppl. Ser. 2021, 255, 24. [Google Scholar] [CrossRef]
- Mandrikova, O.; Mandrikova, B. Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder. Symmetry 2022, 14, 744. [Google Scholar] [CrossRef]
- Mesarcik, M.; Boonstra, A.J.; Iacobelli, M.; Ranguelova, E.; de Laat, C.; van Nieuwpoort, R. The ROAD to discovery: Machine-learning-driven anomaly detection in radio astronomy spectrograms. Astron. Astrophys. 2023, 680, A74. [Google Scholar] [CrossRef]
- Fraser, K.; Homiller, S.; Mishra, R.K.; Ostdiek, B.; Schwartz, M.D. Challenges for unsupervised anomaly detection in particle physics. J. High Energy Phys. 2022, 2022, 66. [Google Scholar] [CrossRef]
- Kuusela, M.; Vatanen, T.; Malmi, E.; Raiko, T.; Aaltonen, T.; Nagai, Y. Semi-supervised anomaly detection–towards model-independent searches of new physics. J. Phys. Conf. Ser. 2012, 368, 012032. [Google Scholar] [CrossRef]
- Stein, G.; Seljak, U.; Dai, B. Unsupervised in-distribution anomaly detection of new physics through conditional density estimation. arXiv 2020, arXiv:2012.11638. [Google Scholar]
- Crispim Romão, M.; Castro, N.F.; Pedro, R. Finding new physics without learning about it: Anomaly detection as a tool for searches at colliders. Eur. Phys. J. C 2021, 81, 27. [Google Scholar] [CrossRef]
- Poy, A.B.; Boterenbrood, H.; Burckhart, H.; Cook, J.; Filimonov, V.; Franz, S.; Gutzwiller, O.; Hallgren, B.; Khomutnikov, V.; Schlenker, S.; et al. The detector control system of the ATLAS experiment. J. Instrum. 2008, 3, P05006. [Google Scholar] [CrossRef]
- Adolphi, R. The CMS experiment at the CERN LHC. Jinst 2008, 803, S08004. [Google Scholar]
- Kalweit, A.; The ALICE Collaboration. Particle identification in the ALICE experiment. J. Phys. G Nucl. Part. Phys. 2011, 38, 124073. [Google Scholar] [CrossRef]
- Brust, C.; Katz, A.; Lawrence, S.; Sundrum, R. SUSY, the Third Generation and the LHC. J. High Energy Phys. 2012, 2012, 103. [Google Scholar] [CrossRef]
- Hemsing, E.; Marcus, G.; Fawley, W.; Schoenlein, R.; Coffee, R.; Dakovski, G.; Hastings, J.; Huang, Z.; Ratner, D.; Raubenheimer, T.; et al. Soft X-ray seeding studies for the SLAC Linac Coherent Light Source II. Phys. Rev. Accel. Beams 2019, 22, 110701. [Google Scholar] [CrossRef]
- Grames, J.; Higinbotham, D.W.; Montgomery, H.E. Thomas Jefferson National Accelerator Facility. Nucl. Phys. News 2010, 20, 6–13. [Google Scholar] [CrossRef]
- Li, W. Heavy Gas Cherenkov Construction for Hall C at Thomas Jefferson National Accelerator Facility. arXiv 2023, arXiv:2304.10016. [Google Scholar]
- Hasegawa, K.; Hayashi, N.; Oguri, H.; Yamamoto, K.; Kinsho, M.; Yamazaki, Y.; Naito, F.; Koseki, T.; Yamamoto, N.; Yoshii, M. Performance and Status of the J-PARC Accelerators. In Proceedings of the 8th International Particle Accelerator Conference, Copenhagen, Denmark, 14–19 May 2017. [Google Scholar]
- Hachiya, T. J-PARC heavy ion experiment. Int. J. Mod. Phys. E 2020, 29, 2040005. [Google Scholar] [CrossRef]
- Kampert, K.H.; Alejandro Mostafa, M.; Zas, E.; Pierre Auger Collaboration. Multi-messenger physics with the Pierre Auger Observatory. Front. Astron. Space Sci. 2019, 6, 24. [Google Scholar] [CrossRef]
- Verzi, V.; Pierre Auger Collaboration. Measurement of the energy spectrum of ultra-high energy cosmic rays using the Pierre Auger Observatory. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; SISSA Medialab: Trieste TS, Italy, 2021; Volume 358, p. 450. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory: Instrumentation and online systems. J. Instrum. 2017, 12, P03012. [Google Scholar] [CrossRef]
- Tokuno, H.; Tameda, Y.; Takeda, M.; Kadota, K.; Ikeda, D.; Chikawa, M.; Fujii, T.; Fukushima, M.; Honda, K.; Inoue, N.; et al. New air fluorescence detectors employed in the Telescope Array experiment. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2012, 676, 54–65. [Google Scholar] [CrossRef]
- Bibrzycki, L.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo, D.E.A.; et al. Towards A Global Cosmic Ray Sensor Network: CREDO Detector as the First Open-Source Mobile Application Enabling Detection of Penetrating Radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Kumar, R. Tracking Cosmic Rays by CRAYFIS (Cosmic Rays Found in Smartphones) Global Detector. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 1234. [Google Scholar]
- Whiteson, D.; Mulhearn, M.; Shimmin, C.; Cranmer, K.; Brodie, K.; Burns, D. Searching for ultra-high energy cosmic rays with smartphones. Astropart. Phys. 2016, 79, 1–9. [Google Scholar] [CrossRef]
- Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Ruggles, T.; Schultz, D.; Peacock, J.; Simons, A.L. Detecting particles with cell phones: The Distributed Electronic Cosmic-ray Observatory. arXiv 2015, arXiv:1510.07665. [Google Scholar]
- Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; et al. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones. J. Instrum. 2016, 11, P04019. [Google Scholar] [CrossRef]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, L.; Borczyńska, M.; Bratek, L.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-Ray Extremely Distributed Observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Karbowiak, M.; Wibig, T.; Alvarez Castillo, D.; Beznosko, D.; Duffy, A.R.; Góra, D.; Homola, P.; Kasztelan, M.; Niedźwiecki, M. Determination of zenith angle dependence of incoherent cosmic ray muon flux using smartphones of the CREDO Project. Appl. Sci. 2021, 11, 1185. [Google Scholar] [CrossRef]
- Albin, E.K.; Whiteson, D. Feasibility of Correlated Extensive Air Shower Detection with a Distributed Cosmic-Ray Network. Astrophys. J. 2023, 954, 106. [Google Scholar] [CrossRef]
- Winter, M.; Bourbeau, J.; Bravo, S.; Campos, F.; Meehan, M.; Peacock, J.; Ruggles, T.; Schneider, C.; Simons, A.L.; Vandenbroucke, J. Particle identification in camera image sensors using computer vision. Astropart. Phys. 2019, 104, 42–53. [Google Scholar] [CrossRef]
- Karbowiak, M.; Wibig, T.; Alvarez-Castillo, D.; Beznosko, D.; Duffy, A.R.; Góra, D.; Homola, P.; Kasztelan, M.; Niedźwiecki, M. The first CREDO registration of extensive air shower. Phys. Educ. 2020, 55, 055021. [Google Scholar] [CrossRef]
- Karbowiak, M.; Orzechowski, M.; Wibig, T.; Bibrzycki, Ł.; Kovacs, P.; Piekarczyk, M.; Stasielak, J.; Stuglik, S.; Sushchov, O. Small shower array for education purposes-the CREDO-Maze Project. Proc. Sci. 2021, 395, 199. [Google Scholar]
- Credo; Pryga, J.S.; Wozniak, K.W.; Bibrzycki, L.; Homola, P.; Niedźwiedzki, J.; Alvarez-Castillo, D.; Hachaj, T.; Hnatyk, B.; Piekarczyk, M.; et al. Detection of Extensive Air Showers with small array–measurement and estimations. In Proceedings of the 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July–3 August 2023; p. 382. [Google Scholar] [CrossRef]
- Wibig, T.; Karbowiak, M. CREDO-Maze Cosmic Ray Mini-Array for Educational Purposes. Symmetry 2022, 14, 500. [Google Scholar] [CrossRef]
- Lawie, M.R.; Vosper, F.; Cremonesi, L.; Booth, A. Exploring the Sensitivity of MiniPix Devices to the Detection of a Variety of Particles. Emerg. Minds J. Stud. Res. 2023, 1, 90–100. [Google Scholar] [CrossRef]
- Kokate, U.; Deshpande, A.; Mahalle, P.; Patil, P. Data stream clustering techniques, applications, and models: Comparative analysis and discussion. Big Data Cogn. Comput. 2018, 2, 32. [Google Scholar] [CrossRef]
- Bahri, M.; Bifet, A.; Gama, J.; Gomes, H.M.; Maniu, S. Data stream analysis: Foundations, major tasks and tools. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1405. [Google Scholar] [CrossRef]
- Hachaj, T.; Piekarczyk, M. The Practice of Detecting Potential Cosmic Rays Using CMOS Cameras: Hardware and Algorithms. Sensors 2023, 23, 4858. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Bar, O.; Bibrzycki, L.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Andersen, T.; Budnev, N.M.; Alvarez-Castillo, D.E.; Cheminant, K.A.; et al. CNN-Based Classifier as an Offline Trigger for the CREDO Experiment. Sensors 2021, 21, 4804. [Google Scholar] [CrossRef]
- Bibrzycki, Ł.; Bibrzycki, L.; Alvarez-Castillo, D.; Bar, O.; Gora, D.; Homola, P.; Kovacs, P.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; et al. Machine learning aided noise filtration and signal classification for CREDO experiment. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 12–23 July 2021; p. 227. [Google Scholar] [CrossRef]
- Pabian, M.; Rzepka, D.; Bibrzycki, L.; Pawlak, M. Differentiating signal from artefacts in cosmic ray detection: Applying Siamese spiking neural networks to CREDO experimental data. Measurement 2023, 220, 113273. [Google Scholar] [CrossRef]
- Hachaj, T.; Bibrzycki, L.; Piekarczyk, M. Recognition of Cosmic Ray Images Obtained from CMOS Sensors Used in Mobile Phones by Approximation of Uncertain Class Assignment with Deep Convolutional Neural Network. Sensors 2021, 21, 1963. [Google Scholar] [CrossRef]
- Hachaj, T.; Piekarczyk, M.; Bibrzycki, Ł. Deep Neural Network Architecture for Low-Dimensional Embedding and Classification of Cosmic Ray Images Obtained from CMOS Cameras. In Proceedings of the Neural Information Processing; Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N., Eds.; Springer: Cham, Switzerland, 2021; pp. 307–316. [Google Scholar]
- Bar, O.; Bibrzycki, L.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; Sośnicki, T.; Stuglik, S.; Frontczak, M.; Homola, P.; Alvarez-Castillo, D.E.; et al. Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors. Sensors 2021, 21, 7718. [Google Scholar] [CrossRef]
- Hachaj, T.; Piekarczyk, M.; Wąs, J. Searching of Potentially Anomalous Signals in Cosmic-Ray Particle Tracks Images Using Rough k-Means Clustering Combined with Eigendecomposition-Derived Embedding. In Proceedings of the Rough Sets; Campagner, A., Urs Lenz, O., Xia, S., Ślęzak, D., Wąs, J., Yao, J., Eds.; Springer: Cham, Switzerland, 2023; pp. 431–445. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Gewers, F.L.; Ferreira, G.R.; Arruda, H.F.D.; Silva, F.N.; Comin, C.H.; Amancio, D.R.; Costa, L.d.F. Principal component analysis: A natural approach to data exploration. ACM Comput. Surv. (CSUR) 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Prim. 2022, 2, 100. [Google Scholar] [CrossRef]
- Ross, D.A.; Lim, J.; Lin, R.S.; Yang, M.H. Incremental learning for robust visual tracking. Int. J. Comput. Vis. 2008, 77, 125–141. [Google Scholar] [CrossRef]
- Dubey, D.; Tomar, G.S. Image alignment in pose variations of human faces by using corner detection method and its application for PIFR system. Wirel. Pers. Commun. 2022, 124, 147–162. [Google Scholar] [CrossRef]
- Gogić, I.; Ahlberg, J.; Pandžić, I.S. Regression-based methods for face alignment: A survey. Signal Process. 2021, 178, 107755. [Google Scholar] [CrossRef]
- Chaudhary, U.N.; Kelly, C.N.; Wesorick, B.R.; Reese, C.M.; Gall, K.; Adams, S.B.; Sapiro, G.; Di Martino, J.M. Computational and image processing methods for analysis and automation of anatomical alignment and joint spacing in reconstructive surgery. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 541–551. [Google Scholar] [CrossRef]
- Hachaj, T.; Mazurek, P. Comparative Analysis of Supervised and Unsupervised Approaches Applied to Large-Scale “In The Wild” Face Verification. Symmetry 2020, 12, 1832. [Google Scholar] [CrossRef]
- Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Wang, J.; Chang, C.I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1586–1600. [Google Scholar] [CrossRef]
- Zhang, P.; Li, C.; Wang, C. VisCode: Embedding Information in Visualization Images using Encoder-Decoder Network. IEEE Trans. Vis. Comput. Graph. 2021, 27, 326–336. [Google Scholar] [CrossRef]
- Saravanan, C. Color image to grayscale image conversion. In Proceedings of the 2010 Second International Conference on Computer Engineering and Applications, Bali, Indonesia, 19–21 March 2010; Volume 2, pp. 196–199. [Google Scholar]
- Hachaj, T.; Koptyra, K.; Ogiela, M.R. Eigenfaces-Based Steganography. Entropy 2021, 23, 273. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
- Levey, A.; Lindenbaum, M. Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Trans. Image Process. 2000, 9, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.F.; Golub, G.H.; LeVeque, R.J. Algorithms for computing the sample variance: Analysis and recommendations. Am. Stat. 1983, 37, 242–247. [Google Scholar] [CrossRef]
- Verma, V.; Aggarwal, R.K. A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: Empirical and theoretical perspective. Soc. Netw. Anal. Min. 2020, 10, 43. [Google Scholar] [CrossRef]
- Mizuno, S.; Yamaguchi, T.; Fukushima, A.; Matsuyama, Y.; Ohashi, Y. Overlap coefficient for assessing the similarity of pharmacokinetic data between ethnically different populations. Clin. Trials 2005, 2, 174–181. [Google Scholar] [CrossRef] [PubMed]
Image Alignment | Aligning and Pixel Extrapolation with Example |
---|---|
None | Algorithm 1 is not applied (further processing of rough data) |
B. Constant | Algorithm 1, ooo|abcd|ooo with specified o |
B. Reflect | Algorithm 1, dcb|abcd|cba |
B. Replicate | Algorithm 1, aaa|abcd|ddd |
None | B. Constant | B. Reflect | B. Replicate | |
---|---|---|---|---|
None | 0 | 0.531 | 0.176 | 0.178 |
B. Constant | 0.531 | 0 | 0.520 | 0.522 |
B. Reflect | 0.176 | 0.520 | 0 | 0.042 |
B. Replicate | 0.178 | 0.522 | 0.042 | 0 |
Algorithm id | Image Alignment | |
---|---|---|
1 | None | 3.0 |
2 | None | 2.8 |
3 | None | 2.6 |
4 | None | 2.4 |
5 | B. Constant | 3.0 |
6 | B. Constant | 2.8 |
7 | B. Constant | 2.6 |
8 | B. Constant | 2.4 |
9 | B. Replicate | 3.0 |
10 | B. Replicate | 2.8 |
11 | B. Replicate | 2.6 |
12 | B. Replicate | 2.4 |
13 | B. Reflect | 3.0 |
14 | B. Reflect | 2.8 |
15 | B. Reflect | 2.6 |
16 | B. Reflect | 2.4 |
Batch Number | None | B. Constant | B. Reflect | B. Replicate |
---|---|---|---|---|
1 | 0.107 | 0.107 | 0.115 | 0.133 |
3 | 0.089 | 0.093 | 0.102 | 0.117 |
5 | 0.078 | 0.107 | 0.074 | 0.104 |
7 | 0.072 | 0.068 | 0.059 | 0.098 |
9 | 0.071 | 0.070 | 0.047 | 0.106 |
11 | 0.072 | 0.067 | 0.051 | 0.100 |
13 | 0.081 | 0.071 | 0.052 | 0.096 |
15 | 0.067 | 0.066 | 0.049 | 0.091 |
17 | 0.063 | 0.058 | 0.047 | 0.080 |
19 | 0.062 | 0.051 | 0.040 | 0.078 |
21 | 0.064 | 0.060 | 0.041 | 0.075 |
23 | 0.057 | 0.056 | 0.042 | 0.075 |
25 | 0.054 | 0.048 | 0.041 | 0.057 |
27 | 0.053 | 0.041 | 0.038 | 0.058 |
29 | 0.058 | 0.040 | 0.040 | 0.059 |
31 | 0.051 | 0.040 | 0.037 | 0.069 |
33 | 0.051 | 0.039 | 0.044 | 0.070 |
35 | 0.050 | 0.040 | 0.037 | 0.062 |
37 | 0.049 | 0.039 | 0.042 | 0.059 |
39 | 0.048 | 0.042 | 0.044 | 0.063 |
41 | 0.047 | 0.038 | 0.041 | 0.055 |
43 | 0.047 | 0.035 | 0.039 | 0.055 |
45 | 0.048 | 0.031 | 0.035 | 0.055 |
47 | 0.047 | 0.029 | 0.036 | 0.060 |
49 | 0.045 | 0.026 | 0.032 | 0.050 |
51 | 0.043 | 0.025 | 0.032 | 0.036 |
53 | 0.035 | 0.023 | 0.025 | 0.042 |
55 | 0.031 | 0.019 | 0.024 | 0.026 |
57 | 0.020 | 0.010 | 0.012 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piekarczyk, M.; Hachaj, T. On the Search for Potentially Anomalous Traces of Cosmic Ray Particles in Images Acquired by Cmos Detectors for a Continuous Stream of Emerging Observational Data. Sensors 2024, 24, 1835. https://doi.org/10.3390/s24061835
Piekarczyk M, Hachaj T. On the Search for Potentially Anomalous Traces of Cosmic Ray Particles in Images Acquired by Cmos Detectors for a Continuous Stream of Emerging Observational Data. Sensors. 2024; 24(6):1835. https://doi.org/10.3390/s24061835
Chicago/Turabian StylePiekarczyk, Marcin, and Tomasz Hachaj. 2024. "On the Search for Potentially Anomalous Traces of Cosmic Ray Particles in Images Acquired by Cmos Detectors for a Continuous Stream of Emerging Observational Data" Sensors 24, no. 6: 1835. https://doi.org/10.3390/s24061835
APA StylePiekarczyk, M., & Hachaj, T. (2024). On the Search for Potentially Anomalous Traces of Cosmic Ray Particles in Images Acquired by Cmos Detectors for a Continuous Stream of Emerging Observational Data. Sensors, 24(6), 1835. https://doi.org/10.3390/s24061835