0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing
Abstract
:1. Introduction
2. Circuit Description
2.1. Multiple-Input Fully-Differential OTA
2.2. Fifth-Order Chebyshev Low-Pass Filter
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballo, A.; Grasso, A.D.; Pennisi, S. Active load with cross coupled bulk for high-gain high-CMRR nanometer CMOS differential stages. Int. J. Circuit Theory Appl. 2019, 47, 1700–1704. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Pennisi, S.; Susinni, G. A 0.3-V 8.5-μ a bulk-driven OTA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 1444–1448. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Pennisi, S. 0.4-V, 81.3-nA bulk-driven single-stage CMOS OTA with enhanced transconductance. Electronics 2022, 11, 2704. [Google Scholar] [CrossRef]
- Woo, K.-C.; Yang, B.-D. A 0.25-V rail-to-rail three-stage OTA with an enhanced DC gain. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1179–1183. [Google Scholar] [CrossRef]
- Centurelli, F.; Sala, R.D.; Monsurró, P.; Tommasino, P.; Trifiletti, A. An ultra-low-voltage class-AB OTA exploiting local CMFB and body-to-gate interface. AEU-Int. J. Electron. Commun. 2022, 145, 154081. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Pennisi, S. A 0.6 V bulk-driven class-ab two-stage OTA with non-tailed differential pair. J. Low Power Electron. Appl. 2023, 13, 24. [Google Scholar] [CrossRef]
- Gangineni, M.; Ramirez-Angulo, J.; Paul, A.; Molinar-Solis, J.E.; Diaz-Sanchez, A.; Huerta-Chua, J.; Lavrova, O. ±0.15 V three-stage bulk-driven AB OTA with 36 MHzpF/µW and 55(V/µs)pF/µW small and large-signal figures of merit. Electron. Lett. 2023, 49, e13005. [Google Scholar] [CrossRef]
- Kumngern, M.; Aupithak, N.; Khateb, F.; Kulej, T. 0.5 V fifth-order Butterworth low-pass filter using multiple-input OTA for ECG applications. Sensors 2020, 20, 7343. [Google Scholar] [CrossRef]
- Khateb, F.; Prommee, P.; Kulej, T. MIOTA-based filters for noise and motion artifact reductions in biosignal acquisition. IEEE Access. 2022, 10, 14325–14338. [Google Scholar] [CrossRef]
- Reed, R.D.; Geiger, R.L. A multiple-input OTA circuit for neural networks. IEEE Trans. Circuits Syst. 1989, 36, 767–770. [Google Scholar] [CrossRef]
- Wyszynski, A.; Schaumann, R. Using multiple-input transconductors to reduce number of components in OTA-C filter design. Electron. Lett. 1992, 28, 217–220. [Google Scholar] [CrossRef]
- Ramirez-Angulo, J.; Urquidi, C.A.; Gonzalez-Carvajal, R.; Torralba, A.; Lopez-Martin, A. A new family of very low-voltage analog circuits based on quasi-floating-gate transistors. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2003, 50, 214–220. [Google Scholar] [CrossRef]
- Lopez-Martin, A.J.; Algueta, J.M.; Garcia-Alberdi, C.; Acosta, L.; Carvajal, R.G.; Ramirez-Angulo, J. Design of micropower class AB transconductors: A systematic approach. Microelectron. J. 2013, 44, 920–929. [Google Scholar] [CrossRef]
- Martincorena-Arraiza, M.; De La Cruz-Blas, C.A.; Lopez-Martin, A.; Carlosena, A. Micropower class AB low-pass analog filter based on the super-source follower. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3684–3688. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F. Bulk-driven adaptively biased OTA in 0.18 um CMOS. Electron. Lett. 2015, 51, 458–460. [Google Scholar] [CrossRef]
- Chatterjee, S.; Tsividis, Y.; Kinget, P. 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circuits 2005, 40, 2373–2387. [Google Scholar] [CrossRef]
- Akita, I.; Wada, K.; Tadokoro, Y. A 0.6-V dynamic biasing filter with 89-db dynamic range in 0.18-μm CMOS. IEEE J. Solid-State Circuits 2009, 44, 2790–2799. [Google Scholar] [CrossRef]
- Prommee, P.; Thongdit, P.; Angkeaw, K. Log-domain high-order low-pass and band-pass filters. AEU-Int. J. Electron. Commun. 2017, 79, 234–242. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Lee, S.-Y. A fifth-order Butterworth OTA-C LPF with multiple-output differential-input OTA for ECG applications. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 421–425. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Wang, C.-P.; Chu, Y.-S. Low-voltage OTA–C filter with an area-and power-efficient OTA for biosignal sensor applications. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 56–67. [Google Scholar] [CrossRef]
- Grech, I.; Micallef, J.; Azzopardi, G.; Debono, C.J. A low voltage wide-input-range bulk-input CMOS OTA. Analog Integr. Circuits Signal Process. 2005, 43, 127–136. [Google Scholar] [CrossRef]
- Pinto, P.M.; Ferreira, L.H.C.; Colletta, G.D.; Braga, R.A.S. A 0.25-V fifth-order Butterworth low-pass filter based on fully differential difference transconductance amplifier architecture. Microelectron. J. 2019, 92, 104606. [Google Scholar] [CrossRef]
- Ghasemi, R.; Aminzadeh, H.; Ballo, A. Ladder-type Gm-C filters with improved linearity. IEEE Access. 2023, 11, 41503–41513. [Google Scholar] [CrossRef]
Transistor | W/L (µm/µm) |
---|---|
M1, M2 | 2 × 20/3 |
M11, M12 | 20/3 |
Mb, M8 | 5/1 |
M3–M8, M9–M12 | 20/1 |
M3c–M8c | 20/2 |
M9c, M11c | 2 × 10/3 |
M10c1, M10c2, M11c1, M11c2 | 10/3 |
Mb1, Mb2 | 5/6 |
CB = 0.5 pF |
Symbol | This Work | Sensors (2020) [8] | IEEE ACCESS (2022) [9] | IEEE TCAS-II (2018) [19] | IEEE TBioCAS (2019) [20] | MEJ (2019) [22] | IEEE ACCESS (2023) [23] |
---|---|---|---|---|---|---|---|
VDD [V] | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 | 0.25 | 1.0 |
Tech [μm] | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.13 | 0.065 |
VTH [V] | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.44 | 0.3 |
Order (N) | 5 | 5 | 3 | 5 | 5 | 5 | 5 |
Filter type | Chebyshev | Butterworth | Chebyshev | Butterworth | Butterworth | Butterworth | Butterworth |
Filtering function | LPF/BPF | LPF | BPF | LPF | LPF | LPF | LPF |
No. of active device | 5 MI-OTAs | 5-MI-OTAs | 6-MI-OTAs | 6 OTAs | 6 OTAs | 6 FDDTAs | 11 OTAs |
Architecture | Gm-C fully diff. | Gm-C fully diff. | Gm-C single-end | Gm-C fully diff. | Gm-C fully diff. | Gm-C fully diff. | Gm-C fully diff. |
MOST technique | MIBD | MIGD | MIBD | GD | GD | GD | GD |
BW/central freq. [Hz] | 250 | 250 | 250 | 250 | 250 | 100 | 1 × 106 |
DR [dB] | 53.2 | 63.24 | 60.4 | 49.9 | 61.2 | 57 | 50.54 |
Power (P) [nW] | 60 | 34.65 | 60 | 350 | 41 | 603 | 167 × 103 |
FOM = P/(N × BW × DR) [pJ] | 0.9 | 0.43 | 1.32 | 0.896 | 0.0286 | 1.7 | 0.66 |
LV operation capability = VTH/VDD × 100 [%] | 100 | 100 | 100 | 50 | 50 | 176 | 30 |
Area [mm2] | NA | NA | 0.036 (off chip cap.) | 0.12 | 0.14 | 0.67 (off-chip cap.) | 0.0164 |
Obtained results | Simulated | Simulated | Post-layout | Measured | Measured | Measured | Measured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulej, T.; Khateb, F.; Kumngern, M. 0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing. Sensors 2024, 24, 2150. https://doi.org/10.3390/s24072150
Kulej T, Khateb F, Kumngern M. 0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing. Sensors. 2024; 24(7):2150. https://doi.org/10.3390/s24072150
Chicago/Turabian StyleKulej, Tomasz, Fabian Khateb, and Montree Kumngern. 2024. "0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing" Sensors 24, no. 7: 2150. https://doi.org/10.3390/s24072150
APA StyleKulej, T., Khateb, F., & Kumngern, M. (2024). 0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing. Sensors, 24(7), 2150. https://doi.org/10.3390/s24072150