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Abstract: In this study, we developed a machine learning model for automated seizure detection
using system identification techniques on EEG recordings. System identification builds mathematical
models from a time series signal and uses a small number of parameters to represent the entirety of
time domain signal epochs. Such parameters were used as features for the classifiers in our study.
We analyzed 69 seizure and 55 non-seizure recordings and an additional 10 continuous recordings
from Thomas Jefferson University Hospital, alongside a larger dataset from the CHB-MIT database.
By dividing EEGs into epochs (1 s, 2 s, 5 s, and 10 s) and employing fifth-order state-space dynamic
systems for feature extraction, we tested various classifiers, with the decision tree and 1 s epochs
achieving the highest performance: 96.0% accuracy, 92.7% sensitivity, and 97.6% specificity based on
the Jefferson dataset. Moreover, as the epoch length increased, the accuracy dropped to 94.9%, with a
decrease in sensitivity to 91.5% and specificity to 96.7%. Accuracy for the CHB-MIT dataset was 94.1%,
with 87.6% sensitivity and 97.5% specificity. The subject-specific cases showed improved results, with
an average of 98.3% accuracy, 97.4% sensitivity, and 98.4% specificity. The average false detection
rate per hour was 0.5 ± 0.28 in the 10 continuous EEG recordings. This study suggests that using a
system identification technique, specifically, state-space modeling, combined with machine learning
classifiers, such as decision trees, is an effective and efficient approach to automated seizure detection.

Keywords: EEG; system identification; state-space model; automated seizure detection

1. Introduction

Epilepsy is a chronic neurological condition that affects approximately 50 million
people of all ages worldwide [1]. Many patients whose seizures fail to respond to therapy
undergo prolonged EEG monitoring to aid in diagnosis and plan therapy. This may
be conducted in an ambulatory or inpatient setting [2]. EEG is recorded for variable
periods [3,4], and these studies generate substantial data. Trained electroencephalographers
must spend significant time and effort reviewing EEG to make a diagnosis, and manual
review is subject to error [5]. An automatic system that detects and annotates seizures
by analyzing EEG would be beneficial in reducing the time professionals must spend
reviewing long-term EEG studies.

To automatically detect seizures, various detection algorithms have been proposed.
Deburchgraeve et al. [6] offered an approach, tested on the recordings of 21 patients, to both
analyze the correlation between high-energetic segments of EEG and detect increases in
low-frequency activity with high autocorrelation, yielding 88% sensitivity and 75% positive
predictive value. In another study [7] with EEG data from 17 patients, a support vector
machine (SVM) was used to distinguish between seizure and non-seizure EEG epochs.
The system achieved an average detection rate of 89%, with one false seizure per hour.
A study employing a convolutional neural network (CNN) [8] used a training dataset of
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five patients and showed accuracy, specificity, and sensitivity of 88.7%, 90.0%, and 95.0%,
respectively. Hassanpour et al. [9] utilized a singular value decomposition (SVD) technique
to apply to a time–frequency (TF) distribution of EEG epochs and showed a 92.5% detection
rate. Wang et al. [10] employed a combination of multi-domain and nonlinear features,
which increased the classification accuracy to 99.3%. However, in most of these works, only
a few EEG recordings were used, limiting performance evaluation.

An automated seizure detection method based on EEG state-space model identification
is presented here. This method was previously shown to be effective and efficient in
classifying sleep stages [11]. This work presents a preliminary evaluation of the use of
machine-learning-based system identification techniques to detect seizures. We applied
this method to three datasets: two provided by Thomas Jefferson University Hospital for
training and testing in clinical settings, and the third was a publicly available CHB-MIT
dataset [12] for cross-validation. First, we applied a system identification technique to build
a mathematical model of dynamic systems of EEG epochs. Then, different orders of the
dynamic system were simulated and compared with the original EEG signal. Each element
of the state matrices was considered part of the features to be fed into various classifiers for
training and testing. The results of this preliminary study demonstrate the potential of this
proposed method to effectively detect seizures and justify further development. The use
of machine-learning-based system identification techniques for seizure detection has the
potential to significantly improve the accuracy and efficiency of epilepsy diagnosis, making
it a valuable tool for healthcare professionals.

2. Material and Methods
2.1. Jefferson Dataset

This retrospective study of deidentified EEG data was approved by the Thomas Jef-
ferson University Institutional Review Board. Two datasets were provided by Thomas
Jefferson University Hospital. The first dataset was used for training and testing. A total
of 124 EEG recordings from 79 patients were included: 55 EEG recordings with interictal,
non-seizure EEG data and 69 recordings containing seizures. EEG was recorded using
international 10–20 system electrode placements plus T1 and T2 leads, and EEG was sam-
pled at 1000 Hz. EEG recordings were visually interpreted and manually annotated by
board-certified clinical neurophysiologists. The mean recording duration per EEG was
90.36 min (range, 2.8 to 180 min) for 55 non-seizure EEGs and 6 min (range, 0.7 to 20.1 min)
for 69 EEGs containing seizures, for a total combined duration of 89.73 h. In Figure 1, an
example of both 20 s long seizure and non-seizure EEG data is presented, illustrating the
distinct differences between the two conditions. In the seizure EEG data, the characteristic
pattern of seizure activity is evident through the appearance of abnormal discharges that
manifest as bursts, which progressively increase in frequency, evolving into rapid, continu-
ous spikes and waves. This distinctive pattern sets the seizure activity apart from normal,
non-seizure EEG data, which does not exhibit these pronounced abnormal discharges.

We then cut the entire EEG dataset into epochs of various lengths, specifically, 1 s,
2 s, 5 s, and 10 s. The increment overlap length between any two consecutive epochs was
always 50% of the epoch length. Table 1 illustrates the number of epochs generated for
each epoch size.

Using the same EEG leads, the second dataset comprised ten continuous EEG record-
ings collected from 10 patients. Two recordings had a sampling rate of 1000 Hz, while
the rest had a sampling rate of 500 Hz. The mean recording length was 24.4 h (range,
19.7 to 34.4 h), making it an extensive dataset for testing purposes. The dataset included
411 seizure periods, ranging from 16 s to 9.5 min; 1-second-long epochs with 0.5 s overlaps
were used for analysis. The specificity was represented by the number of false detections
per hour to evaluate the performance in clinical settings. A standard method [13] was
applied where a 30 s window was considered a positive seizure detection if more than
50% of the epochs within the window were predicted as seizures. The predictions were
then compared with the corresponding time segments in the annotations, and if different,
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it was marked as a false window. In addition, consecutive false windows were considered
a single false detection.
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Figure 1. Exemplar non-seizure (left) and seizure (right) EEG data.

Table 1. Number of epochs generated for each epoch length.

Epoch Size 1 s 2 s 5 s 10 s

Seizure Epochs 49,595 24,386 9837 4866

Non-Seizure Epochs 100,000 49,611 19,182 9340

Total Epochs 149,595 73,997 29,019 14,206

2.2. CHB-MIT Dataset

This dataset was used to validate and compare the results. It was collected at Boston
Children’s Hospital [14]. A total of 664 EEG recordings were collected from 23 subjects,
129 of which contained seizures. Most EEG recordings were sampled at 256 Hz using the
international 10–20 system. The length and increments of each epoch were 1 s and 0.5 s,
respectively. We randomly selected twenty 30 s long, non-seizure EEG segments from each
subject for training. In total, we had 28,320 non-seizure EEG epochs and 14,840 seizure
EEG epochs.

2.3. Data Preprocessing

As shown in Figure 2, the EEG dataset was initially divided into several segments
with identical lengths. Next, a bandpass filter was applied to remove unwanted signals
from the EEG data, such as low-frequency noise and high-frequency artifacts. Then, the
dynamic systems were estimated for each bandpass-filtered EEG epoch. Finally, the state
matrices of the estimated dynamic systems were extracted and used as features to train the
machine learning classifiers. The state matrices were considered a compact representation
of the dynamic characteristics of the EEG signal, which can capture the unique patterns of
seizures. The classifiers were trained using these feature vectors, and the trained classifiers
were then used to detect seizures in new EEG recordings.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 14 
 

 

dynamic systems were estimated for each bandpass-filtered EEG epoch. Finally, the state 
matrices of the estimated dynamic systems were extracted and used as features to train 
the machine learning classifiers. The state matrices were considered a compact represen-
tation of the dynamic characteristics of the EEG signal, which can capture the unique pat-
terns of seizures. The classifiers were trained using these feature vectors, and the trained 
classifiers were then used to detect seizures in new EEG recordings. 

 
Figure 2. Schematic overview of the complete seizure detection algorithm. 

The EEG data were filtered by a second-order Butterworth bandpass filter at 0.5–29 
Hz, as this frequency range removes most unwanted signals from the EEG data, such as 
low-frequency noise and high-frequency artifacts, yet includes most seizure frequencies 
[15]. A 60 Hz notch filter was applied to remove the power line interference. The effective-
ness of these filters is evident in Figure 3, which contrasts the raw and filtered EEG data. 
The raw data display considerable contamination from motion artifacts and power line 
noise, whereas the filtered data present a clearer signal in which the seizure indicators are 
preserved without interference. Once filtered, the data were kept as a 19 × 𝑛 
(𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ×  𝑙𝑒𝑛𝑔𝑡ℎ) matrix without time information. Each time we trained the classifier, 
we selected the data of a single channel from this matrix as a 1 × 𝑛 vector: 𝑌 = [𝑦ଵ, 𝑦ଶ, 𝑦ଷ, … , 𝑦], 𝑛 = 𝐿, 𝑦 ∈ ℝ (1)

where 𝑌 is the vector of the filtered EEG data points, 𝑦 is sampled at 1000 Hz, and 𝐿 is 
the length of the vector. Using a one-second-long epoch as an example, 𝑌 was cut into 
epochs containing 1000 data points as 1000 Hz × 1 s. There were 500 data point increments 
between two consecutive epochs, as indicated in Figure 4. 

Eventually, 𝑌 was resized as 𝑌 = ൣ𝑌ଵ, 𝑌ଶ, … , 𝑌൧், described in (2). 

⎣⎢⎢
⎢⎢⎡
𝑌ଵ𝑌ଶ⋮𝑌⋮𝑌⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢
⎢⎢⎡

𝑦ଵ𝑦ହଵ⋮𝑦ହ∗(ିଵ)ାଵ⋮𝑦ହ∗(ିଵ)ାଵ
 

𝑦ଶ𝑦ହଶ⋮𝑦ହ∗(ିଵ)ାଶ⋮𝑦ହ∗(ିଵ)ାଶ
 ⋯⋯⋯ 

𝑦ଵ𝑦ଵହ⋮𝑦ହ∗(ାଵ)⋮𝑦ହ∗(ାଵ)⎦⎥⎥
⎥⎥⎤  (2)

𝑝 = 𝑓𝑙𝑜𝑜𝑟 ൬ 𝐿500൰ − 1, 𝑖 ∈ [1, 𝑝] (3)

where 𝑌 was considered the dataset for dynamic model estimation. 

Figure 2. Schematic overview of the complete seizure detection algorithm.



Sensors 2024, 24, 1902 4 of 13

The EEG data were filtered by a second-order Butterworth bandpass filter at 0.5–29 Hz,
as this frequency range removes most unwanted signals from the EEG data, such as low-
frequency noise and high-frequency artifacts, yet includes most seizure frequencies [15].
A 60 Hz notch filter was applied to remove the power line interference. The effectiveness
of these filters is evident in Figure 3, which contrasts the raw and filtered EEG data. The
raw data display considerable contamination from motion artifacts and power line noise,
whereas the filtered data present a clearer signal in which the seizure indicators are pre-
served without interference. Once filtered, the data were kept as a 19× n (channel × length)
matrix without time information. Each time we trained the classifier, we selected the data
of a single channel from this matrix as a 1× n vector:

Y = [y1, y2, y3, . . . , yn], n = L, yn ∈ R (1)

where Y is the vector of the filtered EEG data points, yn is sampled at 1000 Hz, and L is
the length of the vector. Using a one-second-long epoch as an example, Y was cut into
epochs containing 1000 data points as 1000 Hz × 1 s. There were 500 data point increments
between two consecutive epochs, as indicated in Figure 4.
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Eventually, Y was resized as Y =
[
Y1, Y2, . . . , Yp

]T , described in (2).

Y1
Y2

...
Yi
...

Yp


=



y1
y501

...
y500∗(i−1)+1

...
y500∗(p−1)+1

y2
y502

...
y500∗(i−1)+2

...
y500∗(p−1)+2

· · ·
· · ·
· · ·

y1000
y1500

...
y500∗(i+1)

...
y500∗(p+1)


(2)
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p = f loor
(

L
500

)
− 1, i ∈ [1, p] (3)

where Yi was considered the dataset for dynamic model estimation.

2.4. Model Estimation

This study used a system identification technique to estimate state matrices from each
EEG epoch as a feature for classification. System identification uses measurements of the
EEG output signal to build mathematical models of dynamic systems [16]. This means
no inputs are specified since the focus is on the dynamic properties of a time series, the
EEG signal [17].

There are multiple system identification approaches available, namely, autoregressive
(AR), transfer function (TF), and state space (ss). We chose the state-space method, as
it does not require any input to identify systems. The state-space method represents a
dynamic system in terms of state and output equations, describing how the states and
outputs change over time.

Now, consider the following discrete-time state-space dynamic system to be estimated
from Yi: {

xT+1 = AxT + BuT + KeT
yT = CxT + DuT + eT

(4)

where, for an mth-order system, yT ∈ R is the output vector, and xT ∈ Rm×1 is the vector
of states. A ∈ Rm×m is the state transfer matrix. B ∈ Rm×1 is the input matrix. C ∈ R1×m

is the output matrix. C ∈ R1×1 is the feedthrough matrix. K ∈ Rm×m is the steady-state
Kalman gain. eT ∈ R is the zero-mean white noise. As for the input, uT , typically, in a
case like this, it should be a 1× 1 scaler. However, as the output for this model is an EEG
signal, also known as a time series, no input is available [17]. Thus, (4) can be written as
Equation (5), also represented in Figure 5.{

xT+1 = AxT + KeT
yT = CxT + eT

(5)
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Without the input, uT , the remaining state matrices, A, C, and K, of the state-space
dynamic system can be estimated using the n4sid method [18]. We began by constructing a
block Hankel matrix, H(k), from each EEG epoch. The Hankel matrix exhibited a unique
structure, with each row shifted one time step down from the previous row.

H(k) =


yk+1 yk+2 . . . yk+q
yk+2 yk+3 . . . yk+q+1

...
...

. . .
...

yk+p yk+p+1 . . . yk+q+p−1

 (6)
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where the number of rows and columns of the Hankel matrix is p and q. p is the chosen
block size, while p + q− 1 equals the size of the system’s output data, which is 1000 in our
case. In this study, the block size, p, was chosen to be twice the estimated system order, m,
to ensure that the constructed Hankel matrix adequately captured the underlying system
dynamics while avoiding unnecessary complexity. As a result, the size of the Hankel matrix
is 2m× (1001− 2m), and (6) can be rewritten as

H(k) =


yk+1 yk+2 . . . yk+1001−2m
yk+2 yk+3 . . . yk+1002−2m

...
...

. . .
...

yk+2m yk+2m+1 . . . y1000

 (7)

We then applied singular value decomposition (SVD) to H(0) in order to obtain a
low-rank approximation of the matrix that captures the essential system dynamics.

H(0) = RΣST (8)

where H(0) is the Hankel matrix at k = 0; R and S are 2m by 2m and (1001− 2m) by
(1001− 2m) orthonormal matrices, respectively; and Σ is a 2m by (1001− 2m) matrix with
nonnegative numbers in the diagonal. For an mth-order system, the ideal matrix Σ can be
written as

Σ =

[
Σm 0
0 Σ∗

]
(9)

The singular values, Σm ∈ Rm×m, in matrix Σ represent the importance of the corre-
sponding singular vectors in capturing the variance of the output data. Smaller singular
values or zeros in Σ∗ indicate that the corresponding singular vectors contribute less to the
overall structure of the data. Thus, a minimal realization is obtained by eliminating Σ∗, and
(9) can be rewritten as

Σ =

[
Σm 0
0 0

]
(10)

Then, we chose only the rows and columns corresponding to the mth model to form
the matrices Rm and Sm and rewrite (8) as:

Hm(0) = RmΣmSm
T (11)

Then, the discrete-time system realization can be represented by

A = Σm
− 1

2 Rm
T Hm(1)SmΣm

− 1
2 (12)

C = ET RΣm
1
2 (13)

K = Σm
1
2 Sm

TE (14)

where E = [Im, 0] with I being an m×m identity matrix.
Constant m donates as the order of the system. This study estimated the models in

the 3rd–10th orders. To arbitrate the most felicitous order for our study, on the one hand,
we analyzed the performance of model estimation (Fit) that indicated similitude between
the original data and the simulation of the estimated model. The Fit was evaluated by the
normalized root mean squared error (NRMSE):

Fit = 1− 100×

√
1

1000 ∑1000
T=1
(
ysim

T − yT
)2

σ(y)
(15)
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where ysim
T is the estimated output at time T, and σ(y) is the standard deviation of the

EEG epoch.
On the other hand, this ultimate system order was also determined by the performance

of feature classification as we fed different orders of models into various classifiers.

2.5. Features and Classification

For each 1× 1000 EEG epoch vector, Yi, the state matrices are

A =

 a11 · · · a1m
...

. . .
...

am1 · · · amm

, C =
[
c1 . . . cm

]
, K =

[
k1 . . . km

]T (16)

The 1×
(
m2 + 2m

)
feature vector to be fed into the classifier should consist of A, C,

and K, as
f eatureT = [a11 · · · amm, c1 · · · cm, k1 · · · km ] (17)

For each EEG recording, there were p feature vectors, as described in (2). For example,
the Jefferson dataset contained 149,595 feature vectors, of which 49,595 were labeled as
seizures. The label of each feature vector was made according to the annotation provided
by the expert viewers. There were only two classes, “1” for seizure and “0” for non-seizure.

Sensitivity, specificity, and accuracy were used as the performance statistics. These
terms can be determined by the “Standard of Truth” [19] as true positive (TP), true negative
(TN), false negative (FN), and false positive (FP) (18)–(20).

Sensitivity =
TP

TP + FN
(18)

Speci f icity =
TN

TN + FP
(19)

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

Both TP and TN indicate consistency between the annotation and classifier, while FP
and FN suggest contradiction. In this study, we defined seizure as positive and non-seizure
as negative. Therefore, the sensitivity and specificity represent the degree of excellence of
a classifier in identifying seizures and non-seizures, respectively. And the accuracy is the
proportion of correct labels throughout the entire dataset.

All three statistics were verified by the 10-fold cross-validation method. The EEG
epochs were first shuffled randomly and divided into ten equal portions. Then, 90% of
the EEG epochs were used as a training dataset, while the rest, 10%, were for testing. This
cross-validation process was repeated ten times, with each of the ten portions used once
as the validation dataset. The final evaluation statistics reported in this study were the
average value obtained from the above ten tests.

To validate the efficacy of our proposed model and feature set for automated seizure
detection, this study selected kernel naïve Bayes, linear discriminant, linear SVM, fine
KNN, and bagged trees as the candidate classifiers. By employing a range of basic, yet
diverse, classifiers, we aimed to test our model’s robustness and generalizability across
different algorithmic approaches. We trained all the classifiers with features converted from
3rd- to 10th-order models. The comparison was made across different classifiers and orders
to designate the most suitable dual. Once the system order and classifier were settled, we
performed the validation by applying our method to a publicly available dataset: CHB-MIT.

3. Results
3.1. Model Estimation

State-space models of orders 3 to 10 were estimated for each EEG epoch, and the model
order, m, was chosen based on a trade-off between the feature’s size and the classifier’s
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performance. Choosing the appropriate model order is vital for an automated seizure
detection system, as it can affect the system’s performance. The higher the order, the
more complex the model, which can lead to overfitting. On the other hand, if the order is
too low, the model may not be able to capture the essential dynamics of the EEG signal.
The feature size is the number of parameters used to represent the EEG signal and was
provided in (17) as 1×

(
m2 + 2m

)
. Therefore, the selected order should be as small as

possible to minimize the training cost while maintaining a reasonable Fit accuracy and a
decent classifying performance.

The average Fit accuracy was relatively steady at 98.3% ± 0.11% across the selection
of model orders from 3 to 10. The decision on the model order was solely based on the
classifier’s performance rather than the fit accuracy of the state-space model. By selecting a
more petite model order, the feature size will be smaller, reducing the computational cost
of the classifier and allowing for faster training and prediction.

3.2. Classification

We have chosen kernel naïve Bayes, linear discriminant, SVM, KNN, and decision
trees as the classifiers to train our features. These basic classifiers consume less computing
time and resources to train and validate than deep learning, as we hope to find that the
system identification method can effectively and efficiently detect seizures. By feeding 1 s
epoch feature vectors of the 3rd- to 10th-order systems into the classifiers, we could then
evaluate the performance of different model orders and determine which order is most
appropriate for our application.

The results are illustrated in Figure 6 and Table 2. Correlations between the growth of
system order and validation accuracy were not consistent among different classifiers. The
KNN and decision trees started with an escalation trend and then reached a peak turning
point at the fifth order. The kernel naïve Bayes, linear discriminant, and SVM increased
accuracy as the system order increased from 3 to 9 and then declined in performance at
order 10. Moreover, decision trees outperformed the rest of the classifiers with the highest
standard over the systems of every order. KNN caught up with the others at the fifth
order with a 93.6% accuracy. Eventually, with the fifth-order system, the trees provided
the highest accuracy, 96.0%, with a sensitivity of 92.7% and a specificity of 97.6%. These
results indicate that the decision trees classifier was better suited for this analysis and that
choosing the fifth model order balanced complexity and performance.
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Table 2. Classifier accuracy over systems of different orders.

Classifiers

System
Orders 3rd 4th 5th 6th 7th 8th 9th 10th

Discriminant 72.7% 73.0% 74.1% 76.1% 77.9% 77.6% 77.5% 77.3%
Bayes 72.9% 73.5% 74.2% 76.1% 76.2% 76.1% 75.5% 72.3%
KNN 89.7% 91.9% 93.6% 92.4% 90.8% 89.2% 87.8% 84.6%
SVM 72.0% 72.3% 73.5% 75.6% 76.6% 77.1% 76.5% 72.3%
Trees 93.8% 94.9% 96.0% 95.1% 94.8% 94.1% 93.6% 93.1%

We also estimated the fifth-order system of epochs in different lengths, such as 2 s, 5 s,
and 10 s, in addition to 1 s long epochs. The decision tree classifier then trained the feature
vectors obtained from these epochs. The results of the different epoch lengths are listed
and compared in Table 3 to show the effect of the length of the epochs on the system’s
performance. As is seen in the table, performance metrics decreased as the epoch length
increased. Specifically, accuracy dropped from 96.0% to 94.9%, sensitivity fell from 92.7%
to 91.5%, and specificity sank from 97.6% to 96.7% as the epoch length grew from 1 to
10 s. These results indicate that the choice of epoch length impacts the performance of the
seizure detection system.

Table 3. Training results for different-length epochs.

Epoch Size Increment Sensitivity Specificity Accuracy

1 s 0.5 s 92.7% 97.6% 96.0%

2 s 1 s 92.6% 97.4% 95.8%

5 s 2.5 s 92.3% 97.0% 95.4%

10 s 5 s 91.5% 96.7% 94.9%

The analysis of the ten continuous EEG recordings showed that, on average, the system
produced 0.5 false detections per hour of the EEG recording, with a margin of error of
±0.28 false detections per hour. In addition, by using a 30 s decision window and 1 s long
epochs with 0.5 s overlaps, the method could detect all seizures within the first feasible
window, with no additional delay other than the minimum required 15 s within each 30 s
window to make the decision. Figure 7 shows a continuous EEG recording lasting one
minute. During this recording, a seizure began at 46 min and 47 s. Our detection method
accurately identified this seizure. More information about the overall results can be found
in Table 4.
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Table 4. Detail of 10 continuous EEG records.

Subject EEG
Duration (h)

Number of
Seizures

Seizure
Length (s)

Total False
Detections

False
Detections
per Hour

1 24 1 576 5 0.2

2 24 7 43~104 10 0.4

3 21.3 44 30~310 18 0.8

4 24.1 114 30~49 28 1.2

5 24 13 30~120 10 0.4

6 19.7 120 16~120 10 0.5

7 24 1 122 6 0.3

8 24.1 72 19~180 12 0.5

9 24.8 33 37~77 10 0.4

10 34.4 6 58~297 9 0.3

Total 244.4 411 118

Average 24.44 41.1 11.8 0.5

STDEV. 3.6 43.6 6.3 0.28

To validate the proposed method and conduct a further assessment, we also applied
this method to the CHB-MIT dataset. This method achieved 94.1% accuracy, with 87.6%
sensitivity and 97.5% specificity. Hence, our proposed method works on an independent
dataset. Additionally, we observed that these results were not subject-specific but general-
ized over the entire dataset. Table 5 illustrates a comparison of the performance results of
other studies that also worked on the whole CHB-MIT database. The results show that the
proposed method outperforms other studies regarding accuracy and specificity. Sensitivity
was better than all but one method.

Table 5. Performance comparison of studies on whole CHB-MIT datasets.

Method Accuracy Sensitivity Specificity

Khan [20] 91.8% 83.6% 100%

Gill [21] 86.93% 86.26% 87.58%

Lima [22] 88.45% 85.59% 91.32%

Birjandtalab [23] - 80.87% 47.45%

Fergus [24] - 84% 85%

This Work 94.1% 87.6% 97.5%

4. Discussion

The present analysis shows that state-space modeling, combined with a decision
tree machine learning classifier, is an effective approach to automated seizure detection.
We achieved good sensitivity and specificity, as well as accuracy. However, accuracy
cannot fully represent the actual performance of a detector. The reason is that most
epochs are non-seizure epochs for any EEG recording. For example, a 90% accuracy could
be generated by 99% specificity and 50% sensitivity if 80% of the dataset is negative.
Hence, the problem at hand is complex. For clinical utility, both high sensitivity and
specificity are required. Sensitivity is most important, as failure to detect seizures makes
any detection system less useful. Efficiency is achieved with high specificity, minimizing
the time needed for human review. The method described in this paper yielded superior
accuracy and specificity compared with most other reports. Our method better-identified
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epochs without seizures and was as good at detecting seizures with high accuracy. This
result is acceptable for preliminary work but may be insufficient for clinical needs and
needs further improvement, as each patient can yield a unique EEG wavelet pattern [25]
due to differing seizure types, and some patients have multiple seizure types. Therefore, if
we model and train on individual EEGs yet characterize them as similar, the detection rate
is undoubtedly decreased.

There are other studies that have focused on a “case-by-case” situation. For example,
Zabihi et al. [26] performed a subject-specific study with an average of 93.7% sensitivity and
a specificity of 99.05% in four subjects. Another study [27] proposed a patient-dependent
system with 97.12% specificity and 99.29% sensitivity. Alternatively, an individual classifier
can be built for each channel and seizure pattern [28], eventually reaching an average
accuracy of 95.12%. Similarly, for a subject-basis analysis, our method generated an av-
erage of 98.3% accuracy, 97.4% sensitivity, and 98.4% specificity. However, this level of
performance has only been shown post hoc, and the clinical problem of seizure detection
in large numbers of patients is not suited to this approach. Such a precisely customized
classifier would only prove useful if individualized preliminary data were available for
training. Therefore, both comprehensive dataset-based and customized classifiers can be
useful, though the former are best suited when an unknown EEG dataset must be analyzed.
A classifier pre-trained on a full-scale dataset validates itself in robustness, adaptation, and
performance. A customized classifier would likely be better with delayed deployment after
onsite training.

Our method demonstrated its clinical potential through a dataset of 10 consecutive
EEG recordings. By using a 30 s decision window and 1 s long epochs with 0.5 s overlap,
the system could accurately detect all seizures within the first feasible window. The low
false detection rate confirms the system’s effectiveness. On the other hand, the sizeable false
detection range indicated the variability in the false detection rate across the ten patients.
Several solutions might address this issue, including improving the signal quality by
implementing advanced noise reduction techniques or re-evaluating the decision threshold
to account for the impact of noise and artifacts on the data. Additionally, extra data sources,
such as clinical history, demographic information, or behavioral data, could be integrated
into the model to reduce the false detection rate.

Additional work is required. The proposed method is still in the early stages of
development, and there is room for improvement. Our study was restricted to the analysis
of one-second epochs. A one-size-fits-all approach may not be appropriate. However, as
seen in Table 3, increasing epoch size is associated with decreased detection sensitivity. One
possible reason for this is that using longer epochs reduces the number of available segments
for training decreases. This negatively impacted the classifier’s overall performance. Also,
the length of the EEG epoch can affect the sensitivity and specificity of seizure detection
methods. Shorter epochs can increase the temporal resolution but may miss ongoing
seizures with ictal patterns that last longer than the epoch length [29]. On the other hand,
longer epochs may provide a better view of prolonged seizures and increase the chance of
missing short seizures that occur within these longer epochs. Therefore, it is essential to
carefully consider the trade-offs and choose an appropriate epoch length for the specific
application and dataset.

One of our proposed method’s limitations is that it does not specify the seizure types.
Defining seizure types may allow the classifiers to be trained to recognize specific seizure
types and improve the method’s specificity. However, it is important to acknowledge
that this hypothesis must be tested and validated through further research and exper-
imentation to determine its actual impact on the model’s specificity. Another area for
improvement is the method’s robustness in dealing with artifacts, as artifacts can signifi-
cantly affect accuracy. Deep learning techniques, such as convolutional neural networks
(CNNs), have shown promise in identifying and removing artifacts from EEG signals [30].
These techniques could increase the proposed method’s robustness and performance.
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5. Conclusions

The proposed system leverages a state-space-model-based system identification method
for automated seizure detection in EEG recordings. By processing EEG time series signals,
this method constructs mathematical models to efficiently represent signal epochs with
a minimal set of parameters. These parameters, utilized as features for machine learning
classifiers, demonstrated the efficacy of combining a fifth-order dynamic system with a
decision tree classifier. An evaluation of this approach using the Jefferson and CHB-MIT
datasets yielded high accuracies and excellent specificities while also indicating that sensi-
tivity has the potential for enhancement. Adjusting the classifier on an individual basis
substantially improved sensitivity and accuracy, underscoring the effectiveness of personal-
ized detection strategies. The proposed method also demonstrated its potential in a clinical
setting through this dataset of ten consecutive EEG recordings. Future developments could
focus on integrating larger and more diverse datasets alongside advanced deep learning
classifiers to broaden the system’s capability in identifying various seizure types with
increased sensitivity. This work lays the foundation for more automated, accurate, and
efficient seizure diagnosis, promising to augment clinical practice and patient outcomes.
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