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Abstract: The gated recurrent unit (GRU) network can effectively capture temporal information for
1D signals, such as electroencephalography and event-related brain potential, and it has been widely
used in the field of EEG emotion recognition. However, multi-domain features, including the spatial,
frequency, and temporal features of EEG signals, contribute to emotion recognition, while GRUs show
some limitations in capturing frequency–spatial features. Thus, we proposed a hybrid architecture of
convolutional neural networks and GRUs (CGRU) to effectively capture the complementary temporal
features and spatial–frequency features hidden in signal channels. In addition, to investigate the
interactions among different brain regions during emotional information processing, we considered
the functional connectivity relationship of the brain by introducing a phase-locking value to calculate
the phase difference between the EEG channels to gain spatial information based on functional
connectivity. Then, in the classification module, we incorporated attention constraints to address
the issue of the uneven recognition contribution of EEG signal features. Finally, we conducted
experiments on the DEAP and DREAMER databases. The results demonstrated that our model
outperforms the other models with remarkable recognition accuracy of 99.51%, 99.60%, and 99.59%
(58.67%, 65.74%, and 67.05%) on DEAP and 98.63%, 98.7%, and 98.71% (75.65%, 75.89%, and 71.71%)
on DREAMER in a subject-dependent experiment (subject-independent experiment) for arousal,
valence, and dominance.

Keywords: EEG emotion recognition; functional connectivity; GRU; multi-domain feature; attention

1. Introduction

Emotion recognition is the process of understanding what state of emotion a person is
expressing, and plays an important role in various fields, such as neurobiology, medical
diagnosis, and artificial intelligence [1,2]. Physiological signals can reflect people’s emo-
tional status truly and objectively, and electroencephalography (EEG)-based methods have
shown outstanding performance in accurately identifying emotions [3–7]. However, EEG
signals are complicated and complex [8] and contain a certain amount of hidden emotional
features. It is a crucial challenge to effectively abstract and integrate various features from
EEG to improve the accuracy of emotion recognition.

EEG signals exhibit rich and diverse features across multiple domains, including
the temporal, frequency, and spatial domains. These features have been widely used for
emotion recognition. Yang et al. considered the time dependence of physiological signals to
design a sequence EEG emotion recognition model and achieved an accuracy of 74.4% [9].
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Duan et al. proposed differential entropy to represent states related to emotion and achieved
a recognition accuracy of 84.22% [10]. Fraiwan et al. used multiscale entropy analysis to
extract the mean, slope of the curve, and complexity index of EEG signals to estimate the
enjoyment and visual interest levels of individuals, achieving an accuracy of 98% [11]. In
addition, studies have reported that different emotions can be successfully captured by
EEG spectral differences in various areas of the brain in the alpha band [12], theta band,
gamma band, and beta band [2,13]. Moreover, the spatial connectivity relationship between
EEG channels has been demonstrated to be associated with emotional responses and has
been utilized to enhance recognition accuracy [14]. Obviously, no single-domain analysis
can fully reflect the signal characteristics. Furthermore, when the brain processes emotional
information, there is often functional connectivity (FC) between brain regions. The FC
carries important spatial information that allows people to gain a deeper understanding of
how different brain regions coordinate and influence each other [15]. Thus, multi-domain
features based on FC should be combined to study emotional status. This approach can
efficiently improve the accuracy of emotion recognition.

Recently, many neural network models have been proposed for EEG emotion recogni-
tion, among which convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have shown remarkable performance [16–22]. CNN approaches have signifi-
cant capability in spatial feature extraction [16,17]. Furthermore, they can directly extract
emotion-identifying features from input data by fine-tuning the hyperparameters in the con-
volutional layer of the CNN [18,19]. Long short-term memory and GRUs, as famous vari-
ants of RNNs, are more suitable for processing time series data. They have demonstrated
outstanding performance in capturing temporal features for EEG recognition [20,21,23].
GRUs have more advantages than long short-term memory networks, that is, they are
simpler, faster, and more efficient [21,22]. Nevertheless, RNNs have limitations in capturing
spatial information, while CNNs ignore global information. Since EEG signals contain
multi-domain features, single-domain analysis cannot fully represent the complete range
of emotional changes. Therefore, inspired by the merits of RNNs and CNNs, we propose a
new frequency–spatial high-level feature grasping structure and a multi-domain feature
integration strategy based on a hybrid structure of GRUs and CNNs in this paper.

To address these issues, we proposed a temporal–frequency–spatial EEG emotion
recognition model based on an FC and CGRU hybrid architecture (FC-TFS-CGRU). FC-
TFS-CGRU contains a multi-domain emotional feature extraction module and an attention
classification module. In the multi-domain emotional feature extraction module, the phase-
locking value (PLV) is utilized to investigate spatial interaction information based on
functional connectivity (FC) between brain regions. Subsequently, CNNs are employed
to obtain high-level frequency–spatial domain features derived from the combination of
PLV and frequency bands. Furthermore, we incorporate GRU networks after the CNNs
to capture temporal information associated with the high-level frequency–spatial domain
feature, ultimately completing the extraction of multi-domain features based on FC. In
the attention classification module, we incorporate an attention mechanism that assigns
weights to different features based on their unique contributions to emotion recognition.
This integration of captured features improves the accuracy of emotion recognition. The pro-
posed model was evaluated on two popular emotional EEG databases, namely DEAP [24]
and DREAMER [25], for both subject-dependent and subject-independent experiments.
The results obtained from these experiments demonstrated the proposed model’s superior
performance in terms of EEG emotional recognition accuracy across both databases. Our
primary contributions are summarized as follows:

1. Incorporating the spatial interaction of brain regions, we introduce the PLV based
on FC, which is then used to construct a frequency–spatial matrix with frequency
bands to further investigate the elusive high-level frequency–spatial relationship. It
significantly enhances the recognition accuracy.
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2. A hybrid CGRU architecture is proposed, where a CNN is used to further enhance the
frequency–spatial high-level feature extraction, namely, FC-FSH, using the frequency–
spatial matrix.

3. GRUs in the hybrid CGRU structure are used to extract the high-level temporal feature
of FC-FSH over time. The accuracy of emotion recognition can be effectively improved
using the extracted features.

2. Materials and Methods
2.1. Database and Preprocessing

All EEG signals used in this study were obtained from the DEAP and DREAMER
datasets. The DEAP database is a human affective state dataset, where the multi-modal
physiological signals of 32 subjects were recoded while they watched 40 videos. After every
experiment trial, subjects recorded their emotional state by scoring it from 1 to 9 in four
dimensions, namely, arousal, valence, dominance, and liking. The EEG sampling rate was
512 Hz, and the signals were down-sampled to 128 HZ. The number of EEG channels was
32. DEAP can be accessed via the website http://www.eecs.qmul.ac.uk/mmv/datasets/
deap/ (accessed on 27 August 2018). DREAMER is a multi-modal human affective state
dataset. EEG and ECG signals from 23 subjects were recorded while they watched 18 movie
clips. After watching a video, subjects rated the movie using a score from 1 to 5 in three
dimensions: arousal, valence, and dominance. The EEG sampling rate was 128 Hz, and
the number of channels as 14. The DREAMER dataset can be accessed via the website
https://zenodo.org/record/546113 (accessed on 28 July 2023). The details of DEAP and
DREAMER are listed in Table 1.

Table 1. The detail of the DEAP dataset and the DREAMER dataset.

Type
Description

DEAP DREAMER

Subjects 32 23
Stimulant Video clips Video clips

Experiments 40/subject 18/subject
EEG Signals 32 14

Sampling rate 512 Hz 128 Hz
Labels Arousal, valence, dominance, like Arousal, valence, dominance

Label scores 1–9 1–5

In the preprocessing, signals were down-sampled to 128 Hz, and all the signals in
both databases were segmented into 1 s parts [26] with 128 sampling points per window.
For DEAP, this resulted in 2400 EEG samples per subject (40 trial × 60 clips), each denoted
as Xi = R128×32, where 32 is the number of electrode leads, and 128 is the sample length.
For DREAMER, each EEG sample is denoted as Xi = R128×14, where 14 is the number of
electrode leads, and 128 is the sample length.

In the label preprocessing, a threshold of 5 was set for the DEAP database and 3
for DREAMER. When the value of arousal (or valence or dominance) was less than the
threshold, the corresponding label was set to “low”; otherwise, the label was set to “high”.

2.2. The Proposed FC-TFS-CGRU Model

A multi-channel EEG signal is a multi-dimensional time series signal that is rich in
temporal, frequency, and spatial features. These features from multiple domains, along
with the hidden high-level features among them, all contribute to emotion recognition.
Moreover, the extensive interaction information between the channels of multichannel EEG
signals is also crucial in revealing the brain’s emotional response, which can be consid-
ered to represent emotion recognition. Therefore, to utilize the information to improve
the accuracy of emotional recognition, we designed a temporal–frequency–spatial EEG
emotion recognition model based on FC and a CGRU hybrid architecture (FC-TFS-CGRU)

http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
https://zenodo.org/record/546113
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to recognize emotional states. The FC-TFS-CGRU model is depicted in Figure 1. It signifi-
cantly enhances the accuracy of emotion recognition by considering the spatial interaction
information based on FC and the high-level hidden features across multiple domains.
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FC-TFS-CGRU contains two important modules, i.e., a multi-domain feature extrac-
tion module and an attention classification module. The multi-domain feature extraction
module includes two stages to extract the features in sequence. In stage 1, the phase-locking
value (PLV) is used to calculate the spatial features of FC, and Fast Fourier transform is
utilized to compose the signal into frequency bands. Then, all of them are combined to
further abstract the FC-based frequency–spatial high-level feature (FC-FSH) using the CNN.
In stage 2, GRUs are used to abstract the contextual information of the FC-FSH to gain the
FC-based temporal–frequency–spatial hybrid feature (FC-TFS), which can reflect the tempo-
ral change in the spatial–frequency domain features. Subsequently, an attention mechanism
is proposed in the classification process to utilize the different contributions of various
features to emotion. The details of each module are illustrated in Sections 2.2.1 and 2.2.2

2.2.1. Multi-Domain Emotional Feature Extraction

In this section, the multi-domain features of EEG signals will be extracted using
the proposed model. The multi-domain emotional feature extraction module comprises
two crucial stages: the first is the extraction of FC-FSH, and the second is the extraction of
FC-TFS. We will introduce these stages in detail in the following parts.
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1. FC Frequency–spatial high-level feature based on CNN

In stage 1 of multi-domain feature extraction, the frequency domain features and
spatial features of EEG signals are captured separately, and then, the hidden correlation
features between the frequency and spatial domains are further extracted based on these
two features. In the extraction of spatial features, unlike most existing studies that consider
the physical connectivity between brain regions, we consider the FC of brain regions, which
can better respond to the different collaborative relationships of the brain in processing
emotional information. The PLV is one of the most important metrics that responds to the
FC of the brain, and captures the spatial features based on the FC by calculating the phase
synchronization between channels [27]. Thus, there are N2

C values of PLV for an EEG signal
containing NC channels. Given the symmetry of the EEG signal, NC(NC + 1)/2 FC spatial
features, Fs, can be obtained. The PLV can be calculated using Equation (1).

PLV =
∣∣∣n−1∑n

t−1 ei(ϕx(t)−ϕy(t))
∣∣∣, (1)

where ϕx(t) and ϕy(t) are the instantaneous phase of signals x(t) and y(t) in the same trial,
respectively. The PLV is in the range [0, 1]. A larger value of PLV indicates a stronger
degree of phase synchronization between the two signals.

Frequency domain analysis can accurately reflect the changes in the EEG’s frequency
and phase. EEG signals include five different frequency bands, namely, delta 0.5–4 Hz,
theta 4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, and gamma > 30 Hz [28]. Thus, a maximum
of NC × 5 band features can be obtained for each EEG signal sample with NC channels.
Frequency bands are often found in different brain regions, and spectral changes among
varying brain regions are associated with emotional responses. We use these frequency
bands to further study the high-level EEG emotion recognition feature associated with the
frequency domain. Fast Fourier transform is used to break down EEG signals x(n) into
constituent sinusoids of H(n) as follows:

H(n) =
N−1

∑
n=0

x(n)e−j 2πnk
N k = 0, 1, . . . , N − 1, (2)

where N is the number of EEG samples and the j is the imaginary unit.
After gaining Fs and Ff , we fuse them to gain a new feature matrix and utilize two

CNN layers sequentially to automatically capture their hidden relationship to further study
the frequency–spatial high-level features. After every CNN layer, a pooling layer and a
dropout layer are connected in series. Therefore, stage 1 contains two convolutional layers,
two pooling layers, and two dropout layers. The rectified linear unit (ReLU) function is
used as the activation function in the convolution operations. Thus, the input data undergo
a convolution operation and an activation operation when passing through a convolution
layer. After each convolutional layer, pooling and dropout layers are added to reduce
the model size and overcome overfitting; the output after this sequence process can be
indicated with the input signal as in Equation (3):

Output = Φdp

(
PL
(

ΦReLu

(
conv

(
Input, (a, b)

))))
, (3)

where Φdp and PL represent the operation in the dropout layer and pooling layer, respec-
tively, ΦReLu is the ReLU function, and (a, b) is the kernel size of the convolutional layer.
Finally, after performing Equation (3) twice, the matrix of FC-FSH can be extracted.

2. FC Temporal–frequency–spatial hybrid feature based on GRU network

In stage 2 of the multi-domain feature extraction, the FC-FSH data extracted in stage
1 are used as the inputs to further capture the deep intrinsic correlation features in the
temporal–frequency–space domain of the EEG, i.e., FC-TFS. GRU networks have shown
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effective performance in extracting the long-term dependencies of signals [29]. As shown
in Figure 2, the internal structure of the GRU contains two important basic components,
the reset gate and the update gate, which control the flow of information. Therefore, GRUs
are used at this stage to extract the temporal dependencies of FC-FSH.
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When the input signal passes a GRU layer, the new state of the input signal at time t
can be calculated as follows:

ht = (1 − zt)⊙ ht−1 + zt ⊙ h̃t, (4)

ht−1 is the previous state, and h̃t is the current candidate state. The update gate zt
decides how much past information to maintain and how much new information to add to
the current state ht. A larger value of zt indicates that more information about the previous
state is brought in to ht. zt and h̃t can be obtained as follows:

zt = σ(Wzxt + Uzht−1 + bz), (5)

h̃t = tanh(Whxt + rt ⊙ (Uhht−1)) + bh, (6)

where xt is the sample vector at time t and rt denotes a reset gate, which controls how
much the previous state contributes to the current candidate state h̃t. The smaller the rt
value, the smaller the contribution from the previous state. If rt = 0, then it will forget the
previous state. The reset gate is updated as follows:

rt = σ(Wrxt + Urht−1 + br), (7)

To efficiently determine the temporal relationship of the frequency–spatial domain
features, two GRU layers are used in stage 2, and each GRU layer is followed by a dropout
layer, which is used to randomly eliminate the connections between the GRU layer and the
subsequent connected layers to prevent overfitting. The output after this sequence process
can be indicated with the input signal as in Equation (8)

Output = Φdp

(
GRU

(
Φdp

(
GRU(Input)

)))
, (8)

2.2.2. Attention Classification Module

Electrical signals generated by diverse emotional experiences in humans occur ir-
regularly across various brain regions of the cerebral cortex [30]. Consequently, not all
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features extracted from EEG signals contribute equally to the classification of emotions.
Some features may carry more diagnostic value than others.

Multiple attentional mechanisms have been proposed, drawing inspiration from the
brain’s attentional mechanisms. These mechanisms effectively identify the importance of
distinct information. Among them, the channel attention system has demonstrated superior
performance in exploring information within signal feature maps by directly assigning
values to different channels. Hence, inspired by the channel attention mechanism, in
this module, we introduce an attention layer following a flatten layer to assign various
weights to different features for representing their contributions to emotion recognition.
The output formula of the attention layer is shown in Equation (9), where W represents the
weight information.

Output = so f tmax(W·Input)·Input, (9)

After the attention layer, the feature sequence remains in the same dimension and
contains weight information. Subsequently, a dense layer and a dropout layer are added to
further integrate the features; their dimension is reduced to prevent overfitting. Finally, a
Softmax layer is applied to recognize emotional states.

2.3. EEG Emotion Recognition Using FC-TFS-CGRU Model

In summary, emotion recognition using the proposed model involves two steps. In the
first step, we input the preprocessed EEG signals into the multi-domain feature extraction
module, where the frequency bands and PLV of the EEG are calculated initially. Then, the
FC-FSH and FC-FSH are extracted in order by the CGRU hybrid structure. After completing
the multi-domain feature extraction, the second step includes placing the extracted features
into the attention classification module. In this step, the features are converted to a 1D
feature sequence with their contribution weights of emotion recognition by a flatten layer
and an attention layer. Then, a dense layer, a dropout layer, and a Softmax layer are added
in series to classify emotion using the 1D feature. The output of the attention classification
module is the final result of the EEG emotion classification using the proposed model. A
flowchart of this process is shown in Figure 3.
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3. Experiment Setup

We utilized the proposed model on subject-dependent emotion recognition and subject-
independent emotion recognition on DEAP and DREAMER to verify the performance of
our model on EEG-based emotion recognition. All emotion recognition experiments were
run in the environment of Python 3.6, TensorFlow = 2.9.0. In addition, some of the figures
are drawn by MATLAB2016b.

3.1. Implementation Detail

In the subject-dependent experiments, we used 10-fold cross-validation [31] to eval-
uate the performance of the proposed and baseline methods. Specifically, the average
performance of the 10-fold validation process was taken as the final experimental results
of one subject, and then, the average accuracy of all the subjects was reported as the final
accuracy. In the subject-independent experiments, we adopted the leave-one-subject-out
cross-validation strategy to evaluate the EEG emotion recognition performance, where the
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training and testing data were from different subjects and no information overlap existed.
This strategy is also consistent with the experimental settings in [32]. Specifically, in the
leave-one-subject-out cross-validation experimental protocol, the EEG data of one subject
were used for testing and the EEG data of the remaining subjects were used for training.
The experiments were repeated such that the EEG data of each subject were used once
as the testing data, and the final classification performance of one emotional label was
reported as the average result of all folds. In addition, Adam [33] and cross-entropy were
used as the optimizer and loss function, respectively. We set the learning rate of Adam to
0.001, the iteration value to 100, and the batch size to 200.

3.2. Performance Evaluation Metrics

The proper quantitative assessment of any deep learning model is crucial in deter-
mining its ability to accomplish the intended task. Accuracy and F1 are the most com-
mon metrics used in classification problems to evaluate the performance of the proposed
model [34,35]. For binary classification problems, accuracy and F1 can be defined as follows:

Accuracy = (TP + TN)/(TP + FP + TN + FN), (10)

F1 = 2 × Precision × Recall
Precision + Pecall

= 2TP/(2TP + FP + FN), (11)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

4. Results

This section details the outcomes of all experiments and analyses the results concisely.

4.1. EEG Emotion Recognition Experiments on DEAP
4.1.1. Subject-Dependent Experiment

After pre-processing, we utilized the proposed model to categorize every subject’s
emotion in the dimensions of arousal, valence, and dominance. The accuracy results on the
DEAP database are shown in Figure 4.
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Figure 4. Accuracy of all subjects in DEAP database.

Figure 4 shows that the proposed model has significant classification accuracy. Each
subject in the DEAP dataset can achieve more than 97% classification accuracy in all three
dimensions. Among them, the classification accuracy of several subjects even reaches 1 on
several dimensions.

Figure 5 shows that all F1-scores are over 0.97. In the same dimension, the classification
accuracy and the F1-score of different subjects are relatively different, which is mainly
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due to the significant individual differences in EEG signals. Distinct individuals respond
differently to the same stimulus material, thereby triggering different emotions.
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The mean values of all the subjects’ results were calculated and compared with those
of the other models (CapsNet [3], gcForest [4], MLF-CapsNet [36], ATCapsLSTM [5], AP-
CapsNet [6], 3DFR-DFCN [37], and ICaps-ResLSTM [38]). The results are shown in Table 2.

Table 2. Comparison of subject-dependent experiments on DEAP.

Models
Accuracy (%)

Arousal Valence Dominance

CpsNet 98.05 98.22 98.44
gcForest 97.69 97.53 97.62

MLF-CapsNet 98.31 97.97 98.33
ATCapsLSTM 97.34 97.17 96.5
AP-CapsNet 93.89 95.04 95.08
3DFR-DFCN 95.32 94.59 94.78

ICaps-ResLSTM 98.06 97.94 98.15
Ours 99.51 99.60 99.59

Our model achieves the highest accuracies in the arousal, valence, and dominance
dimensions at 99.51%, 99.60%, and 99.59%, respectively. It outperforms the least ef-
fective model of each dimension by 5.62%, 5.01%, and 4.81%. The comparison of the
results illustrates that the proposed model has a significant advantage in EEG-based
emotion recognition.

4.1.2. Subject-Independent Experiment

In the subject-independent experiment, each subject was considered as an independent
set. Then, the leave-one-subject-out cross-validation was used to divide the training set
and testing set, where every subject was used as the testing data and the other subjects
were used as the training data. Then, the results of each testing subject were averaged to
gain the final classification result. The compared models were FCN-LA [15], JDA-NN [39],
BiDANN [40], EEGFuseNet [41], TARDGCN [32], RGNN [42], and GECNN [43]. The
results are shown in Table 3.
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Table 3. Comparison of subject-independent experiments on DEAP.

Models
Accuracy (%)

Arousal Valence Dominance

FCN-LA 55.55 53.63 60.31
JDA-NN 54.4 52.44 59.26
BiDANN 54.4 53.34 56.25

EEGFusNet 58.78 56.27 61.69
TARDGCN 58.35 57.73 61.69

RGNN 51.34 50.12 56.32
GECNN 52.97 51.25 52.95

Ours 58.67 65.74 67.05

Table 3 shows that our model outperforms all the compared models with accuracies of
65.74% and 67.05% in the valence and dominance dimensions, respectively. In addition, in
the arousal dimension, the accuracy of our model is 58.67%, which is higher than those of
FCN-LA, JDA-NN, BiDANN, TARDGCN, RGNN, and GECNN by 3.12%, 4.27%, 4.27%,
0.32%, 7.33%, and 5.7%, respectively. The compared results illustrate that the proposed
model can satisfy the requirements of subject-independent emotion recognition and can be
effectively applied to emotion recognition for independent subjects.

4.2. EEG Emotion Recognition Experiments on DREAMER
4.2.1. Subject-Dependent Experiment

All the subjects in DREAMER were categorized into the arousal, valence, and dom-
inance dimensions using the proposed model. The results are shown in Figures 6 and 7.
Figure 6 shows that the proposed model has significant classification accuracy. Each sub-
ject in the DREAMER dataset can achieve more than 95.5% classification accuracy in all
three dimensions.
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Figure 6. Accuracy of all subjects in DREAMER database.

Figure 7 illustrates the corresponding F1-scores of all subjects in the DREAMER
database. They are all higher than 0.955, and the highest value can reach 1. The results indi-
cate that our model exhibits high performance in subject-dependent emotion recognition.

To further verify the advantage of the proposed model, we compared it with several
emotion recognition models (CpsNet, gcForest, MLF-CapsNet, FP-CapsNet [44], 3DFR-
DFCN, GLFANet [45], and ICaps-ResLSTM).

The compared results are shown in Table 4. The findings show that our model
outperforms all the compared models, with accuracies of 98.63%, 98.7%, and 98.71% in
the arousal, valence, and dominance dimensions. It outperforms the least effective model
in each dimension by 8.22%, 9.67%, and 8.82%. The comparison of the results illustrates
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that the proposed model has a significant advantage in EEG-based emotion recognition on
DREAMER database.
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Table 4. Comparison of subject-dependent experiments on DREAMER.

Models
Accuracy (%)

Arousal Valence Dominance

CpsNet 94.29 93.94 94.45
gcForest 90.41 89.03 89.89

MLF-CapsNet 95.26 94.59 95.13
FP-CapsNet 95.86 95.48 95.86
3DFR-DFCN 91.3 93.15 92.04

GLFANet 94.82 94.57 94.51
ICaps-ResLSTM 94.97 94.97 94.96

Ours 98.63 98.70 98.71

4.2.2. Subject-Independent Experiment

For the DREAMER database, the compared models are FCN-LA, JDA-NN, BiDANN,
ADDA-TCN [46], HMNN [47], TARDGCN [32], and GECNN. The compared results are
shown in Table 5.

Table 5. Comparison of subject-independent experiments on DREAMER.

Models
Accuracy (%)

Arousal Valence Dominance

FCN-LA 62.46 60.63 57.05
JDA-NN 65.03 60.55 63.26
BiDANN 63.26 59.98 65.36

ADDA-TCN 63.69 66.56 -
HMNN 64.49 62.51 -

TARDGCN 67.98 61.84 70.28
GECNN 61.11 53.7 57.94

Ours 75.65 75.89 71.71

Table 5 shows that our model outperforms all the compared models, with accuracies of
75.65%, 75.89%, and 71.71% and 14.54%, 22.19%, and 14.66% higher than the worst model in
the arousal, valence, and dominance dimensions. The comparison of the results illustrates
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that the proposed model can satisfy the requirements of subject-independent emotion
recognition and can be effectively applied to emotion recognition for independent subjects.

4.3. Network Visualization

To better understand the feature extraction capability of the model, the extracted
features were visualized using the nonlinear dimensionality reduction algorithm t-SNE [48].
Taking the arousal dimension of S01 from the DEAP dataset and S15 from DREAMER
in subject-dependent emotion recognition as examples, the high-dimensional features
extracted by the main modules were mapped to 2D features. The results are shown in
Figures 8 and 9, where the blue dots represent the feature data corresponding to high
arousal (High), and the red dots represent the feature data corresponding to the low arousal
class (Low). In both Figures 8 and 9, (a) shows the input feature distributions of the High
and Low classes in the arousal dimension, (b) shows the feature (FC-FSH) distributions of
the output from the last CNN layer of the FC-TFS-CGRU model, (c) shows the feature (FC-
TFS) distributions of the output from the last GRU layer of the FC-TFS-CGRU model, and
(d) shows the feature distributions of the output after the attention layer and dense layer
of the FC-TFS-CGRU model. In addition, (d) in both Figures 8 and 9 shows that there is
almost no misclassification between the two classes, and they can be clearly distinguished.
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(c) the output of the FC-TFS extracted layer; (d) the output after the attention and dense layers.

4.4. Ablation Study

The proposed FC-TFS-CGRU method includes three important elements, namely, a
PLV feature based on functional connectivity, a CGRU hybrid structure, and an attention
classification module. The combination of these three elements leads to the success of
the classification tasks. Ablation studies were conducted to further understand which
element contributes considerably to the improvement of classification results. For better
representation, we used model 1 and model 2 to represent the regular CNN and reg-
ular GRU, respectively. Model 3 represents our model without the PLV and attention
elements, model 4 indicates our model without the PLV only, and model 5 illustrates
our model without the attention element only. The details of all models are presented
in Table 6. Then, two ablation experiments were conducted on the DEAP database for
subject dependence and subject independence. In all ablation experiments, the signals
were segmented by sliding windows with a width of 2 s and moving step of 0.125 s.
Five-fold cross-validation and leave-one-subject-out cross-validation were used to evalu-
ate the EEG emotion recognition performance in the subject-dependent experiment and
subject-independent experiment, respectively.
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Table 6. Ablation experiment models.

Models PLV CGRU Attention

Model 1 × × ×
Model 2 × × ×
Model 3 ×

√
×

Model 4 ×
√ √

Model 5
√ √

×
Ours

√ √ √

“×” in Table 6 represents the model on the left that doesn’t contain this element, while “
√

” represents the model
that contains this element. For example, Model 1 is a regular CNN model that doesn’t contain PLV, CGRU
and Attention.

4.4.1. Ablation Experiment 1: Subject-Dependent

The ablation results of the subject-dependent emotion recognition are shown in Table 7.
All accuracies increased after adding any of the three components of the regular GRU. This
finding indicates that all components contribute to the improvement of the EEG-based
emotion classification for the subject-dependent experiment. Specifically, as shown in
Table 6, the accuracy and F1 of model 3 are higher than those of model 1 and model 2,
indicating that the hybrid CGRU structure outperforms the regular CNN and GRU in this
task. In addition, the results of comparing model 3 with model 4 indicate that the attention
module increases the accuracy and F1 by 0.89%, 0.55%, and 0.47% and 0.89%, 2.29%, and
0.75% for arousal, valence, and dominance. Moreover, the most remarkable increases for
the three dimensions are observed when the function connectivity feature is added from
model 3, with increments of 9.02%, 8.69%, and 7.48% and 8.89%, 10.64%, and 7.28%. Finally,
our model with three parts outperformed model 5, with accuracy increments of 0.51%,
2.57%, and 0.68% and F1 increments of 0.64%, 2.37%, and 1.2% for the arousal, valence, and
dominance dimensions.

Table 7. Ablation experiment for subject-dependent emotion classification.

Model
Accuracy/F1 (%)

Arousal Valence Dominance

Model 1 84.31/83.34 82.17/80.16 83.01/83.93
Model 2 86.52/85.02 82.96/84.96 86.72/86.71
Model 3 90.11/90.11 88.42/86.47 91.44/91.44
Model 4 91.0/91.01 88.97/88.76 91.91/92.19
Model 5 99.13/99 97.11/97.11 98.92/98.72

Ours 99.64/99.64 99.68/99.48 99.60/99.92

4.4.2. Ablation Experiment 2: Subject-Independent

Table 8 shows the contribution of different modules to the emotional recognition
ability of our model for subject-independent experiments.

Table 8. Ablation results for subject-independent emotion classification.

Model
Accuracy/F1 (%)

Arousal Valence Dominance

Model 1 55.12/54.56 62.42/54.24 61.09/62.60
Model 2 55.36/51.94 63.15/52.49 62.94/60.93
Model 3 55.3/56.31 63.58/54.90 65.45/61.46
Model 4 56.27/54.97 65.34/55.56 66.38/62.35
Model 5 55.7/53.07 65.74/54.96 66.03/62.63

Ours 58.67/56.56 65.74/56.24 67.05/63.26
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Similar to ablation experiment 1, the results in Table 8 show that all components con-
tribute to the improvement of the EEG-based emotion classification results for the subject-
independent experiment. Overall, decreases in the accuracies of the three dimensions are
observed when the attention module is removed from our model, with decrements of
2.97%, 0, 1.02% for accuracy and 3.49%, 1.28%, and 0.63% for F1. When the PLV is removed
from our model, the decrements are 2.4%, 0.4%, and 0.67% for accuracy and 1.59%, 0.68%,
and 0.91 for F1. When both the PLV and the attention module are removed, the decrements
can reach 3.37%, 2.16%, and 1.6% for accuracy, and 0.25%, 1.34%, and 1.8% for F1.

5. Conclusions

In this study, we propose an FC-TFS-CGRU model for EEG-based emotion recognition.
A new multi-domain feature grasping method is introduced, and an attention mechanism
is integrated to improve the accuracy of emotion recognition. First, we use a PLV to
obtain the spatial features of EEG based on the FC of the brain region, and integrate the
spatial features with the frequency band features of the EEG to achieve a new feature
matrix. Then, a CNN is used to further extract the deep features in the frequency–spatial
domain. Second, considering the obtained feature as a sequence, the GRU is introduced.
This approach can effectively mine the long-term dependency of the sequence to obtain
the temporal information of frequency–space domain features over time, i.e., FC-TFS.
Third, during classification, considering the various contributions of different features to
emotion recognition, an attention layer is introduced to assign different weights to the
captured features, and then, complete the emotional state recognition. Finally, considerable
experiments of subject-dependent and subject-independent scenarios are conducted on
the DEAP and DREAMER databases to evaluate the performance of the proposed model.
The results demonstrate that the proposed feature abstraction method greatly improved
the emotion recognition accuracy. Moreover, our model outperforms the state-of-the-art
models in EEG-based emotion recognition.
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Abbreviations

CGRU Convolutional neural network and gated recurrent unit
FC Functional connectivity
PLV Phase-locking value
FC-FSH Functional-connectivity-based frequency–spatial high-level feature

FC-TFS
Functional-connectivity-based temporal–frequency–spatial
hybrid feature

FC-TFS-CGRU
Temporal–frequency–spatial EEG emotion recognition model based on
an FC-and-CGRU hybrid architecture
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