Analysis of Fluid Replacement in Two Fluidic Chambers for Oblique–Incidence Reflectivity Difference (OI-RD) Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry of Fluidic Chambers
2.2. Simulation Software and Content of Simulations
2.3. Mesh, Boundary Conditions, and Initial Conditions
3. Results
3.1. Simulation for the Large Fluidic Chamber
3.1.1. Distribution of Protein Concentration on Microarray Surface after Flowing Protein at an Equivalent Volume to the Large Fluidic Chamber
3.1.2. Minimal Volumes of Protein Solution for the Large Fluidic Chamber
3.1.3. Minimal Volumes of Buffer Solution for the Large Fluidic Chamber
3.1.4. Minimal Volumes of Protein Solution for Large Fluidic Chamber with Various Depths
3.2. Simulation for the Small Fluidic Chamber
3.2.1. Minimal Volumes of Protein Solution for the Small Fluidic Chamber
3.2.2. Minimal Volumes of Buffer Solution for the Small Fluidic Chamber
3.2.3. Minimal Volumes of Protein Solution for Small Fluidic Chambers with Various Depths
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.K.; Mittal, S.; Das, M.; Saharia, A. Optical biosensors: A decade in review. Alex. Eng. J. 2023, 67, 673–691. [Google Scholar] [CrossRef]
- Akgönüllü, A.; Denizli, A. Recent advances in optical biosensing approaches for biomarkers detection. Biosens. Bioelectron. X 2022, 12, 100269. [Google Scholar] [CrossRef]
- Ding, Y.; Xing, D.; Fei, Y.; Lu, B. Emerging degrader technologies engaging lysosomal pathways. Chem. Soc. Rev. 2022, 51, 8832–8876. [Google Scholar] [CrossRef] [PubMed]
- Kamat, V.; Rafique, A. Exploring sensitivity & throughput of a parallel flow SPRi biosensor for characterization of antibody-antigen interaction. Anal. Biochem. 2017, 525, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999, 14, 599–624. [Google Scholar] [CrossRef]
- Stallard, C.P.; McDonnell, K.A.; Onayemi, O.D.; O’Gara, J.P.; Dowling, D.P. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases 2012, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Byrne, T.M.; Trussler, S.; McArthur, M.A.; Lohstreter, L.B.; Bai, Z.; Filiaggi, M.J.; Dahn, J.R. A new simple tubular fluidic chamber for use with variable angle spectroscopic ellipsometry: A high throughput in situ protein adsorption study. Surf. Sci. 2009, 603, 2888–2895. [Google Scholar] [CrossRef]
- Domínguez-Vega, E.; Haselberg, R.; Iperen, D.V.; Kool, J.; Somsen, G.W.; de Jong, G. Development of a surface plasmon resonance sensor for coupling to capillary electrophoresis allowing affinity assessment of protein mixture components. Sens. Actuators B-Chem. 2018, 254, 1040–1047. [Google Scholar] [CrossRef]
- Wang, D.-S.; Fan, S.-K. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors 2016, 16, 1175. [Google Scholar] [CrossRef]
- Ogielo, W.; Wormeester, H.; Eichhorn, K.J.; Wessling, M.; Benes, N.E. In situ ellipsometry studies on swelling of thin polymer films: A review. Prog. Polym. Sci. 2014, 42, 42–78. [Google Scholar] [CrossRef]
- Li, K.; Wang, S.; Wang, L.; Yu, H.; Jing, N.; Xue, R.; Wang, Z. Fast and sensitive ellipsometry-based biosensing. Sensors 2017, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, A.; Kozma, P.; Hulber, T.; Kurunczi, S.; Horvath, R.; Petrik, P.; Muskotal, A.; Vonderviszt, F.; Hos, C.; Fried, M.; et al. In situ spectroscopic ellipsometry study of protein immobilization on different substrates using liquid cells. Sens. Lett. 2010, 8, 730–735. [Google Scholar] [CrossRef]
- Liu, C.; Cui, D.; Li, H. A hard-soft microfluidic-based biosensor fluidic chamber for SPR imaging application. Biosens. Bioelectron. 2010, 26, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Capelli, D.; Scognamiglio, V.; Montanari, R. Surface plasmon resonance technology: Recent advances, applications and experimental cases. Trends Analyst. Chem. 2023, 163, 117079. [Google Scholar] [CrossRef]
- Tokel, O.; Yildiz, U.H.; Inci, F.; Durmus, N.G.; Ekiz, O.O.; Turker, B.; Cetin, C.; Rao, S.; Sridhar, K.; Natarajan, N.; et al. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 2015, 5, 9152. [Google Scholar] [CrossRef]
- Gaspar, A.; Gomez, F.A. Development of an ultra-low volume fluidic chamber for surface plasmon resonance detection in a miniaturized capillary electrophoresis system. Electrophoresis 2012, 33, 1723–1728. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Meng, Y.-H.; Ying, P.-Q.; Qi, C.; Jin, G. A label-free protein microfluidic array for parallel immunoassays. Electrophoresis 2006, 27, 4078–4085. [Google Scholar] [CrossRef]
- Yakes, B.J.; Bujis, J.; Elliott, C.T.; Campbell, K. Surface plasmon resonance biosensing: Approaches for screening and characterizing antibodies for food diagnostics. Talanta 2016, 156–157, 55–63. [Google Scholar] [CrossRef]
- Biacore 2000 Instrument Handbook; Version AD; Biacore AB: Uppsala, Sweden, 2001; pp. 18–22.
- Biacore X100 Handbook; Biacore AB: Uppsala, Sweden, 2023; p. 44.
- Karlsson, C.A.-C.; Wahlgren, M.C.; Trägardh, A.C. Non-invasive monitoring of protein adsorption and removal in a turbulent fluidic chamber. Colloids Surf. B Biointerfaces 1999, 20, 9–25. [Google Scholar] [CrossRef]
- Zhu, C.; Ge, B.; Chen, R.; Zhu, X.; Mi, L.; Ma, J.; Wang, X.; Zheng, F.; Fei, Y. Fast focal point correction in prism-coupled total internal reflection scanning imager using an electronically tunable lens. Sensors 2018, 18, 524. [Google Scholar] [CrossRef]
- Guo, X.; Deng, Y.; Zhu, C.; Cai, J.; Zhu, X.; Landry, J.P.; Zheng, F.; Cheng, X.; Fei, Y. Characterization of protein expression levels with label-free detected reverse phase protein arrays. Anal. Biochem. 2016, 509, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, R.; Zhu, Y.; Wang, X.; Zhu, X.; Mi, L.; Zheng, F.; Fei, Y. Calibration of oblique-incidence reflectivity difference for label-free detection of a molecular layer. Appl. Opt. 2016, 55, 9459–9466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, M.; Li, H.; Mai, X.; Sun, J.; Mi, L.; Ma, J.; Zhu, X.; Fei, Y. Detection speed optimization of the OI-RD microscope for ultra-high throughput screening. Biomed. Opt. Express 2023, 14, 2386–2399. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, C.; Wang, Z.; Zhu, C.; Li, J.; Sha, T.; Ma, L.; Gao, C.; Yang, Y.; Sun, Y.; et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 2019, 575, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zheng, M.; Wu, X.; Zhang, H.; Su, H.; Dang, Y.; Ma, M.; Wang, F.; Xu, J.; Chen, L.; et al. CDK inhibitor Palbociclib targets STING to alleviate autoinflammation. EMBO Rep. 2022, 23, e53932. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Chen, R.; Zhu, C.; Ge, B.; Zhu, X.; Mi, L.; Ma, J.; Han, C.; Chen, H.; Fei, Y. Label-free microarray-based binding affinity constant measurement with modified fluidic arrangement. BioChip J. 2018, 12, 11–17. [Google Scholar] [CrossRef]
- Sanuade, O.A.; Amosun, J.O.; Fagbemigun, T.S.; Oyebamiji, A.R.; Oyeyemi, K.D. Direct current electrical resistivity forward modeling using comsol multiphysics. Model. Earth Syst. Environ. 2021, 7, 117–123. [Google Scholar] [CrossRef]
- Cardiff, M.; Kitanidis, P.K. Efficient solution of nonlinear, underdetermined inverse problems with a generalized PDE model. Comput. Geosci. 2008, 34, 1480–1491. [Google Scholar] [CrossRef]
- COMSOL Multiphysics User’s Guide; Version 4.3; COMSOL AB: Stockholm, Sweden, 2012; pp. 37–55.
- Tyn, M.T.; Gusek, T.W. Prediction of diffusion coefficients of proteins. Biotechnol. Bioeng. 1989, 35, 327–338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xu, M.; Mai, X.; Zhang, H.; Zhu, X.; Mi, L.; Ma, J.; Fei, Y. Analysis of Fluid Replacement in Two Fluidic Chambers for Oblique–Incidence Reflectivity Difference (OI-RD) Biosensor. Sensors 2024, 24, 2000. https://doi.org/10.3390/s24062000
Li H, Xu M, Mai X, Zhang H, Zhu X, Mi L, Ma J, Fei Y. Analysis of Fluid Replacement in Two Fluidic Chambers for Oblique–Incidence Reflectivity Difference (OI-RD) Biosensor. Sensors. 2024; 24(6):2000. https://doi.org/10.3390/s24062000
Chicago/Turabian StyleLi, Haofeng, Mengjing Xu, Xiaohan Mai, Hang Zhang, Xiangdong Zhu, Lan Mi, Jiong Ma, and Yiyan Fei. 2024. "Analysis of Fluid Replacement in Two Fluidic Chambers for Oblique–Incidence Reflectivity Difference (OI-RD) Biosensor" Sensors 24, no. 6: 2000. https://doi.org/10.3390/s24062000
APA StyleLi, H., Xu, M., Mai, X., Zhang, H., Zhu, X., Mi, L., Ma, J., & Fei, Y. (2024). Analysis of Fluid Replacement in Two Fluidic Chambers for Oblique–Incidence Reflectivity Difference (OI-RD) Biosensor. Sensors, 24(6), 2000. https://doi.org/10.3390/s24062000