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Abstract: In recent years, the rapid prevalence of high-definition video in Internet of Things (IoT)
systems has been directly facilitated by advances in imaging sensor technology. To adapt to limited
uplink bandwidth, most media platforms opt to compress videos to bitrate streams for transmission.
However, this compression often leads to significant texture loss and artifacts, which severely degrade
the Quality of Experience (QoE). We propose a latent feature diffusion model (LFDM) for compressed
video quality enhancement, which comprises a compact edge latent feature prior network (ELPN) and
a conditional noise prediction network (CNPN). Specifically, we first pre-train ELPNet to construct a
latent feature space that captures rich detail information for representing sharpness latent variables.
Second, we incorporate these latent variables into the prediction network to iteratively guide the
generation direction, thus resolving the problem that the direct application of diffusion models to
temporal prediction disrupts inter-frame dependencies, thereby completing the modeling of temporal
correlations. Lastly, we innovatively develop a Grouped Domain Fusion module that effectively
addresses the challenges of diffusion distortion caused by naive cross-domain information fusion.
Comparative experiments on the MFQEv2 benchmark validate our algorithm’s superior performance
in terms of both objective and subjective metrics. By integrating with codecs and image sensors, our
method can provide higher video quality.

Keywords: compressed video restoration; diffusion model; rich detail information; group-wise
domain fusion

1. Introduction

The thriving development of Internet of Things (IoT) technologies has led to an ex-
plosion in video data traffic. However, the massive costs of data storage and limited
upload bandwidth pose obstacles to the continuous transmission of high-quality videos.
To tackle this challenge, classic video coding standards have emerged, including H.263 [1],
H.264/AVC [2], and H.265/HEVC [3]. These schemes leverage the spatial and tempo-
ral redundancies in video content to enable efficient transmission and storage through
lossy compression. Meanwhile, breakthroughs in image sensor technologies have steadily
improved video resolution, dynamic range, and denoising capabilities. This provides
superior initial conditions for compression coding and richer quality clues for subsequent
video refinement and restoration algorithms. However, inevitable bitrate reduction in-
troduces multifaceted data loss and compression artifacts like blurring, blockiness, and
edge fluctuations [4,5]. Such distortions fail to satisfy the requisite user experience quality
(QoE) [6,7]. Additionally, disruption and damage introduced in frame coding adversely
affect downstream computer vision tasks reliant on video content like scene analysis and
object tracking, thus compromising visual fidelity. Therefore, developing powerful com-
pressed video restoration algorithms to rectify compression-induced reductions in image
quality is imperative.
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Earlier traditional methods typically optimize transform coefficients based on specific
compression standards [8,9]. Such codec-dependent approaches struggle to generalize
across standards. In contrast, CNN-based methods, like QE-CNN [10], MFQEv2 [11],
STDF [5], and RFDA [12], demonstrate superior performance on video enhancement tasks.
With the advent of neural network architectures like Vision Transformers [13,14], learning-
based video restoration techniques have also made significant strides. State-of-the-art de-
signs such as STCF [15] and TVQE [16] prove effective for restoration. Beyond task-specific
solutions, recent research has also established unified frameworks, like BasicVSR [17] and
BasicVSR++ [18], to address compression artifacts. However, the limitations imposed by
these methods impede their performance, making it challenging to effectively address
highly uncertain issues, such as images that are severely damaged or have significant
information loss. It is difficult to accurately infer the Possibility distribution of missing
parts from the remaining valid pixels. Therefore, tighter integration of sensor technologies
and video codecs to generate outstanding high-quality video remains key for advancing
compressed video perceptual quality enhancement algorithms.

To address the aforementioned challenges, we intend to utilize cutting-edge condi-
tional generation modeling (diffusion probability model) [19,20] as the foundation. By
leveraging advanced sensor imaging systems and robust generative architectures with
strong representation and generalization capabilities, we aim to progressively enhance the
quality of data during the reconstruction process, thereby generating more intricate and
lifelike images. This approach allows the model to focus on detail recovery incrementally,
rather than attempting to solve the entire complex problem at once, ultimately improving
the efficiency of video restoration. However, without careful guidance, directly applying
the diffusion model to video damage repair may disrupt inter-frame dependencies and
inevitably lead to detail distortion. To surmount these limitations, we propose a novel syner-
gistic framework between denoising diffusion and CNNs to ameliorate compression video
impairments. Our model first extracts edge information from video frames through the
ELPNet based on discrete wavelet transform, enabling more targeted and higher-quality re-
construction of high-frequency components. This constructs a pseudo ground-truth feature
space guiding the diffusion model’s denoising process. Finally, the outputs are fused to-
gether. Through this collaborative framework, highly correlated information complements
each other to effectively restore low-quality video, achieving state-of-the-art restoration
quality on the MFQEv2 dataset compared to previous approaches.

Our contributions are summarized as follows:

1. We propose the first diffusion-model-based video compression restoration network,
surpassing the performance limitations of previous neural network methods.

2. We design a frequency-domain filling block (FFB), the core idea of which is leveraging
the multi-resolution frequency-domain features provided by wavelet transforms to
guide detail restoration. It provides more high-frequency knowledge to reconstruct
sharp texture details.

3. Theoretical analysis reveals domain discrepancies between diffusion models and
deep convolutional networks. Direct latent feature fusion may exacerbate these gaps,
inducing distortions. To mitigate this, we design a simple yet effective group-wise
domain fusion module.

4. Extensive experiments and ablation studies validate the superior performance of our
proposed technique.

2. Related Work
2.1. Compressed Image/Video Restoration

Inspired by the success of deep learning, a multitude of recent works [21–28] have
demonstrated that convolutional neural networks (CNNs) exhibit superior performance in
enhancing image and video compression quality. The ARCNN designed by Dong et al. [22]
pioneers the leverage of CNNs to mitigate artifacts introduced by JPEG encoding. Ow-
ing to its robustness, DnCNN [23] is frequently employed as the benchmark for image
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restoration, including denoising and artifact reduction. QE-CNN [10] utilizes two models
to reduce distortions for I frames and P/B frames. MFQEv2 [11] utilizes motion compen-
sation between two adjacent peak quality frames extracted by optical flow estimation to
enhance low-quality frames. Additionally, to effectively process motion relations, STDF [5]
proposes a spatiotemporal deformable fusion scheme to aggregate temporal information
to eliminate unpleasant distortions. RFDA [12] further refines STDF through recursive
fusion and deformable spatiotemporal attention modules to simulate long-range motion
compensation. To enhance perceptual quality, a new generative adversarial network
named MW-GAN+ [29] leverages multi-level wavelet packet transform (WPT) to recover
high-frequency details and fine-grained textures. Recently, researchers have introduced
Transformer-based frameworks into the field of video compression restoration and achieved
promising results. Zhang et al. [15] designed a parallel structure combining Swin Trans-
former and CNN, which integrates motion compensation and global context information.
Another work, TVQE [16], designed novel modules that are capable of not only learning
local and global features for correlational modeling but also aggregating inter-frame infor-
mation. These methods can effectively restore the artifacts caused by video compression.
However, these methods falter in reconstructing high-frequency details, especially along
image edges. Additionally, over-reliance on intrinsic learning patterns during training
hampers texture expressiveness, yielding blurry, smoothed outputs, thus rendering the
restoration work unsatisfactory.

2.2. Diffusion Models

Diffusion-based [30] generative models have recently regained widespread attention.
This class of models sequentially perturbs data samples by introducing additive noise to
simplify them into elementary distributions (e.g., Gaussian), then reverses the process, and
learns to recover the latent variables in the simple distribution back to data in the complex
distribution by optimizing a variational lower bound of the likelihood function, using
parameterized Markov chains. Subsequently, these models gradually denoise samples
from the noisy distribution via Langevin dynamics [31], yielding target samples from the
data distribution.

Recently, DDPM [32] has shown state-of-the-art performance across various tasks,
including image super-resolution [33,34], restoration [35,36], and translation tasks (restora-
tion, colorization, etc.) [37,38]. Additionally, the learned feature representations from
diffusion models also prove very useful for discriminative tasks, including image classi-
fication [39], segmentation [40,41], and object detection [42]. Diffusion models have been
extensively used for sample generation owing to the high quality and diversity of their
generated samples. With the continuous advancement of diffusion models across domains,
they have surpassed the long-standing dominance of GANs in image generation. However,
intrinsic defects persist for utilizing diffusion models in video restoration. Specifically, we
have empirically shown, through experiments, that merely applying diffusion models fails
at temporal modeling, contrarily deteriorating performance. Hence, our work ingeniously
overcomes the innate deficiencies of diffusion models in inter-frame modeling through
innovative architectural designs.

2.3. Neural Network Combined with Diffusion Model

To better enhance the image restoration capability of diffusion models, existing
works [43,44] incorporate latent features from conditional neural networks into training
diffusion models. Specifically, the method extracts integrated features from low-resolution
images through a neural network for conditioning to guide image generation. Then, the
neural network features are simply linearly combined with the probability distribution
features from the diffusion model; while moderately improving restoration on specific
domains, there are some limitations: (1) the weak detail restoration capabilities; (2) disre-
garding domain discrepancies and simply conducting linear fusion lead to unsatisfactory
detail effects or even distortions; and (3) the fusion mainly aims to improve restoration on
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specialized domains rather than generalizing to common visible light images. In contrast,
our method has three main advantages: (1) Our guiding network leverages discrete wavelet
transforms to obtain richer texture details, abstracted into the latent space for enhancing
detail restoration and generation capacity. We then integrate this wavelet-enhanced net-
work with the diffusion model for targeted performance gains. (2) We devise a simple yet
effective patch-wise domain matching module to bridge domain gaps for seamless fusion,
alongside an efficient fusion mechanism. (3) We have extended our model to common
visible light domains and achieved state-of-the-art results.

3. Preliminaries: Diffusion

In this paper, we adopt diffusion models to generate accurate restorations for com-
pressed damaged video frames. This is achieved by learning Markov chains that progres-
sively convert the Gaussian noise distribution to the trained model’s data distribution. The
process comprises two key phases: forward diffusion and reverse diffusion. As illustrated
in Figure 1, given the true data distribution x0 ∼ p(x), the forward diffusion process injects
Gaussian noise over T timesteps to incrementally corrupt the distribution. This yields
a series of noisy samples, parametrized by the variance schedule (β1, β2, · · ·, βt). Noise
samples denote latent variables sharing the original data dimension. Each iteration of the
forward process, transforming x0 into xT ∼ N(0, 1), can be described as:

Figure 1. The diffusion process and inverse diffusion process of diffusion models for compressed
video frame restoration.

p(xt | xt−1) = N
(

xt;
√

1 − βtxt−1, βt I
)

. (1)

For ease of calculation and formula representation, let αt = 1 − βt, ᾱt = ∏t
i=0 αi;

Equation (1) can be further reduced to:

p(xt | x0) = N
(
xt;

√
ᾱtx0,

(
1 −

√
ᾱt
)

I
)
. (2)

This suggests that the data distribution p(xt|x0) can be computed directly from
Equation (2) for any moment t without iteration. As t increases, the fraction of the in-
troduced noise escalates, while that of the original data x0 diminishes. When Gaussian
noise dominates, the distribution of p(xt|x0) converges to the Gaussian distribution N (0, I),
indicating the completion of the forward diffusion phase where structural information
corrodes.

The learning of diffusion models is achieved by reversing the forward process defined
in Equation (1) to construct a reverse Markov chain. Specifically, define a joint distribution
pθ(x0, · · ·, xT) controlled by θ, and then construct a reverse process based on this joint
distribution, that is, starting from the standard normal distribution p(xT) = N (xT ; 0, I),
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perform Gaussian denoising step by step until approximating the true data distribution.
The formulas are as follows:

qθ(x0, . . . , xT−1 | xT) :=
T

∏
t−1

qθ(xt−1 | xt), (3)

qθ(xt−1 | xt) := N
(

xt−1; µθ(xt, t), σθ(xt, t)2 I
)

. (4)

The parameters involved in the backward process, such as µθ , σθ , represent the mean
and variance of the Gaussian distribution, respectively, which are estimated by a neural
network. In addition, the sequence of variances βt mentioned in the forward process can
participate in joint model learning or remain unchanged.

In the training phase, we construct an upper bound on the negative log-likelihood
by adding a non-negative KL dispersion term to the negative log-likelihood function
−logpθ(x0) of the target data distribution pθ(x0), denoted as Equation (5), and the specific
expansion can be expanded into [32].

− log pθ(x) ≤ − log pθ(x0) + DKL[q(x1:T | x0)∥pθ(x1:T | x0)]

Eq(x0)[− log pθ(x0)] ≤ Eq[DKL(q(xT | x0)∥p(xT))︸ ︷︷ ︸
LT

− log p0(x0 | x1)︸ ︷︷ ︸
L0

+ ∑
t>1

DKL(q(xt−1 | xt, x0)∥pθ(xt−1 | xt))︸ ︷︷ ︸
LT−1

],

(5)

In the LT−1 term in the above formula, the KL divergence of the two Gaussian distri-
butions pθ(xt−1|xt) and q(xt−1|xt, x0) is calculated; the latter is based on the original data
X0. The posterior distribution of the true unknown generation process is inferred from the
global perspective of the entire diffusion model. The specific expression is as follows:

q(xt−1 | xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃t I

)
, (6)

where mean µt(xt, x0) =
1√
αt

(
xt − ϵ 1−αt√

1−ᾱt

)
, variance β̃t =

1−ᾱt−1
1−ᾱt

βt, and ϵ represents the
noise in xt, which is the only uncertain variable in the reverse process. The diffusion model
uses a denoising network ϵθ(xt, t) to estimate ϵ. Finally, based on the description in [32],
we perform the parameter optimization of the network by means of Equation (7).

∇θ

∥∥∥ϵ − ϵθ

(√
ᾱtx0 + ϵ

√
1 − ᾱt, t

)∥∥∥2

2
. (7)

4. Approach

Given a compressed low-quality video sequence, Vlq = {Xk ∈ RC×H×W}
with K

frames, where k ∈ (1, K). C, H, and W denote the channel, height, and width of each
frame, respectively. As shown in Figure 2, we demonstrate the overall pipeline of the Latent
Feature Diffusion Model (LFDM). In our methodology, we feed the current frame into
ELPN and additionally introduce adjacent frames to enhance the richness of the original
input information, which enables the network to construct a more coherent spatiotemporal
representation, thus preserving inter-frame dependencies. The corresponding reference
frame input is X f = {Xk−1, Xk, Xk+1}. When enhancing it into a high-quality frame, we
extract and store the mapped features as a pseudo ground-truth feature bank to provide
more accurate conditional features for reverse diffusion. This allows the diffusion model to
probe a solution space akin yet not identical to the conditional features, chasing improved
outcomes while retaining correlation with the multi-frame data. We use Equation (2) to
convert Xk into P(Xt|Xk) as the input for the diffusion model. Finally, fusing its output



Sensors 2024, 24, 1907 6 of 18

with the repository features produces the optimal result. Overall, the enhanced frame Ŷt of
the compressed frame Xk is generated as:

Fk = Fcon(X f ), k ∈ {0, 1, 2, 3},

DP
i = P(Xt|Xk),

DP
o = Diff(DP

i , Fk), k ∈ {0, 1, 2, 3, },

Ŷt = Fusion(DP
o , Fk),

(8)

where Fcon(·) denotes the decoder of the ELPNet, {Fk | k ∈ 0, 1, 2, 3} represents decoding-
end features of varying sizes extracted from the ELPNet, Diff(·) refers to the diffusion
model’s conditional denoising network, and fusion signifies the final module fusing infor-
mation across domains. This effectively mitigates deficiencies induced by directly fusing
cross-domain features, thereby unleashing the potential of heterogeneous information to
better achieve the target task. The details of ELPNet, diffusion, and fusion will be elaborated
in Sections 4.1, 4.2, and 4.3, respectively.

Figure 2. The overall architecture of the proposed LFDM. First, the current frame and neighboring
frames are fed into the ELPN for pre-training. Second, the ELPN extracts the prior latent features
and feeds them to the CNPN to direct its generation process. The details of the CNPN are illustrated
in the figure. Finally, feature information from different domains is consolidated via “fusion”,
comprehensively elaborated on in Section 4.3. Here, t ∼ Uniform{1, . . . , T} and transformed into
te through an MLP; FFB represents the frequency-domain filling block; (w/o c-a) denotes without
cross-attention.

4.1. ELPNet

Before introducing the ELPNet, we first present a spatiotemporal alignment mod-
ule [45] that harnesses optical flow estimation (OFE) to compute forward and backward
flows between adjacent frames. These optical flows then warp the input frames tempo-
rally, which is vital to leverage useful information from neighboring frames for restoring
the target.
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Our CNN branch, namely, ELPNet (Figure 3), aims to directly learn the mapping
from damaged to pristine images. Its encoded integrated features serve as conditioning to
guide diffusion model generation. To achieve this, we adopt the same architecture as the
diffusion model’s denoising network for constructing the ELPNet. By conducting feature
extraction through ELP-Resblock (structure in Figure 3, left), which blends frequency-
domain information using Discrete Wavelet Transforms (DWTs), we can retain more texture
details during restoration while forcing the network to learn both high and low frequencies.

1 ×1 Conv

Decoder Layer1

ELPNet
Encoder

Layer0

Encoder Layer1

... ...

ELP_Resblock

1 ×1 Conv

ELPNet
Decoder

Layer0

Dow
nsam

ple

C

ELP_Resblock

C

Upsam
ple

DWT        conv       

C

CA

Conv1×
1

C

1 ×
1 Conv

3 ×
3 Conv

1 ×
1 Conv

3 ×
3 Conv

C

1 ×
1 Conv

𝐵𝐵𝑘𝑘

1 ×
1 Conv

3 ×
3Conv

Res B

Res BInput Output

ELPNet

ELP-Resblock SFC Module

SFC

SFC

SFC

SFC

SFC

1 ×
1 Conv

1 ×
1 Conv

1 ×
1 Conv

Figure 3. The overall structure of our proposed ELPNet. DWT refers to the Discrete Wavelet
Transform and CA denotes the Channel Attention mechanism.

Specifically, a fixed-parameter low-pass filter (LFF) and high-pass filters (HFF1, HFF2,
and HFF3) perform stride 2 convolution calculations to decompose images or feature maps
into four sub-bands (XLF, XHF1, XHF2, XHF3). We denote XLF as (LFF ⊛ X) ↓2, which
represents the convolutional computation, where ↓2 indicates a 2x scaling factor. We
embed the Haar DWT [46] into our proposed network, LFF =

[
1 1
1 1

]
, HFF1 =

[ −1 −1
1 1

]
,

HFF2 =
[
−1 1
−1 1

]
, HFF3 =

[
1 −1
−1 1

]
. Then, the value at the (i, j)-th position of XLF after 2D

Haar wavelet transformation can be calculated by Equation (9):

XLF(i, j) =X(2i − 1, 2j − 1) + X(2i − 1, 2j) + X(2i, 2j − 1) + X(2i, 2j). (9)

The expressions for the high-frequency sub-bands are similar to the expression for XLF.
The integration of low-frequency components as encoding side features with downsampled
features provides powerful semantic information and a relatively coarse spatial layout.
Furthermore, high-frequency components are integrated into the decoding side region
through a multitude of skip connections, guaranteeing the preservation and enhancement
of fine image details during the image reconstruction phase. This approach enables our
network to not only amalgamate rich information from spatial and frequency domains dur-
ing the learning process but also enhances its capability to capture high-frequency features
like image textures and contours. The experimental results show that the embedding of
DWT indeed greatly improves the restoration capability of the network (see Section 5.3
for details).

To ensure the retention of ample texture information in the final restoration results,
thereby assisting the diffusion model in recovering intricate and clear details, we apply the
following loss function to ELPNet for training, which can be represented as:

L = LChar + αLMS + βLPer, (10)
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where LChar refers to Charbonnier loss [47], LMS refers to MS-SSIM loss [48], and LPer is
perceptual loss [49]. After experimentation, α = 0.2 and β = 0.001 were finally determined
as the hyperparameter weights for each loss function part.

4.2. Noise Prediction with Modified Conditional Feature

At this stage, we aim to harness diffusion models’ powerful data generation capability
for restoring video frames. Initially, ELPNet’s pretrained decoder produces dimension-
aligned decoding features as conditioning to guide restoration. This establishes meaningful
associations between the target view and the rectified feature view, enhancing the diffusion
model’s holistic image understanding to improve detail generation fidelity. An auto-
alignment strategy is adopted throughout to ensure alignment between decoded features
and corresponding generation content. By effectively utilizing decoded features’ contextual
information, this adjusted alignment strategically guides the generation process.

Specifically, the predictor’s main network adopts a U-Net [50] architecture comprising
encoder, middle, and decoder steps. The input DP

i first undergoes 2D convolutions and
Mish activations to extract suitable features. Next, within the Resblocks, cross-attention
fuses the pseudo ground-truth features with the denoiser’s intermediates, guiding the
network to produce accurate predictions. This is formulated as:

p(xt−1 | xt, Fk), = N
(

xt−1; µ(xt, Fk), σ2
t I
)

,

DP
en0 = Denc0(Fk, DP

i ), k = 4,

DP
en1 = Denc1(Fk, DP

en0), k = 3,

DP
en2 = Denc2(Fk, DP

en1), k = 2,

DP
en3 = Denc3(Fk, DP

en2), k = 1.

(11)

Formula (11) demonstrates our latent image features guiding diffusion model genera-
tion toward high detail retention. Multi-resolution image features ensure the model obtains
adequate guidance under varying receptive fields for improved representations. Moreover,
our guidance derives from the designed prior frequency-domain blocks, enriching textures
and sharpening salient patterns. Consequently, the architecture’s detail restoration and
generation capabilities significantly improve. Specifically, time t is sinusoidally position-
encoded as te and embedded via multilayer perceptrons (MLPs) [51]. Every encoder step
has two conditional prediction blocks (CPBs) and a downsampling block where 2D convo-
lutions with a stride of 2 are employed to halve the size of the feature map. Each decoder
step contains two CPBs without cross-attention and an upsampling block, doubling the size
via transposed convolutions. Applying two-dimensional convolution on decoder outputs
reconstructs the predicted noise value δϵ to recover xt−1 over T iterations, generating the
restored frame.

4.3. Multi-Scale Group-Wise Information Fusion

Since the output of the conditional neural network belongs to the latent image feature
distribution, and the output of the deep diffusion model belongs to the conditional proba-
bility distribution, there is a large domain discrepancy between them. If they are directly
linearly or nonlinearly combined, the desired performance results cannot be obtained.
The existing methods, such as those in [43,52], that fuse convolutional neural networks
with diffusion models directly fuse features from the two domains with gaps, which will
inevitably lead to image distortions and detail losses. Therefore, how to organically and
concisely achieve the fusion of the two has become a universally recognized challenge. This
method proposes a simple and innovative solution.

According to the difference between the two domains, we have designed two different
fusion paths and finally set up a reasonable network module to fuse them, which ensures
effective alignment of their features. As shown in Figure 4, we use the diffusion denoising
network to extract multi-scale features and fuse them with ELPNet’s features. For the
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denoising backbone of this paper, its extended part contains four convolutional layers, with
the output feature size ranging from (8C, H/8, W/8) to (C, H, W). We use a multi-scale
feature fusion module to fuse the feature information of the four stages. Eventually, these
features are summed and sequentially fed into the fusion head, producing the final result
Ŷt ∈ R3×H×W . Specifically, three dilated convolutions with different dilation rates (r = 1, 2,
4) are applied to map the high-dimensional combination of the two branches to a 3-channel
output. Each pixel is acquired by convolutions with 3 × 3, 5 × 5, and 7 × 7 receptive fields,
using Leaky ReLU as the activation function.

Figure 4. The structure of the fusion module. The left half is the image domain features obtained
from the neural network, the right half is the probability distribution features obtained from the
diffusion model, and the center represents the fusion of the heterogeneous information.

Using a simple linear weighting method may not result in more enriched semantic
representations. The features extracted by different models may overlap and contain
redundancies, and directly combining them could exacerbate this issue, ultimately causing
a decline in model efficiency. This implicit cross-domain fusion circumvents direct feature
interaction across domains; specifically, by introducing an implicit layer, it ensures that
the aggregation of information does not hinder the flow of information between different
domains. This allows the final features to interact and fuse in a carefully designed common
space, enabling information from different domains to complement each other while
maintaining their independence, greatly mitigating the negative impacts of mismatch. This
strategy helps prevent anomalous uncertain restorations in the outputs. Essentially, this
succinct and controllable fusion technique yields more continuous, coherent, and logical
restored details. By better achieving our targeted task, it generates more realistic and
naturalistic results.

5. Experiments
5.1. Dataset

We chose to utilize the widely acknowledged MFQEv2 [11] standard dataset within the
realm of image and video compression for training our pre-trained models, the ELPNet and
the conditional noise prediction network (CNPN). Subsequently, we conducted evaluations
to assess the effectiveness of our approach. This dataset encompasses 126 video sequences
sourced from Xiph, VQEG, and JCT-VC [53], spanning diverse content and resolutions,
establishing it as a robust benchmark for evaluating algorithmic robustness. Adhering
to prevailing evaluation standards in this domain, we adhered to a training set–test set
ratio of 6:1 for data partitioning. All video sequences underwent compression processing
at three different compression rates (QP values of 27, 32, 37, and 42) using HM16.20 and
HEVC LowDelay-P (LDP) configurations. Elevated compression rates correspond to more
pronounced compression distortions. The utilization of various compression rates enables
a comprehensive evaluation of the method’s recovery and generalization capabilities across
different levels of compression distortion. In our algorithmic comparative experiments, we
conducted an impartial assessment, taking into account the impact of content complexity,
resolution, and compression rate on image and video quality.
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5.2. Experiment Settings

In our research, we developed a model consisting of two key networks: ELPNet, re-
sponsible for extracting information from compressed videos to recover corrupted frames,
and a conditional noise predictor, a diffusion model network based on the U-Net archi-
tecture, for performing the final video frame restoration. Both networks are designed to
receive 64 input channels (C = 64). During the training phase of the model, we randomly
crop small blocks of 128 × 128 pixels from compressed videos, which serve as training
samples to simulate the original data. To enhance the model’s robustness in handling video
jitter, we applied a series of data augmentation operations to the training dataset, including
random rotation and flipping. We used the Adam optimization algorithm to update the
parameters of the conditional noise predictor, where the learning-rate-related hyperparam-
eters δ1 and δ2 were set to 0.9 and 0.999. In the training process of the diffusion model, we
empirically set the forward and backward diffusion steps to 1000 steps. Additionally, the
selection of noise sequences β1, · · ·, βT followed the recommendations in the literature. At
the beginning of training, the learning rate was set to 1 × 10−4 and decreased to one-tenth
after completing 70% of the iteration cycles. All experiments were conducted on a high-
performance server equipped with an Intel Core i9-13900K CPU, 64 GB of memory, and
two NVIDIA® GeForce RTX 4090 GPUs (NVIDIA, Santa Clara, CA, USA), using PyTorch
2.0.0, Python 3.9, CUDA 11.8, and CuDNN 8.6.0. Building upon the method put forth
in [54], this paper implements a repair approach with unconstrained dimensions. In the
evaluation process, we used two main performance metrics to quantify the improvement
in video quality: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
These standardized metrics allow us to accurately measure and compare the effect of the
proposed model on enhancing the quality of video frames.

5.3. Comparisons with Previous Algorithms

We presented optimal results on the MFQEv2 dataset, including ARCNN [23],
DnCNN [24], MFQEv2 [11], STDF-R3L [5], and RFDA [12]. The results of several of
these methods are cited from the relevant literature, and the relevant parameters are strictly
configured according to the authors’ recommendations in their publications. Recently the
BasicVSR++ [17] method has demonstrated state-of-the-art performance on several video
restoration tasks [55]. Considering that the official version of BasicVSR++ was pre-trained
and fine-tuned on other datasets, for a fair comparison, we re-trained BasicVSR++ on
the MFQEv2 datasets (QP32 and QP37), keeping the same experimental setup as other
Baseline methods.

5.3.1. Qualitative Visual Effect Comparison

Our method yields visually satisfying results, as depicted in Figure 5, highlighting its
exceptional capability to restore intricate details and textures within enhanced frames. In
comparison to alternative methods, our restoration outcomes closely align with the ground
truth, devoid of issues like excessive smoothing and detail loss. This robustly affirms the
effectiveness of our method in rectifying details and texture information in damaged images.
Notably, in the BasketballPass sequence, it is evident that contours and object boundary
details lost during the compression process are effectively reinstated in our results. The
Racehorses sequence similarly showcases this effect, illustrating the preservation of details
and textures. The robust capability of our method for detail reconstruction is attributed
to the innovative design of the model architecture. The incorporation of detail/texture-
sensitive components in the loss function and the integration of a multi-scale sub-network
empower the network to adeptly learn how to reconstruct rich and realistic details from
contextual information within damaged regions. This presents a robust and effective
solution for enhancing the quality of detail and texture restoration in image recovery tasks.
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Full Frame Compressed DnCNN
TIP2017

MFQEv2
TPAMI2019

RFDA
MM2021

BasicVSR++
CVPR2022

OursRaw

Figure 5. Subjective comparison results between state-of-the-art methods and our proposed method
in five video sequences at QP = 37. Test video names (from top to bottom): BasketballPass, Johanny,
BQMall, Kimono, and Racehorses. The zoom-in of red box area is shown.

5.3.2. Quality Fluctuation

Fluctuations in video quality serve as critical evaluation metrics [11]. Random vari-
ations in quality can result in significant temporal inconsistencies and a diminished user
experience. We utilize Standard Deviation (SD) and Peak–Valley Difference (PVD) [56] to
quantify the quality fluctuations for each test sequence. Table 1 presents the average PVD
and SD values for different methods across all test sequences. The results indicate that
our proposed method exhibits the smallest average PVD and SD. This suggests that, in
comparison to other baseline methods, our approach demonstrates smaller quality fluctua-
tions, contributing to a more stable enhancement effect. Furthermore, Figure 6 depicts four
PSNR curves for various test sequence groups, representing the original HEVC compressed
sequence, RFDA, BasicVSR++, and our method’s processed sequences. It is evident that,
when compared to alternative methods, our approach achieves significantly improved
performance on compressed frames, demonstrating the lowest fluctuation amplitude.

Table 1. Averaged PVD/SD of test sequences for PSNR at QP = 27, 32, and 37.

Method QP27 QP32 QP37

HEVC 1.07/0.83 1.38/0.82 1.42/0.79
ARCNN 1.07/0.83 1.38/0.82 1.44/0.80
DnCNN 1.06/0.83 1.40/0.83 1.44/0.80
MFQEv2 0.77/0.74 0.98/0.70 0.96/0.67

RFDA 0.63/0.61 0.70/0.63 0.69/0.61
BasicVSR++ — 0.73/0.67 0.71/0.66

STCF 0.57/0.58 0.62/0.59 0.61/0.61
Ours 0.59/0.58 0.57/0.55 0.54/0.53
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Figure 6. Rate–distortion curves of four test sequences.

5.3.3. Rate–Distortion Performance

In comparison to other methods, we conducted a comprehensive evaluation of the rate–
distortion performance of our proposed approach. Figure 7 illustrates the rate–distortion
curves for our method and other state-of-the-art methods on four selected sequences. The
observation reveals that, at similar bit rates, our method consistently attains a higher PSNR
compared to other methods, indicating its superior rate–distortion performance.

Figure 7. PSNR curves of HEVC, RFDA, BasicVSR++, and ours on four test sequence Cactus at
QP = 37.

5.3.4. Overall Performance

Table 2 illustrates the overall improvement of our method in terms of PSNR and SSIM
metrics. The results indicate that, regardless of the QP value, our method surpasses other
state-of-the-art methods in terms of average metric improvement. For instance, compared
to BasicVSR++, we achieve an improvement of 0.13–0.20 dB in PSNR. When contrasted
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with STCF, our method exhibits a PSNR improvement ranging from 0.02 to 0.06 dB, with a
more pronounced enhancement in SSIM. Unlike BasicVSR++ with a bidirectional motion
compensation mechanism and STCF’s 7-video-frame restoration approach, our method
enhances the target frame by exploring richer texture details and global contextual informa-
tion through adjacent frame fusion. This is attributed to the targeted design of our diffusion
model based on prior latent feature modulation and the group-wise domain fusion module.
The extensive experimental results validate the overall superiority of our method in the
task of compressed video restoration.

Table 2. Overall performance comparison in terms of △PSNR(dB)/△SSIM(×10−2) over the test
sequences at four QPs. Video resolutions: Class A (2560 × 1600), Class B (1920 × 1080), Class C
(832 × 480), Class D (480 × 240), Class E (1280 × 720). Bold indicates best performance.

QP Sequences
ARCNN DNCNN MFQEv2.0 STDF-R3L RFDA BasicVSR++ TVQE STCF Ours

[23] [24] [11] [5] [12] [17] [16] [28] LFDM

37

A
Traffic 0.24/0.47 0.24/0.57 0.59/1.02 0.73/1.15 0.80/1.28 0.94/1.52 0.88/1.44 0.91/1.44 1.04/1.64

PeopleonStreet 0.35/0.75 0.41/0.82 0.92/1.57 1.25/1.96 1.44/2.22 1.37/2.23 1.49/2.33 1.62/2.43 1.58/2.37

B

Kimono 0.22/0.65 0.24/0.75 0.55/1.18 0.85/1.61 1.02/1.86 1.41/2.18 0.99/1.82 1.21/1.94 1.52/2.26

ParkScene 0.14/0.38 0.14/0.50 0.46/1.23 0.59/1.47 0.64/1.58 0.86/2.25 0.66/1.76 0.74/1.79 0.95/2.30

Cactus 0.19/0.38 0.20/0.48 0.50/1.00 0.77/1.38 0.83/1.49 0.62/1.51 0.85/1.57 0.93/1.61 0.82/1.61

BQTerrace 0.20/0.28 0.20/0.38 0.40/0.67 0.63/1.06 0.65/1.06 0.71/1.25 0.74/1.34 0.75/1.25 0.82/1.38

BasketballDrive 0.23/0.55 0.25/0.58 0.47/0.83 0.75/1.23 0.87/1.40 1.02/1.53 0.85/1.46 1.09/1.59 1.06/1.74

C

RaceHorses 0.22/0.43 0.25/0.65 0.39/0.80 0.55/1.35 0.48/1.23 0.76/1.84 0.61/1.59 0.69/1.59 0.86/1.84

BQMall 0.28/0.68 0.28/0.68 0.62/1.20 0.99/1.80 1.09/1.97 1.17/2.24 1.06/2.02 1.25/2.21 1.24/2.32

PartyScene 0.11/0.38 0.13/0.48 0.36/1.18 0.68/1.94 0.66/1.88 0.44/1.71 0.80/2.27 0.73/2.28 0.78/2.36

BasketballDril 0.25/0.58 0.33/0.68 0.58/1.20 0.79/1.49 0.88/1.67 0.87/1.67 0.98/2.01 0.96/1.76 0.89/1.88

D

RaceHorses 0.27/0.55 0.31/0.73 0.59/1.43 0.83/2.08 0.85/2.11 1.02/2.74 0.86/2.30 1.02/2.47 1.17/2.90

BQSquare 0.08/0.08 0.13/0.18 0.34/0.65 0.94/1.25 1.05/1.39 0.61/0.93 1.25/1.74 1.06/1.48 1.02/1.57

BlowingBubbles 0.16/0.35 0.18/0.58 0.53/1.70 0.74/2.26 0.78/2.40 0.69/2.65 0.83/2.60 0.80/2.53 0.85/2.62

BasketballRass 0.26/0.58 0.31/0.75 0.73/1.55 1.08/2.12 1.13/2.24 1.22/2.66 1.12/2.41 1.32/2.63 1.30/2.73

E

FourPeople 0.37/0.50 0.39/0.60 0.73/0.95 0.94/1.17 1.13/1.36 1.13/1.38 1.16/1.42 1.11/1.33 1.20/1.42

Johnny 0.25/0.10 0.32/0.40 0.60/0.68 0.81/0.88 0.90/0.94 0.99/0.97 1.12/1.33 1.00/1.13 1.06/1.25

KristenAndSara 0.41/0.50 0.42/0.60 0.75/0.85 0.97/0.96 1.19/1.15 1.20/1.13 1.27/1.23 1.12/1.11 1.15/1.21

Average 0.23/0.45 0.26/0.58 0.56/1.09 0.83/1.51 0.91/1.62 0.95/1.80 0.98/1.82 1.02/1.81 1.08/1.93

42 Average 0.29/0.96 0.22/0.77 0.59/1.65 0.76/2.04 0.82/2.20 — / — 0.99/2.64 0.88/2.34 0.97/2.50

32 Average 0.18/0.19 0.26/0.35 0.52/0.68 0.86/1.04 0.87/1.07 0.89/1.25 0.93/1.24 1.07/1.32 1.09/1.55

27 Average 0.18/0.14 0.27/0.24 0.49/0.42 0.72/0.57 0.82/0.68 — / — 0.87/0.80 1.05/0.88 1.03/1.17

5.4. Ablation Study
5.4.1. The effect of ELPNet and fusion in participation

In this section, the results of ablation experiments convincingly demonstrate a sig-
nificant improvement in the performance of the restoration network when the features
from the ELPNet are integrated, as compared to using either the diffusion model alone or
the ELPNet in isolation. As shown in Table 3, when the features extracted by the ELPNet
are not included, the PSNR and SSIM indices of the diffusion model are noticeably lower.
Similarly, when only the ELPNet is utilized for restoration, there is a significant decrease
in performance due to the inability to leverage the diffusion model to generate missing
image structures. Ultimately, the complete network, after integrating ELPNet features,
achieves the optimal improvement in PSNR and SSIM (1.08/1.93). This underscores that
the prior latent features extracted by the ELPNet provide crucial guidance for the diffusion
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model, resulting in the generation of higher-fidelity restoration results through fusion. The
synergy between the two components mutually enhances the final image quality. Therefore,
incorporating the ELPNet structure in the restoration network is deemed essential, playing
an indispensable role in improving restoration effectiveness. The experimental results
validate that a single model struggles to achieve a balance between preserving fine details
and maintaining overall structural coherence. In this context, feature fusion provides a
valuable avenue for complementary enhancement.

Table 3. The impact of ELPNet’s involvement on PSNR and SSIM within the test sequences.

Method Fusion Scheme △ PSNR △ SSIM

Diffusion-only — 0.78 1.40
ELPNet-only — 0.51 1.32

Diffusion and ELPNet Cross-attention 0.96 1.67

Diffusion and ELPNet Cross-attention and
fusion 1.08 1.93

Figure 8 depicts subjective comparison images of our method with and without
ELPNet involvement in the diffusion model. It is evident that, upon introducing the prior
latent features extracted by the ELPNet, the generated results progressively align with the
real image, showcasing an enhancement in texture details.

Diff+ELPNetDiffCompressed Frame Raw

Figure 8. Subjective comparison images depicting the restoration with and without ELPNet
intervention. The zoom-in of red box and yellow box area is shown.
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5.4.2. The significance of DWT

To thoroughly substantiate the pivotal role of Discrete Wavelet Transform (DWT)
in augmenting image restoration quality, we conducted a comparative analysis of the
network’s performance before and after the integration of the DWT module. As depicted in
Table 4, the experimental findings distinctly showcase a significant enhancement in various
evaluation metrics for ELPNet with DWT, compared to the standard network lacking the
DWT module. Notably, the PSNR metric exhibited an increase of 0.08, while the SSIM
metric witnessed a noteworthy improvement of 0.27. The significant improvement lies in
the substantial increase in SSIM metrics, particularly noticeable in the reconstruction of
texture details, highlighting the critical role of frequency-domain information in reinstating
high-frequency content in damaged images. This robustly affirms that the DWT module
empowers the network to assimilate frequency domain prior knowledge, thereby producing
visually richer and more realistic texture effects. Consequently, it can be conclusively stated
that the introduction of wavelet transforms is pivotal for elevating the quality of image
restoration. The DWT module devised in this study assumes an indispensable role in the
reconstruction of details and texture information.

Table 4. The effects of DWT and various loss functions on PSNR and SSIM for test sequences.
✓ indicates that the feature or component was enabled, while × signifies that it was not enabled.

Method Lcha Lssim Lper △ PSNR △ SSIM

w/o DWT
ELPNet ✓ × × 0.40 0.97

ELPNet ✓ × × 0.48 1.24
ELPNet ✓ ✓ × 0.49 1.29
ELPNet ✓ ✓ ✓ 0.51 1.32

5.4.3. Addition of loss function

In addition, we underscore the importance of the employed loss functions in this study.
Upon scrutiny of rows two to four in Table 4, it becomes evident that each loss plays an
effective and pivotal role in enhancing both PSNR and SSIM. The Charbonnier loss offers
pixel-level supervision, while the perceptual loss guarantees that the output consistently
aligns with the ground truth within the deep feature space. Through the comprehensive
integration of all losses during the training phase, our model attains optimal performance.

6. Conclusions

We propose a novel LFDM approach, completing compressed video damage restora-
tion by designing a neural network combined with sensors and codecs to generate detail-
preserving latent features. These judiciously guide the diffusion model to recover fine-
grained image information. Specifically, we modulate the diffusion probability distribution
by enhancing neural network detail perception using Discrete Wavelet Transforms. Cross-
attention is particularly effective for guiding the model’s probability distribution features.
Additionally, considering the domain discrepancy between neural networks and diffusion
models, our simple yet effective group-wise domain fusion module integrates both to miti-
gate detail losses and distortions. This substantially boosts model performance. Systematic
experiments on public datasets verify our model’s superiority over other state-of-the-art
models. Moving forward, this method can be integrated with the High-Efficiency Video
Coding (HEVC) standard to restore compression-induced quality degradation during the
post-processing stage. This would provide the industry with a practical video restoration
solution to significantly improve the visual quality of compressed images.
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