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Abstract: Surface crack detection is an integral part of infrastructure health surveys. This work
presents a transformative shift towards rapid and reliable data collection capabilities, dramatically
reducing the time spent on inspecting infrastructures. Two unmanned aerial vehicles (UAVs) were
deployed, enabling the capturing of images simultaneously for efficient coverage of the structure.
The suggested drone hardware is especially suitable for the inspection of infrastructure with confined
spaces that UAVs with a broader footprint are incapable of accessing due to a lack of safe access or
positioning data. The collected image data were analyzed using a binary classification convolutional
neural network (CNN), effectively filtering out images containing cracks. A comparison of state-
of-the-art CNN architectures against a novel CNN layout “CrackClassCNN” was investigated to
obtain the optimal layout for classification. A Segment Anything Model (SAM) was employed to
segment defect areas, and its performance was benchmarked against manually annotated images.
The suggested “CrackClassCNN” achieved an accuracy rate of 95.02%, and the SAM segmentation
process yielded a mean Intersection over Union (IoU) score of 0.778 and an F1 score of 0.735. It
was concluded that the selected UAV platform, the communication network, and the suggested
processing techniques were highly effective in surface crack detection.

Keywords: concrete cracks; unmanned aerial vehicles (UAVs); deep learning; convolutional neural
network (CNN)

1. Introduction

Cracks in structures can be detrimental to the longevity of civil structures. Crack in-
spections are a vital part of infrastructure health surveys in construction and quality control
for identifying structural weaknesses early and planning necessary maintenance [1]. Visual
inspection of cracks still remains the primary detection method and is most commonplace
in the industry. However, effective manual inspection is infeasible in hard-to-reach super-
structures such as high-rise buildings, tanks, pipelines, and space structures. Moreover, the
subjective judgment of the inspector plays a pivotal role in the detection process and could
cause irregularities and non-uniformities in the inspection process [2]. Due to challenging
operational demands, unmanned aerial vehicles (UAVs) have become the most convenient
and at times the only option for safe and successful data collection.

UAVs for inspecting structures have been at the forefront of civil engineering research
in recent decades [3]. Sensors such as Ultrasonic Pulse Velocity (UPV) testing, Ground
Penetrating Radar (GPR) testing, and Acoustic Emission (AE) housed in a probe end
have been tested previously with reasonable success [4] for crack inspection. However,
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a probe end requires complex robotics to maneuver and precise positioning readings to
work in a confined setting [5]. Therefore, using imaging sensors for crack inspection
can be an effective approach, especially for confined indoor applications. Simple visual
inspection via imaging hardware mounted on UAVs can be a convenient, cost-effective
method for understanding the condition of inaccessible superstructures [6]. The automatic
detection of cracks in image/video data is again a field of research that has had a meteoric
rise in popularity due to advancements in imaging technologies. However, analyzing
the image/video data can be tedious, time-consuming, and error-prone due to human
intervention [3].

A comprehensive review of the literature reveals that many UAVs, as listed in Table 1,
are predominantly designed for outdoor use and rely on GPS or GNSS for navigation.
This reliance provides accurate localization but limits their applicability in environments
with weak or absent localization signals. This limitation almost completely renders them
unsuitable for close-quarter operation, where the UAV needs to navigate confined spaces
for inspection, with positioning data often weak or completely unavailable. Additionally,
the larger size of these UAVs restricts their maneuverability in confined spaces, making
them less suited for detailed inspections in such settings.

Table 1. Recent work in crack detection using UAVs.

Study UAV Platform Image Sensor Drone Dimensions
(mm)

Weight
(g)

Navigation
Method

Kim et al. [7] AiBotix X6 On-board sensor 1050 × 1050 × 450 4000 GPS

Dorafshan et al. [8]
DJI Mavic mini

On-board sensor
159 × 202 × 55 249 GPS

DJI Inspire 1 438 × 451 × 301 3060 GPS
DJI Phantom 4 360 × 280 × 170 1380 +GNSS

Kim et al. [3] DJI Inspire 2 Zenmuse X5S
image sensor 427 × 317 × 425 3440 GPS

Munawar et al. [9] DJI-M200 On-board sensor 716 × 220 × 236 3800 GPS + GNSS

Cao et al. [10] DJI Mini3 Pro On-board sensor 191 × 245 × 62 249 GPS

In contrast, this study utilizes the DJI Ryze Tech Tello (by Ryze Tech, Shenzhen, China)
a commercially available, ultra-light UAV [11], to inspect surface cracks in structures. The
UAV, shown in Figure 1, is particularly suitable for close-quarter applications due to its
compact layout and agile maneuverability. The drone utilizes a VPS (Vision Positioning
System) [11] equipped with a downwards-facing camera and an infrared sensor to stabilize
itself and maintain its position and does not rely on GPS/GNSS signals. The UAV is
suited for applications where accessing and exploring confined areas with limited access
is required without the need for long-distance flights, i.e., indoor infrastructure, bridges,
storage silos, etc. [12]. Table 2 shows the compact footprint of the UAV and its camera
sensor information.

Table 2. Details of the UAV and camera sensor [11].

Parameter Value

Resolution 2592 × 1936
Weight 80 g

Dimensions 98 × 93 × 41 mm
Max Flight Distance 100 m

Max Flight Time 15 min
Lens Focal Length 80 g

Field of View 82.6◦
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Figure 1. Ultra-lightweight UAV used in the study—DJI Ryze Tech Tello. The Tello is a compact UAV
with small dimensions, designed to be easily maneuverable in confined spaces.

The accurate manual detection of cracks from the image/video data collected from
a UAV can be tedious and time-consuming. Leveraging Artificial Intelligence (AI) and
Machine Learning (ML) in combination with data captured through UAVs can significantly
enhance the reliability and accuracy of inspections [13]. For this purpose, researchers
have employed various image-detection methods, including morphological image process-
ing [14], foreground–background separation [15], filtering [16], and percolation models [17].
However, these algorithms often face challenges in achieving robust generalization due
to the interference of debris and environmental noise in practical engineering environ-
ments [14]. Moreover, most of these methods are highly sensitive to image scale, which is
crucial when dealing with cracks of different scales and shapes [18]. Convolutional neural
networks (CNNs), through feature learning, are invariant to change in the scale of images,
making them highly adaptable to diverse and complex visual recognition tasks [18]. CNNs
use object detector algorithms such as Single Shot Detector (SSD) [19], R-CNN and Faster
R-CNN [20], and YOLOVx models [21]. Although the base CNN architectures embedded
within object detectors generalize well in on-field settings, the region proposal networks
used to produce box predictions generalize poorly due to being highly susceptible to
overfitting to datasets [22].

Furthermore, object detectors can be vulnerable to adversarial attacks, where small,
imperceptible perturbations in the input image can lead to incorrect object detections [23].
Object detectors produce box predictions and do not produce pixel-level granularity in
crack detection, which is required for crack-width calculations [24]. Therefore, more
recently, researchers have employed semantic image-segmentation algorithms to obtain
pixel-level granularity in crack detection, such as Fully Convolutional Network (FCN) [19],
UNet [25], and Recurrent Neural Network (RNN) [26]. These can be extremely resource-
hungry and require powerful hardware, such as GPUs or TPUs that consume a substantial
amount of energy. However, in the recent past, with the advent of large-scale pre-trained
“foundation” models, there has been a shift towards transformers for visual recognition
tasks [27]. With pre-trained transformer networks and lightweight decoders that run on
edge computing hardware, multi-modal zero-shot inference in both natural language and
images has become a reality. Some notable examples of such systems include Generative
Pre-trained Transformers (GPTx) [28], the Language Model for Dialogue Applications
(LaMDA) [29], Vision Transformer Detectron (ViTDet) [30], and the Segment Anything
Model (SAM) [31]. Running only the decoder for inference, as opposed to passing the image
through a deep CNN, not only improves efficiency but also enhances the model’s ability
to perform well on a wide range of data, even in out-of-domain (OOD) applications [31].
The authors intend to suggest a multi-stage crack-detection approach in this paper. We
use the power of CNNs to filter images with cracks without using typical object detection.
Then, we combine this with a state-of-the-art segmentation method based on a transformer
model called the Segment Anything Model.

This paper explores the feasibility of deploying two ultra-light UAVs and collecting
image/video data of a structure with a classification system to filter out images that
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contain cracks, and an image-segmentation setup to identify pixels that correspond to
cracks. The subsequent sections will delve into setting up a communication network
for data collection through two assets of the UAVs, followed by an explanation of the
processing algorithms for automatic crack identification and segmentation. First, a binary
classification convolutional neural network (CNN) [32], designed to distinguish between
images showing cracks and those without defects, is established. A novel CNN architecture
will be introduced, named “CrackClassCNN”, which is tailored to detect cracks in images
while maintaining minimal computational load. The proposed CNN architecture will
undergo a comprehensive comparative analysis with state-of-the-art feature-extraction
CNNs, and transfer learning will be employed for benchmarking [32]. After the initial
stage of the identification of cracks though the CrackClassCNN, the transformer-based
Segment Anything Model (SAM) will be employed to obtain pixel-level granularity of the
cracks in the images. Additionally, an ablation study will be carried out to determine the
most effective grid layout for sparse prompts, and the application-specific methodology for
SAM prompting will be presented.

Key contributions of this paper are as follows:

• Testing the feasibility of a commercially available UAV for infrastructure inspection.
• Introducing a novel lightweight CNN architecture specifically tailored for infrastruc-

ture crack inspection named “CrackClassCNN”, and benchmarking its performance
against existing transfer learning CNN architectures.

• Fine tuning the Segment Anything Model by suggesting a loss function and an effective
prompting methodology for segmenting the pixels that contain cracks.

2. Methodology

This section outlines the methodology for data collection and automatic processing to
identify and segment structural cracks. The steps involved in the methodology are shown
in Figure 2. Firstly, aerial images were obtained using two UAVs by conducting a mission
along manually set-up waypoints to cover the complete region of interest. The captured
image/video data were pre-processed to enhance their quality and clarity via a deblurring
and denoising process. This is an important step for ensuring consistent results across image
data and to improve the generalizability of the steps following suit. To further improve the
domain generalizability of the models, a data augmentation step was introduced for the
training set of the collected data. Subsequently, a crack-detection algorithm was employed
to identify potential crack regions within the images. This algorithm utilizes a binary
classification CNN to classify images into cracks and non-cracks. Transfer learning is
utilized for comparing pre-trained CNNs, finetuned to binary classification, against the
CNN layout introduced specifically for crack detection, named “CrackClassCNN”. This
step replaces the need for an object detector which often can be prone to dataset overfitting
issues, reducing their generalizability, as mentioned in the Introduction. Once the images
that contain cracks are identified, a segmentation process is applied to obtain pixel-level
granularity of the cracks within the images. For the segmentation task, a state-of-the-art
image-segmentation model based on an autoencoder Vision Transformer model (ViT) by
Meta research—the Segment Anything Model (SAM)—is used to provide a semi-supervised
segmentation of the pixels with cracks. This is an important step as obtaining pixel-level
granularity is a vital piece information for crack-width estimation during infrastructure
inspection and health-monitoring tasks.



Sensors 2024, 24, 1936 5 of 23Sensors 2024, 24, x FOR PEER REVIEW 5 of 23 
 

 

 
Figure 2. Methodology for data acquisition and the crack-detection process. This flowchart illus-
trates the step-by-step process for acquiring data and performing crack detection. 

2.1. Data Acquisition via UAVs 
This study was conducted on a structure at the Faculty of Engineering, University of 

Peradeniya (7.2537, 80.5916), Sri Lanka. The images captured were used to investigate and 
analyze the presence of cracks with the goal of assessing the severity and extent of the 
cracks, which can provide valuable insights into the structural integrity and maintenance 
requirements of the structure under observation. The complexity of the structure with 
confined spaces and manually inaccessible areas justified a UAV inspection process; thus, 
the UAVs served as practical tools to facilitate comprehensive data collection. 

In this work, two ultra-lightweight UAVs (Ryze Tech Tello by DJI) were employed to 
cover the structure of interest and collect image/video data. A robust and reliable commu-
nication network was set up for networking the UAVs with the session-hosting Personal 
Computer (PC). A set of pre-determined waypoints and flight paths were defined on the 
session-hosting PC, ensuring efficient coverage of the inspection area and avoiding redun-
dant or overlapping scans. During the waypoint determination and path planning, factors 
such as the structure�s shape, potential obstacles, and any specific areas of interest that 
required closer inspection were considered. The distance from which a drone captures 
images is a critical factor in crack detection, as it directly impacts the visibility and reso-
lution of crack coverage on the image. Special care was taken during path planning to 
maintain a consistent distance of 1.2 m from the wall during data collection. This deliber-
ate planning allowed us to capture images from a fixed and controlled distance, minimiz-
ing field-of-view variations that could potentially affect the performance of ensuing 

Figure 2. Methodology for data acquisition and the crack-detection process. This flowchart illustrates
the step-by-step process for acquiring data and performing crack detection.

2.1. Data Acquisition via UAVs

This study was conducted on a structure at the Faculty of Engineering, University
of Peradeniya (7.2537, 80.5916), Sri Lanka. The images captured were used to investigate
and analyze the presence of cracks with the goal of assessing the severity and extent of the
cracks, which can provide valuable insights into the structural integrity and maintenance
requirements of the structure under observation. The complexity of the structure with
confined spaces and manually inaccessible areas justified a UAV inspection process; thus,
the UAVs served as practical tools to facilitate comprehensive data collection.

In this work, two ultra-lightweight UAVs (Ryze Tech Tello by DJI) were employed
to cover the structure of interest and collect image/video data. A robust and reliable
communication network was set up for networking the UAVs with the session-hosting
Personal Computer (PC). A set of pre-determined waypoints and flight paths were defined
on the session-hosting PC, ensuring efficient coverage of the inspection area and avoiding
redundant or overlapping scans. During the waypoint determination and path planning,
factors such as the structure’s shape, potential obstacles, and any specific areas of interest
that required closer inspection were considered. The distance from which a drone captures
images is a critical factor in crack detection, as it directly impacts the visibility and resolution
of crack coverage on the image. Special care was taken during path planning to maintain a
consistent distance of 1.2 m from the wall during data collection. This deliberate planning
allowed us to capture images from a fixed and controlled distance, minimizing field-of-view
variations that could potentially affect the performance of ensuing models. Communication
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between the UAVs and the PC was managed through a Local Area Network (LAN) [11]
using the User Datagram Protocol (UDP) [11], chosen for its efficiency and reliability in
real-time applications. Here, an access point router with a unique Service Set Identifier
(SSID) creates a LAN to which the UAVs and the hosting PC connect to. The host PC,
which executes Python code, connects to the LAN Wi-Fi network to send and receive UDP
commands via a predefined script containing the information of the waypoints and flight
plans. The hosting PC executes the script by first establishing the UDP server and, after,
sending control commands to the UAVs and listening for incoming data on the status of
the drone (battery and Wi-Fi strength), as well as streaming image/video data. For this,
the Tello SDK provided by Ryze robotics is used [33]. As shown in Figure 3, this network
setup was instrumental in facilitating seamless data transmission, including the images
and videos required for the study.
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Figure 3. Communication network for data collection through UAVs. Shows the work involved in
coordinating the movements and positions of the UAVs. User-defined waypoints and trajectories
guided the drones during the mission, ensuring comprehensive coverage of the target structure.

A total of 150 images and 20 min of video data at 30 fps (~360,000 image frames) were
collected, covering a selected building of the premises. Figure 3 shows some image data
collected of the structure under inspection using the UAVs. As is evident from Figure 4,
the collected images revealed the presence of cracks, structural deformations, corrosion,
displacement, and the deterioration of building elements within the structure.

2.2. Pre-Processing Algorithms

The images captured by the UAV cameras are inevitably subject to the vibrations and
perturbations of the platforms and motion. Furthermore, the imaging sensors are constantly
moving during the exposure time of the camera. This introduced the blurring of images
during the image-capturing process. Moreover, it was noticed that the communication
between the UAV and the PC via the LAN channel introduced grainy speckle noise onto
the image. To mitigate the effects, the obtained images were subjected to deblurring and de-
noising pre-processing steps to recover them to a workable level. Before the pre-processing
steps, data augmentation techniques were applied to the data for greater generalizability.
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2.2.1. Data Augmentation

Data augmentation techniques play a pivotal role in the realm of deep learning, espe-
cially in computer vision tasks, by enhancing the diversity of training data and ultimately
bolstering the generalization capabilities of models. The training set used for the training
of binary classification CNNs (as explained in Section 2.3) was subjected to a data aug-
mentation process via introducing random rotation, where images are rotated by arbitrary
angles, replicating the natural variability in an object’s orientation with random values
between −45 degrees and +45 degrees. Random cropping in the range of 50–90% was
introduced, which extracted random sections of images of the said percentages, enabling
the model to recognize different facets of an object and ensuring more generalizability
for scale variability. The horizontal- and vertical-flipped mirrors images accommodated
varying object orientations in the training dataset. Random zooming in and out in the range
of 90–110% was introduced to randomly mimic shifts in perspective. Color jittering of a
factor between 80 and 120% for brightness, contrast, saturation, and hue was performed to
mirror diverse lighting scenarios. Lastly, the introduction of Gaussian noise infused images
with real-world noise, contributing to the model’s resilience and adaptability to noisy input
data. These data augmentation strategies collectively enriched the training dataset, and are
used to equip deep learning models with better generalization and to help them excel in
real-world scenarios.

2.2.2. Deblurring

In this work, a state-of-the-art image deblurring technique suggested in MPRNet [34]
was employed for deblurring. The method uses a multi-stage encoder–decoder setup
to remove receptive field bottlenecks due to single-stage processes (such as in [35,36]).
MPRNet avoids receptive field bottlenecks, preventing the downstream information loss
associated with limited convolution kernel receptive fields. The repeated encoder–decoder
architecture in MPRNet ensures larger receptive fields, preserving contextual information
from preceding layers in the CNN.

Figure 5a shows the original image presented in this study, which suffers from a
significant degree of blurriness, making it challenging to discern the cracks on the surface.
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However, through the application of the MPRNet CNN, the deblurred images shown
in Figure 5b exhibit a remarkable transformation. MPRNet’s encoder–decoder setup
significantly improves visual clarity, restoring fine details and accurately representing
surface conditions while maintaining global features.
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Figure 5. Comparison of original blurry image (a) versus deblurred image (b) achieved using the
MPRNet CNN architecture. While the original image exhibits extreme blurriness, the deblurred
image showcases remarkably sharp and well-defined crack edges.

2.2.3. Denoising

Image noise is an inevitable consequence of the thermal effects of imaging hardware
and noise added due to interference in signal transmission [37]. The search for effective
image denoising involves continuous trial and error due to the evolving nature of the field.
To identify the most suitable denoising technique or combination, this study compared
popular methods using Peak Signal-to-Noise Ratio (PSNR) (see Equation (1)), the Structural
Similarity Index (SSIM) (see Equation (2)), and denoising time.

PSNR = 10· log10

(
(L − 1)2

MSE

)
(1)

where L = the maximum intensity level of the image; MSE = mean square error between
the images.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

1 + µ2
2 + c1

)(
σ2

x + σ2
y + c2

) (2)

where µx = the average intensity of image x; µx = the average intensity of image y; σx= the
variance of image x; σx = the variance of image x; σxy = the covariance of images x and y;
c1 = (k1 ∗ L)2; c2 = (k2 ∗ L)2; k1 = 0.01; and k2 = 0. In this study, denoising techniques,
including Gaussian denoising, bilateral denoising, wavelet denoising, total variation de-
noising, non-local means denoising, shift invariant wavelet denoising, anisotropic diffusion,
and block-matching denoising, were tested to enhance image clarity by reducing noise.
Each technique tackled noise by addressing random variations and unwanted artifacts,
ensuring the preservation of fine details, noise reduction, and maintaining the geometric
integrity of the cracks during evaluation. Table 3 and Figure 6 present a comparative
performance of these techniques. Total variation denoising had the highest PSNR (17.21)
but exhibited high blurriness (Figure 6d) and a low SSIM value (0.60). Wavelet denoising
struck a balance with high PSNR, high SSIM value, and reasonable denoising speed (ap-
proximately 1 Hz or 0.97 s execution time), making it the preferred choice. The denoised
image using wavelet denoising is shown in Figure 6f.
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Table 3. Denoising methods and their performance.

Method PSNR SSIM Time

Original vs. Noisy Image 16.73 - -
Gaussian Denoising 16.86 0.52 0.04
Bilateral Denoising 17.01 0.55 31.69
Wavelet Denoising 16.95 0.85 0.97

Total Variation Denoising 17.21 0.60 3.80
Non-Local Means Denoising 16.78 0.88 0.21

Shift Invariant wavelet Denoising 16.91 0.67 0.46
Anisotropic Diffusion 16.90 0.65 0.11

Block-matching and 3D filtering 16.96 0.77 4.08
Highlighted in bold are the best performing method for each performance metric PSNR, SSIM and Denois-
ing Time.
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Figure 6. Visual representation of outputs of different denoising algorithms. (a) Gaussian de-
noising; (b) bilateral denoising; (c) wavelet denoising; (d) total variation denoising; (e) non-local
means denoising; (f) shift invariant wavelet denoising; (g) anisotropic diffusion denoising; (h) block-
matching denoising.

2.3. Crack Detection

After the pre-processing steps, the images were passed through a convolutional neural
network (CNN) for crack detection. CNNs are widely used for image classification tasks due
to their ability to learn and extract meaningful features from images systematically. CNNs
consist of multiple convolutional layers, followed by pooling layers and fully connected
layers. Each convolutional layer applies a set of learnable filters to the input image,
capturing different features at different levels of abstraction [32]. In this study, CNNs are
used as a binary classifier to extract edge information corresponding to cracks and select
the images that contain cracks.

The authors propose a novel CNN architecture named “CrackClassCNN” to perform
the task of crack detection in images. After multiple implementations of differing CNN
architectures, the layout in Figure 7 was chosen to be optimal for CrackClassCNN. Here,
a trade-off between speed and accuracy was considered. Multiple iterations of training
were run to test the layout with the fastest inference time and highest accuracy. Each
layer in a CNN plays a specific role in feature extraction, spatial reduction, and prediction.
Convolutional layers are the essential building blocks in CrackClassCNN. A convolutional
layer’s main task is to detect an image’s local features. This is performed using 2D convolu-
tional filters stacked parallelly. Hence, the convolutional layers learn features such as crack
patterns that are useful in identifying recurring patterns in cracks from the images without
cracks. After each convolutional layer, a pooling layer is deployed that is used to reduce
the dimensions of the feature map generated by the convolutional layer. The max-pooling
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layer outputs the maximum value of the window in consideration. The window size and
stride length are selected in such a way that the output dimensions of the image are scaled
down by a factor of two after each convolutional layer. Finally, a dense layer consists of a
single neuron connected to all the neurons of the previous layer, hence the term densely
connected. The output layer is a dense layer consisting of a single neuron resulting in a
single scalar value, which can be interpreted as the model’s prediction for a given input.
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Figure 7. The CrackClassCNN architecture employs stacked convolutional layers for local feature ex-
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in a single-neuron output layer, optimizing speed and accuracy for crack detection.

The accuracy of the suggested architecture for crack detection was benchmarked
against existing feature-extraction CNN architectures by leveraging transfer learning. Pre-
trained models employed in the previous literature, including Densenet201 [38], Xcep-
tion [39], Mobile-netV2 [40], Resnet50 [41], and VGG19 [42], were used as the base feature-
extraction CNN. The last layers of these pre-trained models were modified to suit the binary
classification task by the addition of a flattened layer followed by two dense layers with
ReLU activation. Sixty-four units were in the first dense layer and four units were in the
second dense layer. This modification to the last layer of a CNN architecture is a standard
approach for adapting a pre-trained model to a binary classification task. It enables the
model to take the high-level features learned by the convolutional layers and make a binary
classification decision.

This study used a portion of the SDNET2018 image dataset [43] as the training dataset
for all the models mentioned. SDNET2018 is an annotated image dataset explicitly designed
for training, validating, and benchmarking AI-based algorithms focused on concrete crack
detection. This comprehensive dataset encompasses a total of 56,000 images representing
various structures, such as bridge decks, walls, and roads. After an examination of the
dataset, the ‘bridge deck’ section from SDNET2018 was eliminated, as we recognized
that its distinct visual characteristics in terms of color and scale were not suitable for
our application. This deliberate exclusion, coupled with a retraining effort incorporating
hyperparameter optimization, resulted in a boost in classification accuracy. Notably, the
integration of a data augmentation step proved instrumental in the network’s generalization
capabilities. The construction of this pre-training dataset aimed to provide a diverse range
of images, both with and without cracks, to facilitate the training of CNNs for concrete
crack detection. For the validation of these models, the data collected in this experiment
were used.

To ensure a fair comparison, all models, including the proposed architecture and the
existing architectures, were trained using transfer learning for the same number of epochs
(30 epochs). The training parameters were kept constant throughout the experiments,
allowing a direct comparison of their performance on the given dataset and task. Deep
CNNs are extremely taxing on hardware, as each image needs to be passed through the
network once. It has been shown that increasing the depth of the convolutional network
can increase the overall classification accuracy [32]. However, designing the network as
light and shallow as possible is imperative to achieve real-time capabilities.

As can be seen in Table 4 and Figure 8, the CrackClassCNN architecture trained on
SDNET2018 achieved an accuracy of 95.02% after 30 epochs of training, compared to other
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transfer learning architectures. Due to its lightweight design, the CrackClassCNN model
offers a faster inference time of 0.55 s, compared to other models. Its streamlined archi-
tecture and efficient implementation allow for a quicker processing of images during the
inference phase. This has practical benefits, especially in real-time or time-sensitive appli-
cations where prompt crack detection is crucial. Furthermore, the reduced computational
requirements also make it feasible to deploy the model on resource-constrained devices,
such as embedded systems or edge devices, without sacrificing performance.

Table 4. Relative performance of tested CNN architectures for the dataset.

Reference Model Testing Accuracy Inference Time

Su et al., 2020 [38] Fine-tuned Densenet_201 0.9345 2.25
Philip et al., 2023 [39] Fine-tuned Xception 0.9868 2.01

Li et al., 2022 [40] Fine-tuned Mobile-netV2 0.9398 1.56
Qayyum et al. 2023 [41] Fine-tuned Resnet_50 0.9762 1.95

Ali et al., 2021 [42] Fine-tuned VGG_19 0.9845 2.56
Ours CrackClassCNN 0.9502 0.55

Highlighted in bold are the best performing model for each performance metric Testing Accuracy and Infer-
ence Time.
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Figure 8. Variation in training (solid line) and validation accuracy (dashed line) of the different
CNN architectures.

In Figure 9, a comparative analysis of confusion matrices is presented, highlighting
the impact of the denoising and blurring processing steps on the classifier’s performance.
This visualization serves as a valuable insight into the classifier’s enhanced ability to distin-
guish between positive and negative instances after undergoing denoising, elucidating the
positive influence of this processing step on overall classification accuracy.

Figure 10 shows the feature maps extracted at different layers of the CNN. The learned
features showcased in the subfigures reveal the hierarchical representation acquired by
the CNN. The evolving complexity of features showcases the CNN’s hierarchical learning
process. From rudimentary details in early layers to sophisticated representations in later
ones, this visualization underscores the network’s ability to discern and hierarchically
represent diverse features present in the input data.
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Figure 9. The confusion matrices before and after the denoising and blurring processing steps
show the clear favorable bias of the classifier due to denoising. The figure showcases the classifier’s
performance in distinguishing between positive and negative instances. The main diagonal contains
true negatives where the classifier correctly identified the class. The transposed main diagonal
contains the classifier’s incorrect predictions. (a) Before pre-processing; (b) after pre-processing.
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Figure 10. Visualization of feature maps of CrackClassCNN: The subfigures (a–d) illustrates the
feature maps extracted from layers of the CNN. Each subfigure represents the output of a specific
layer, showcasing the network’s ability to capture progressively abstract and complex patterns in the
input image. The learned features in the subfigures show the hierarchical representation learned by
the CNN.
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The trained CrackClassCNN classifier was tested on 4000 images from the data col-
lected in the experiment. Figure 8 shows the effect of denoising and deblurring on the
classifier’s performance. As is evident from the results, the wavelet denoising step cho-
sen during the denoising stage and MPRNet deblurring affect the performance favorably
regarding the binary classification of filtering images with cracks and rejecting the im-
ages without cracks for downstream image segmentation. These steps aim to counteract
motion-induced blurring and mitigate the impact of speckle noise, ultimately enhancing
the overall image quality. By deploying these pre-processing techniques, crack detection
and segmentation operate on clear and sharp images, contributing to improved accuracy
and reliability in diverse operational scenarios. This is apparent by both visual inspection
and through the confusion matrix study, and it was decided that denoising and deblurring
have a favorable impact towards the accuracy of the system.

2.4. Crack Segmentation Using Segment Anything Model (SAM)

After binary classification in the CNN, the images containing cracks are subjected
to a segmentation process. The segmentation process aims to analyze and isolate the
crack regions within these images [31]. The Segment Anything Model is an open-source
segmentation algorithm developed by Meta AI, formerly Facebook, Inc. The SAM is
designed to identify and segment various objects and regions within images. Its unique
combination of automated segmentation and semi-supervised learning makes it a powerful
tool for zero-shot transfer learning for pixel-level analysis and image-manipulation tasks.
The SAM is trained on the largest segmentation dataset SA-1B, consisting of 1 billion image
masks [31].

The SAM (shown in Figure 11) utilizes the idea of “prompting”, which is an idea
frequently used in Natural Language Processing (NLP) [44]. Given a sequence of words
or tokens known as a prompt, the model is trained to predict the probability distribution
of the possible next words or tokens, which is the basis of Natural Language Processing
(NLP). In image segmentation, prompting could be a mask area, a set of points, a bounding
box, or simply a text line provided to the model to give an idea of what it needs to segment
in the input image. Figure 9 shows the high-level architecture of the SAM. The SAM
works by encoding the prompt to a standardized representation called an embedding. All
embeddings from different prompting methods are summed together at the element-wise
summation, and a “complete embedding” is produced. Finally, the embeddings are sent
through a modified transformer decoder block.
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For segmenting the pixels that contain cracks, the authors use a sparse point grid
of (nxn), covering the whole image to prompt the model. Given the prompt, the model
results in multiple masks for the segmentation. The best segmentation mask depicting the
cracked area was selected manually from the set of segmentation masks. By implementing
the SAM, the authors expect to reduce the burden on a manual operator to select defective
pixels by suggesting masks through the SAM. Furthermore, the SAM can run on web-
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based applications and can be accessed from any device with a web browser, allowing
cross-platform compatibility.

2.4.1. Fine-Tuning Segment Anything Model (SAM)

Fine-tuning the SAM involved training the edge mask decoder while leveraging a pre-
trained foundation model as a checkpoint. This approach is crucial for efficiency, especially
considering the resource-intensive nature of training the SAM, which necessitates 256 A100
GPUs and spans 3 to 5 days [31]. Training the entire model from scratch each time would
be prohibitively expensive. The SAM offers a solution that allows users to load model
checkpoints efficiently. This method can be beneficial for adapting the SAM to different
datasets, resolutions, or architectures to enhance domain-specific accuracy. Initially, the
foundation model checkpoint was loaded, utilizing the boilerplate code designed to be
compatible with the Vision Transformer Base (ViT-B) architecture.

Selecting an effective loss function is critical in segmentation tasks, as it directly
influences the model’s performance. The original SAM utilizes a combined loss function
CL(y, ŷ) (shown in Equation (3)), consisting of focal loss and dice loss, for semantic
segmentation [31]. Dice loss DL(y, ŷ) (given in Equation (4)) is used to solve the class
imbalance issue in segmentation tasks; however, the use of dice loss can result in non-
smooth optimization and a loss of gradient when the predicted or true positive regions
have zero pixels [45]. Furthermore, focal loss FL(y, ŷ) (given in Equation (5)) is highly
sensitive to the appropriate choice of the focusing parameter γ [46]. The experimentation
by the authors through the cross-validation of segmentation results with a parametric study
for γ found the choice of γ led to sub-optimal results in terms of convergence and the
accuracy of the results. Therefore, considering this, binary cross-entropy (Lbce(y, ŷ) , shown
in Equation (6)), which is a simpler version of focal loss, was chosen to remove the effect
of the focusing hyperparameter γ. Binary cross-entropy provides a smooth optimization
landscape, reducing the likelihood of convergence issues during training. In this work, the
class imbalance issue is solved through introducing class weight hyperparameter wi. This is
an important step in the fine-tuning process, as a large class imbalance issue was observed
due to the pixels with cracks occupying only a small portion of the images and non-
crack/background pixels being predominant in the dataset. Finally, an L2 regularization
term containing the λ regularization strength and θp model parameters was introduced
to the loss to prevent the overfitting of data. This term penalizes large individual weights
(high θp values) in the model. The regularization strength λ controls the magnitude of this
penalty. A sigmoid activation function was introduced after the binary cross-entropy for
numerical stability. Regularization contributes to improved generalization by guiding the
learning process toward simpler models that capture the underlying patterns in the data
without being overly influenced by noise. The loss function (Lm−bce(y, ŷ)) used in this work
is shown in Equation (7).

FL(y, ŷ) = − 1
N

N

∑
i=1

(1 − ŷi)
γ · log(ŷi) · yi − ŷi

γ · log(1 − ŷi) · (1 − yi) (3)

DL(y, ŷ) =
1
N

N

∑
i=1

1 − 2yi ŷi + 1
yi + ŷi + 1

(4)

CL(y, ŷ) = αFL(y, ŷ)− (1 − α)DL(y, ŷ) (5)

Lbce(y, ŷ) = − 1
N

N

∑
i=1

[yi· log(ŷ) + log(1 − ŷ)(1 − yi)] (6)

Lm−bce(y, ŷ) = − 1
N

N

∑
i=1

wi[yi· log(ŷ) + (1 − yi)· log(1 − ŷ)] + λ ∑
p

θ2
p (7)
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where N is the number of samples or elements in the input, yi is the true binary label for
the ith sample (either 0 or 1), ŷi is the predicted probability for the ith sample in class 1, γ is
the focusing parameter used in focal loss, λ is the regularization strength, and θp reflects
the model parameters.

Hyperparameters were selected with a learning rate of 0.001, a batch size of 16, and a
momentum term of 0.9 for stochastic gradient descent optimization. The transfer learning
strategy involved using a pre-trained ViT-B architecture, adjusting the final classification
layer, and freezing the early layers during fine-tuning. The training pipeline comprised
20 epochs, with a stepwise learning rate decay after every 5 epochs. Evaluation metrics
such as Intersection over Union (IoU) and dice coefficient were used to assess segmentation
performance. Visual examples, a few of which are shown in Table 5, revealed improved
segmentation accuracy after fine-tuning, particularly in capturing smaller cracks and crack
segments located at the edges of the crack tree. Future work should explore additional data
modalities and address potential limitations in scenarios with complex backgrounds.

Table 5. SAM image-segmentation performance before and after fine-tuning.

Original Image Before Fine-Tuning After Fine-Tuning
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2.4.2. Testing of SAM for Crack Image Segmentation 
Fifty images were manually annotated with a training–testing–validation split of 

80:10 :10 for the fine-tuning of the SAM. The validation set of annotated images was used 
as a reference to compare against the segmentation results obtained from the SAM algo-
rithm. Intersection over Union (IoU) (see Equation (8)) and F1 score (see Equation (9)) can 
be calculated by comparing the pixels in the segmented regions with the corresponding 
annotated regions in the ground truth. These metrics provide quantitative measures of 
how well the segmentation process aligns with the manually annotated regions. It is im-
portant to consider that manual annotation introduces subjectivity, and the accuracy of 
the segmentation process can be influenced by the quality and consistency of the manual 
annotations. Multiple annotators were used and consensus annotations were performed 
to help minimize potential bias or errors. Evaluating the accuracy of the segmentation 
process against the manually annotated images provides insights into the algorithm�s per-
formance and facilitates necessary improvements. 
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Data augmentation was performed on the training dataset to increase the diversity 
of the training set and help the model improve generalization to unseen data. As the pre-
processing steps in place filtered out most of the blurriness and noise, these augmentation 
steps did not provide a considerable improvement to the results. However, improvements 
were observed for rotations of −25 degrees and +25 degrees, random cropping of 10–30%, 
color jittering of 50–90%, brightness of 90–110%, and a contrast of 90–110%. Table 6 shows 
some results of the SAM segmentation process. 
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a reference to compare against the segmentation results obtained from the SAM algorithm.
Intersection over Union (IoU) (see Equation (8)) and F1 score (see Equation (9)) can be
calculated by comparing the pixels in the segmented regions with the corresponding
annotated regions in the ground truth. These metrics provide quantitative measures of
how well the segmentation process aligns with the manually annotated regions. It is
important to consider that manual annotation introduces subjectivity, and the accuracy of
the segmentation process can be influenced by the quality and consistency of the manual
annotations. Multiple annotators were used and consensus annotations were performed to
help minimize potential bias or errors. Evaluating the accuracy of the segmentation process
against the manually annotated images provides insights into the algorithm’s performance
and facilitates necessary improvements.

IoU =
Area o f overlap
Area o f union
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Data augmentation was performed on the training dataset to increase the diversity
of the training set and help the model improve generalization to unseen data. As the pre-
processing steps in place filtered out most of the blurriness and noise, these augmentation
steps did not provide a considerable improvement to the results. However, improvements
were observed for rotations of −25 degrees and +25 degrees, random cropping of 10–30%,
color jittering of 50–90%, brightness of 90–110%, and a contrast of 90–110%. Table 6 shows
some results of the SAM segmentation process.
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2.4.3. Ablation Study on the Number of Points (n) in Sparse Point Grid Prompting 
As described earlier, the SAM requires a grid of point prompts with dimensions (𝑛 × 𝑛) for the segmentation. It is important to decide on the design parameter n as im-

proper parameter designs will lead to imperfect segmentation with some crack paths be-
ing unprompted, and hence unsegmented by the SAM. This is especially pertinent when 
dealing with images featuring multiple targets of diverse sizes, as is often the case in im-
ages of cracks. Too sparse of a point grid may lead to certain crack patterns being un-
prompted and thus unsegmented, and raising the number of points in the point grid may 
lead to the division of a crack into multiple smaller fragments and result in a substantial 
increase in inference time. Consequently, there exists a trade-off between segmentation 
performance and testing efficiency. In this study, the authors tested n = 4, 8, 16, 32, and 64, 
and compared the testing efficiency in terms of IOU and F1 score against the inference 
time. 

As can be seen in Table 7, the 32 × 32 grid layout yielded the most favorable balance 
between inference speed and inference accuracy. A clear leveling out in the accuracy fig-
ures can be observed as the point grid becomes denser. However, the adverse impact on 
the inference time is clearly observed. 
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Number of Points in Sparse Grid (n × n) IOU F1 Score Inference Time 
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2.4.3. Ablation Study on the Number of Points (n) in Sparse Point Grid Prompting

As described earlier, the SAM requires a grid of point prompts with dimensions
(n × n) for the segmentation. It is important to decide on the design parameter n as
improper parameter designs will lead to imperfect segmentation with some crack paths
being unprompted, and hence unsegmented by the SAM. This is especially pertinent when
dealing with images featuring multiple targets of diverse sizes, as is often the case in images
of cracks. Too sparse of a point grid may lead to certain crack patterns being unprompted
and thus unsegmented, and raising the number of points in the point grid may lead to the
division of a crack into multiple smaller fragments and result in a substantial increase in
inference time. Consequently, there exists a trade-off between segmentation performance
and testing efficiency. In this study, the authors tested n = 4, 8, 16, 32, and 64, and compared
the testing efficiency in terms of IOU and F1 score against the inference time.

As can be seen in Table 7, the 32 × 32 grid layout yielded the most favorable balance
between inference speed and inference accuracy. A clear leveling out in the accuracy figures
can be observed as the point grid becomes denser. However, the adverse impact on the
inference time is clearly observed.

Table 7. Results of the ablation study.

Number of Points in
Sparse Grid (n × n) IOU F1 Score Inference Time

(s/Image)

(4 × 4) 0.113 0.125 0.11
(8 × 8) 0.459 0.324 0.34

(16 × 16) 0.698 0.389 0.50
(32 × 32) 0.851 0.728 0.79
(64 × 64) 0.898 0.798 1.20

Highlighted in bold are the best performing grid layout for promting of the SAM model.

3. Discussion

This work explored using two extremely lightweight UAVs to collect image/video
data to detect surface cracks on structures. The study involved the collection of images of
an indoor structure at the Faculty of Engineering, University of Peradeniya, Sri Lanka. The
first step of data collection was to set up a communication network for the UAVs and the
session-hosting PC. Following the setup, manual waypoints were determined to cover the
structure effectively and efficiently. The collected image/video data were first subjected
to deblurring and denoising processes. The pre-processed images were then sent through
a binary classification CNN to filter out the images that contained cracks, removing the
need for an object detector. The images filtered through the CNN were then sent through a
transformer-based segmentation model (SAM) to obtain the pixel-level granularity of the
cracks on the images. The SAM inference, which requires only a single pass through the
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decoder of the transformer, allows lightweight image segmentation. This is a departure
from the resource-hungry image-segmentation algorithms in the literature.

The DJI Ryze Tello UAV, due to its compact footprint, is well suited for the inspection
of space-deprived areas and especially suited for settings where GPS/GNSS navigation
signals are not available. The use of two UAVs streamlines the image acquisition process
and mitigates the inherent drawbacks of using an extremely lightweight UAV, such as
limited range and flight time. However, it is observed that the manual flight planning for
the coverage of the structure used in this work does not fully demonstrate the advantages
of using multiple UAVs. Rather, to fully leverage the collective capabilities of multiple
drones, a drone swarming methodology is recommended.

The core contribution of this work is the design of an automatic crack-detection and
-segmentation methodology. It was observed that, during image capturing, the inherent
motion of the UAVs introduced significant blur artifacts. The experimental results demon-
strated by deblurring using MPRNet yielded significant improvements in image sharpness
and detail restoration while preserving essential details. Following the deblurring process
for the denoising task, wavelet denoising was observed as the best denoising technique
among the tested methods to remove the image artifacts introduced due to the thermal
effects of the imaging hardware and the noise added due to the interference in signal
transmission. The pre-processed images were sent through a crack-detection CNN. A
novel CNN architecture, CrackClassCNN, was proposed and compared against existing
CNN models using transfer learning techniques from the literature. Herein, the objective
was to evaluate the performance of the novel architecture in image classification tasks
and determine its effectiveness compared to established CNN models. The experimental
results demonstrated that the novel CNN architecture performed comparably to existing
CNN models regarding classification accuracy and outperformed them in terms of lower
inference time. Following crack detection using a CNN, the detected images were sent
through a segmentation model (SAM). By leveraging the capabilities of the SAM, the au-
thors observed a reduction in the need for manual intervention by providing suggested
masks for identifying the defected regions. Furthermore, the number of target images for
segmentation was significantly reduced by filtering the images that only contained cracks.
This enables near real-time detection and increased reliability, and nods to the accuracy of
the system.

The processing speeds were quantified at various stages. The data collection process
through the UAVs can stream at approximately 15 Hz using the UDP server over the LAN
to the central PC. A summary of the processing times for different stages of the workflow is
as follows: the initial image processing, which includes deblurring and denoising, takes an
average of 0.97 s per image; the binary classification through ‘CrackClassCNN’ takes 0.55 s
per image on average; and the subsequent image segmentation using the SAM averages
0.79 s per image. These processing times were measured on a hosting device with an
AMD Ryzen 4000 H-Series processor and an RTX 3060 6 GB GPU. This setup allows us to
effectively process the data with a minimal delay, supporting the claim of near real-time
detection. It is important to note that these timings represent the current capabilities of
the system under the specified hardware conditions. Future enhancements in hardware
and software algorithms may further reduce these processing times, moving closer to
real-time analysis. For the purposes of this study, ‘near real-time’ refers to the capability of
processing and analyzing data within a sufficiently short timeframe for practical on-site
decision making in structural inspections.

Failure Analysis of System
It was deemed important to conduct an engineering failure analysis, as this provides

crucial insights that enable improvements in design and future experiments. The UAV,
though well-suited for inspecting confined spaces, faces limitations such as a short flight
range (approximately 150 m) and a brief flight time (approximately 15 min), impacting the
efficiency of infrastructure inspections. In such cases, the deployment of multiple UAVs
in a collaborative manner becomes essential to overcome these constraints and ensure
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thorough inspection coverage. This approach allows for a more systematic and streamlined
inspection process, leveraging the combined capabilities of multiple UAVs to cover larger
distances and extend the overall inspection time [47].

The image classifier has two main failure points: false positives and false negatives.
The image classifier encounters challenges with false positives, misidentifying non-existent
cracks and confusing spalling, especially, with cracks due to similar pixel appearances
(Figure 12c,d). Extreme natural variations or surface irregularities may also be misconstrued
as cracks, suggesting a need for a multi-class classification approach. False negatives arise
when the system fails to detect cracks, especially barely visible ones (Figure 12e). The
scale of cracks relative to the camera’s view is critical, with smaller cracks potentially
being overlooked (Figure 12f). Furthermore, despite attempts through pre-processing to
address image artifacts, cases arising due to packet loss or corruption (Figure 12g) can lead
to missing or distorted parts of the image and can lead to undetected cracks. However,
such extreme cases where the image is severely distorted occupy a small portion of the
dataset (less than 2%), therefore resulting in the classifier performance of 95.02% accuracy
for filtering cracks in an image.

The transformer-based SAM segmentation breaks an image into different segments
or regions based on certain characteristics. However, if the field of view in the image is
too wide, the segmentation latches on to too many local features to perform segmentation,
resulting in a number of masks making it challenging to single out the crack mask (see
Table 8). As a solution, the authors suggest fine-tuning the segmentation through a Human-
in-the-Loop validation process to help ensure the accuracy of the masks and the overall
performance of the crack-detection system. However, in all cases, the system can provide a
fair estimation of the cracks in at least one of the masks, which can then be easily filtered
manually by an operator in a semi-automated way, rather than the tedious manual selection
of cracks in an image.
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4. Conclusions

The UAV created by DJI, Ryze Tech Tello, is an ultra-lightweight and compact UAV
well suited for inspecting cracks in confined indoor spaces where obstacles could be plenti-
ful and positioning signals are often weak or completely unavailable. The core contribution
of this work was to suggest a processing methodology that enables the automatic detection
and segmentation of images with cracks. A novel CNN layout, CrackClassCNN, was
network-trained on the dataset SDNET2018, excluding the bridge deck portion, reaching
a classification accuracy of 95.02%. CrackClassCNN proved to be comparable with exist-
ing transfer-learning-based classifiers in terms classification accuracy, but with a faster
inference time due to its simpler layout. Training the CNN’s data augmentation on the
training dataset proved to be beneficial in improving classification results by improving
the network’s generalizability. Following the filtering of images that contained cracks
via the CrackClassCNN, the images were then sent through a transformer-based image-
segmentation process using a fine-tuned Segment Anything Model (SAM). The fine-tuning
process involved training the edge mask decoder by leveraging a pre-trained Vision Trans-
former Base (ViT-B) foundation model as a checkpoint. Here, a new loss function was
introduced based on binary cross-entropy loss. Overall, the segmentation process resulted
in good segmentation accuracy with an Intersection over Union (IoU) score of 0.851 and
an F1 score of 0.728. Furthermore, the multi-stage processing methodology offers near
real-time performance, ensuring the efficient and timely identification of cracks in the
captured images.

It is important to note that the manual waypoint planning used in this work does
not fully demonstrate the advantages of using multiple UAVs. To fully leverage the
collective capabilities of multiple drones, future iterations of this work will incorporate
more UAV assets and automated algorithms for dynamic path planning and obstacle
avoidance, allowing for real-time adaptation to changing conditions, and optimizing the
overall efficiency of the inspection process.
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