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Abstract: Conventional DC-DC boost converters have played a vital role in electric vehicle (EVs)
powertrains by enabling the necessary voltage to increase to meet the needs of electric motors.
However, recent developments in high-gain converters have introduced new possibilities with
enhanced voltage amplification capabilities and efficiency. This study discusses and evaluates
the state-of-the-art high-gain DC-DC converters for EV applications based on the Quadratic Boost
Converter (QBC). Research into innovative topologies has increased in response to the increasing
demand for efficient and high-performance power electronic converters in the rapidly expanding
EV industry. Due to its ability to provide more significant voltage gains than conventional boost
converters, the QBC has become a viable option for meeting the unique requirements of EV power
systems. This survey focuses on the efficiency, power density, and overall performance parameters of
QBC-based high-gain converters. The literature review provides a foundation for comprehending
power electronics converters’ trends, challenges, and opportunities. The acquired knowledge can
enhance the design and optimization of high-gain converters based on the QBC, thereby fostering
more sustainable and efficient power systems for the expanding electric mobility industry. In the
future, the report suggests that investigating new high-gain converter design methodologies will
reduce component stress and enhance the intact system efficiency.

Keywords: electric vehicle (EV); boost converter; quadratic boost converter (QBC); high-gain converter;
boosting techniques

1. Introduction

Promoting an electric vehicle (EV)-based transportation system in India is being
undertaken by the government, industry, and academia to mitigate daily transportation
emissions and minimize environmental hazards. EVs use renewable energy sources or the
electric grid for charging, accounting for approximately 25–30% of India’s total greenhouse
gas emissions [1]. Governments across the globe are enacting subsidies and legislation to
foster the adoption of EVs, as they are recognized for their potential to yield various societal
advantages, including heightened safety standards, enhanced public health outcomes, a
robust domestic economy, and a more environmentally sustainable future. Fossil fuels
present substantial hazards to the Earth’s ecosystem, prompting numerous countries to shift
towards renewable energy sources to achieve environmental sustainability and economic
feasibility [2].

Human survival depends on maintaining a habitable environment, and fossil fuels
have a finite supply. EVs are being promoted as a viable transportation option because
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of their efficiency and lack of environmental impact. As more people learn about the
advantages of EVs, that number is projected to rise to over 100 million by 2030. As Asian
nations work to increase EV uptake, decrease CO2 emission reported in Figure 1, and entice
investors, the region’s EV sector stands to flourish. There will be 27,81,69,631 conventional
cars and 13,34,381 EVs on Indian roads by 2022. The e-Vahan portal is managed by the
Ministry of Road Transport and Highways and contains detailed information on EV sales
in India and worldwide [3,4]. The social, environmental, and economic potential gains
from EVs are shown in Figure 2.
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EVs’ social, environmental, and financial benefits have contributed to their rising
popularity over the past few years. Two types of energy storage devices are typically
used in electric and hybrid electric designs: the “main energy system” (MES) and the
“rechargeable energy storage system” (RESS). While MES increases fuel efficiency, RESS
improves acceleration and regenerative braking. As the output voltage of these devices
varies with load or state of charge, vehicle designers face significant challenges when
integrating energy storage/supply devices with a traction drive [5]. The demand for power
electronics converters has grown significantly along with the use of EVs. Power electronics
converters are essential for EVs because they convert energy from a power source into a
form suitable for their electric drive system. It is absurd to think EVs could run without
power electronics converters. This significance has sparked an explosion in research into
power electronics converters for EVs across the globe. EVs and the infrastructure that
supports their charging use converters of all kinds, such as DC-DC, DC-AC, and AC-DC.
In this case, DC-DC converters are more critical for integrating EV driving systems with
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energy sources and storage systems [6]. The required power electronics converter for an
electric car and its charging infrastructure is illustrated in Figure 3.
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The various EV power supply designs highlight the need for a DC/DC converter to
connect the FC or battery module to the DC link. One type of power converter in electrical
engineering is the DC-to-DC converter. This electric circuit momentarily stores the energy
input and then releases it to the output at a different voltage. Some devices that store
energy use electric fields, such as capacitors, while others use magnetic fields, such as
inductors and transformers. To manage the DC-link voltage and increase the Fuel Cell
voltage, a DC/DC converter is employed during fuel cell interfacing [7,8]. Several different
topologies for DC-DC converters have been developed, some of which have direct energy
conversion mechanisms while others do not. But, there are a few things that must be
considered in the design for use in automobiles:
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Adjusting converter input voltage significantly affects DC/DC converter power flow
management.

Modern electronic applications use a broad array of DC-DC converters to modify
input voltages to satisfy operating needs dynamically. These converters are integral to
electronic systems, which may be categorized into isolated and non-isolated varieties. To
ensure that changes on the input side do not impact the output, isolated DC-DC converters
utilize transformers to achieve galvanic isolation between the input and output. Because
it has a ground, the converter’s input is entirely separate from the output. Depending on
the setup, the output polarity can provide either positive or negative numbers [9]. Despite
their superior electrical safety, isolated converters come with a price tag, a weight penalty,
and many other issues, including thermal effects, core saturation, leakage inductance,
dimensional constraints, and high voltage spikes in switches. On the other hand, since
non-isolated DC-DC converters lack galvanic isolation, changes in the input and output are
directly correlated. Despite having fewer components than their isolated counterparts, they
still require careful correction to perform at their best. High-duty cycle ratios, insufficient
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voltage gain, and the need for additional circuitry are problems. However, non-isolated
DC-DC converters perform better than their isolated counterparts in applications related
to EVs. Scientists are striving to enhance the efficiency and functionality of non-isolated
DC-DC converters to progress their technological capabilities. In non-isolated converters,
every converter topology has its pros and cons. To illustrate, the DC/DC boost converter
needs to improve regarding electrical isolation. Furthermore, the switch is subjected to
intense strain due to the significant magnitude difference between the input and output.
The topology is bulky and heavy and has problems with high currents and voltage ripples.
A straightforward integrated multilevel DC/DC converter topology can reduce inductors’
volume and weight and increase their efficiency by lowering input and output current and
voltage ripples. However, when a large voltage step-up ratio is needed, these structures
fail to operate effectively [10,11].

Scientists have devoted a great deal of effort to studying DC-DC boost converters that
have been customized and improved; now, they are shifting their focus to QBCs, which are
converters that have a substantial gain. This tactical adjustment is the consequence of a
detailed examination of the shortcomings of standard DC-DC boost converters. Although
their conventional counterparts have demonstrated efficacy in some applications, they
require assistance achieving high voltage gain. Designed specifically for high gain, QBC
offers a novel way around these limitations [12]. The exceptional capability of QBCs to
circumvent the limitations of conventional designs is a significant factor in their immense
popularity. Because of their unique design, these converters minimize duty cycles while
achieving significantly higher voltage improvements. QBCs are ideal for EVs because they
increase range while reducing power consumption. Their high efficiency in amplifying
low voltage makes them a perfect match for renewable energy sources such as solar panels
and fuel cells, as well as the fluctuating power needs of EVs. The electric car industry
has transitioned from traditional QBC to high-gain quadratic boost converters (HG-QBC)
due to optimization, flexibility, and performance demands. Even though it can efficiently
increase voltage, the quadrature boost converter might need some updates to meet the
requirements of current systems [13]. To overcome these restrictions, high-gain quadrature
boost converters offer several significant advantages. One important reason is the need
to increase the efficiency of power conversion. High-gain quadrature boost converters
are designed with this principle in mind to improve system performance and reduce
energy loss during voltage boosting. The most obvious applications for this efficiency
boost rely heavily on power savings, such as battery-operated devices or renewable energy
systems [14].

The low voltage generated by the hydrogen fuel cell is converted into the high voltage
needed by the high-gain DC-DC converter, as seen in Figure 4. Different configurations for
non-isolated HG-QBC have been extensively discussed in the literature. There are various
methods and components used in this field, such as voltage multipliers, cascade connection
approaches, switching inductors, and conventional and customized QBCs. Additional
techniques have been documented to enhance voltage amplification and develop novel
boost converters with high gain, building upon the principles of QBC. A notable limitation
of traditional QBCs and conventional boost converters is that the output voltage and the
voltage stress across the switch are equal. This calls for stronger device requirements [15].
There have been various proposed topologies to tackle these issues, and among them, boost
topologies based on voltage multiplier cells and switch capacitors have gained popularity
for their proven practicality and effectiveness [16,17]. For high-voltage applications, the
authors of [18] propose a QBC configuration that includes an inductor and a switched
capacitor to achieve a higher gain. Numerous reports have been made on DC-DC converters
utilizing switching capacitors [19,20]. A significant concern regarding this boost converter
based on a switched capacitor voltage multiplier cell (VMC) is its high inrush current
tendency. Despite its straightforward design and impressive ability to provide a substantial
voltage gain while occupying minimal space, this issue must be addressed. The authors
propose a modified boost converter design in [21], incorporating switching inductors and a
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VMC. This particular design aims to enhance efficiency and reduce stress on the capacitors.
The converter can be used in applications that involve solar photovoltaics. There are
various topologies proposed in [22] that utilize switched capacitors and switched inductors.
An ideal high-gain DC-DC converter should possess certain characteristics for optimal
performance. These include a shared ground, a consistent input current, a minimal number
of components, and minimal strain on the passive components and switching devices
in terms of voltage and current. The method is described in [23] with an arrangement
that combines series and parallel elements in an interleaved manner. The interleaved
configuration is a crucial factor in achieving high gain. However, as the number of switches
increases, so does the gain. A highly efficient converter that can operate in triple-duty
mode is recommended in reference [24]. However, achieving a significant gain necessitates
the use of multiple switches. The voltage gain of the converter is enhanced by combining
regular boost converters with Luo converters, as shown in [25]. Utilizing a significant
quantity of switches enables the mitigation of voltage stress on semiconductor components.
This cascaded boost converter has the potential to improve its efficiency by addressing the
significant conduction losses associated with the input inductors. To minimize conduction
losses, the authors of [26] suggest an enhanced cascaded boost converter. A cutting-edge
design greatly minimizes the current ripple value of the input inductor. This leads to a
decrease in current ripple, which in turn reduces the losses in the input inductor due to
conduction. An interconnected inductor and a VMC [27]—comprised of three capacitors
and two diodes—are utilized together with a standard QBC to attain a substantial voltage
increase. The architecture demonstrates five different operational situations within a single
switching period. Due to the intricate complexity of the system, developing the controller
for a switching regulator using the topology above will be quite challenging. To meet the
requirements for fuel cell and electric car applications, DC-DC converters need to possess a
high gain, minimal stress across capacitors, and a continuous input current [28,29]. In [30],
a method called the voltage-lifting (VL) approach is employed to enhance the voltage and
gain of the QBC. A highly effective approach to improve the voltage gain of the converter
is by utilizing the voltage-lift cells. Given its superior quality, a converter can achieve a
significant increase in voltage while keeping costs low and power density minimal. One
additional benefit of the VL techniques is the reduction in voltage and current ripple.
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Additionally, there is a wide variety of high-gain DC-DC converters available, each
with its own unique design, set of features, and applications. Numerous scholars and
companies are currently dedicated to addressing these limitations. Given the current
state of the market for EVs, this field of study is receiving significant attention. Prior to
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its practical application in e-mobility, the high-gain DC-DC converter needs to undergo
enhancements and careful considerations from various perspectives. When developing a
high-gain DC-DC converter for real-world EV systems, it is crucial to carefully evaluate
various parameters. These include input current, voltage and current stresses on devices
and components, waveforms of these parameters, and the overall number of components.

2. Quadratic Boost Converter

The conventional QBC is utilized for in-depth analysis, and the structure of the
converter is depicted in Figure 5. Compared to a traditional boost converter, a QBC has
better gain and can draw a current without ripples from sources that do not produce a
pulsing input current. As a result, the sources will be more reliant on each other [31–33].
The increased interdependence can enhance the overall performance and efficiency of the
system. In addition, the QBC’s capability to maintain a smooth current flow makes it ideal
for use when a reliable and steady power source is necessary. This is particularly important
for delicate electronic devices or precise instruments.
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Figure 5. Circuit diagram of quadratic boost converter.

A QBC circuit topology included a single switch, two inductors, a capacitor, and three
diodes. By activating the switch (S), the input source charges the inductor L1, and by
turning on Capacitor C1, the inductor L2 is charged. The load is responsible for discharging
the stored energy in the inductor. In the absence of the switch (S), the input source and
capacitor L1 are simultaneously used to charge capacitor C1. Continuous conduction
mode (CCM) displays two modes based on the converters’ modes of operation, while
discontinuous conduction mode (DCM) displays three modes.

CCM Mode of Operation:
Mode 1: the equivalent circuit of the converter in CCM is shown in Figure 6. This

mode of operation is present when switch S is on from 0 < t < dTS. In this mode, the Diode
D2 is the forward bias condition, and the diodes D1 and D3 are the reverse bias condition.
The inductor L1 is charged from the input source and L2 is charged from the capacitor C1.
The capacitor C0 is deliver the power to load. In this mode, the voltage across the inductor
L1 is equal to input voltage VS and voltage across the inductor L2 is equal to voltage across
the capacitor C1.

V0 = VCo (1)
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Mode 2: the equivalent circuit of the converter in mode 2 is presented in Figure 6. in
this mode of operation, the switch S is off in the period of dTS < t < (1 − d)TS. The diodes
D1 and D3 behave as a forward biased and the diode D2 behaves as a reverse biased. The
inductors L1 and L2 are discharged using the load and C0. The capacitor C2 is charged
using the inductor L1 and the input source.

The voltage gain of the converter in CCM is calculated using the volt- second balance
of the inductors L1 and L2. The average voltage of the inductor is zero.

When switch S is ON,
VL1 = VS (2)

VL2 = VC1 (3)

When Switch S is OFF,
VL1 = VS − VC1 (4)

VL2 = VC1 − VC0 (5)

Volt-second balance across the inductor L1,

dVs + (1 − d)
(
VS − VC1

)
= 0

VC1 =
Vs

(1 − d)
(6)

Volt-second balance across the inductor L2,

d
(
VC1

)
+ (1 − d)

(
VC1 − VC0

)
= 0

VC0 =
VC1

(1 − d)
=

Vs

(1 − d)2 (7)

Putting the value of Equation (7) in Equation (1),

VO =
Vs

(1 − d)2 (8)

The gain of the purposed converter in CCM is,

M =
V0

VS
=

1

(1 − d)2 (9)

DCM Mode of Operation:
The QBC’s analytical waveform during a DCM operation is illustrated in Figure 7. In

a DCM state, there are three possible modes of operation.
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Mode 1: when switch S is on from 0 < t < dTS. Where the inductor L1 current started
from zero and reached up to IL1 at t = dTS and inductor L2 also start from zero and reaches
up to IL2 at t = dTS. There, for the mode of operation one in DCM, it is like mode one
in CCM.

VL1 = VS (10)

VL2 = VC1 (11)

Mode 2: in this mode switch s is turned off from dTS < t < ∆1 − D and the inductor
current starts decreasing and reaches zero.

VL1 = VS − VC1 (12)

VL2 = VC1 − VC0 (13)

Mode 3: mode 3 starts when the inductor current reaches zero, from ∆1 to maintain
zero until the next cycle starts. In this mode, the power delivered from the input supply is
zero and the output power is delivered using capacitor C0.

VC0 = V0 (14)

The gain of the purposed converter in DCM is,

M =
V0

VS
=

∆1
2

(∆1 − d)2 (15)
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Based on the converter’s switching behaviors, two modes are provided: CCM and
DCM. The analytical waveform of the suggested converter is shown in Figure 7.

Experimental Analysis of Quadratic Boost Converters

Figure 8 illustrates the hardware test bench for conventional QBC. The construction of
a 150 W quadratic boost converter circuit involves the use of two inductors, two capacitors,
three diodes, and one switch. The values of the inductors L1 and L2 are 0.3 µh and 0.47 µh,
respectively. Capacitors C1 and C2 have respective values of 22 µf and 10 µf. The results
of the conventional QBC through the experimental setup are highlighted in Figure 9. The
specifications detail an input voltage of 25 V, an output voltage of 100 V, a switching
frequency of 50 KHz, a load resistance of 230 Ω, and a duty cycle (D) set to 0.5. After
analyzing the test results, it was noted that the QBC showed a voltage gain (M) of four
times when running at a 50% duty cycle. Based on the results, it is evident that maintaining
the traditional QBC duty cycle is essential for achieving the maximum voltage gain.
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QBC is an essential component in various systems, such as EVs, battery charging,
renewable energy generation, internet connectivity, patient treatment, communication,
satellite and aircraft power, and LED systems [34,35]. Through improvements in electricity
transmission, the driving range and efficiency of EVs are expanded. Ensuring the seamless
integration and storage of renewable energy sources into the grid is achieved through the
optimization of solar panel energy harvesting. They offer voltage levels that enable charging
systems to charge batteries efficiently and rapidly. By carefully managing voltage levels in
different subsystems, they guarantee reliable and efficient power distribution in aerospace
and satellite systems. Devices on the Internet of Things, like sensors, microcontrollers,
and communication modules, maintain stable voltage levels, resulting in extended battery
life for battery-operated products. They ensure the reliability and accuracy of medical
equipment by managing and improving voltage control. They are responsible for managing
and regulating power in telecommunications infrastructure by adjusting voltages to meet



Sensors 2024, 24, 2186 10 of 36

the needs of communication systems. They offer dependable and eco-friendly lighting
solutions by managing and improving voltages in LED drivers utilized in LED lighting
systems. QBCs play a crucial role in numerous systems because they can effectively regulate
power and convert voltage. They play an essential role in the ever-changing realm of electric
and electronic systems, thanks to their ability to efficiently boost voltage levels.
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By comparing the QBC to interleaved, cascade, and conventional boost converters, one
can gain a comprehensive understanding of its various features, capabilities, and limitations.
The chart provides a comprehensive display of critical aspects such as control strategies,
efficiency metrics, concerns about output ripple and noise, and voltage gain characteristics.
Moreover, it clarifies if the parameters are suitable for various applications. The QBC is
a recent entrant in the high-gain DC-DC converter market due to its unique voltage gain
characteristics. Due to its unique ability to alter the relationship between input and output
voltage, the QBC shows potential in applications that demand specific voltage profiles. In
contrast to the linear voltage gain commonly employed in boost converters, this operates
differently. An evaluation is conducted on the effectiveness and ability to handle the
power of interleaved boost converters. These converters have become widely recognized
for their improved reliability and reduced output ripple. Cascade boost converters offer
a fascinating option for high-voltage situations, thanks to their ability to stack voltages
multiplicatively. To assess the novel QBC, it is worth considering its performance compared
to the well-established traditional boost converters [36,37]. The chart provides a clear
visual representation of the advantages of various converters. This can assist power
electronics researchers, engineers, and practitioners in making well-informed decisions
tailored to their specific application requirements. This comprehensive comparison adds to
the ongoing discussion of advanced DC-DC converters by shedding light on their efficiency
and usefulness in various situations. The Comparative analysis of different types of boost
converter topologies is presented in Table 1.
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Table 1. Comparative summary of different boost converter topologies.

Feature Quadratic Boost
Converter

Interleaved Boost
Converters

Cascade Boost
Converters

Conventional Boost
Converters

Operating Principle

The high step-up ratio
is achieved by using

quadratic terms in the
inductor current.

Reducing input/output
current ripple is

achieved through the
interleaving of many

channels.

Increase the voltage
conversion ratio by
stacking converters.

Step-up of voltage via a
single power stage.

Voltage Gain Very high High Very high Moderate to high

Ripple Current Low to Moderate Low Low to Moderate Moderate to High

Size and Weight Moderate Moderate to Large Large Small to Moderate

Components Count Moderate High High Low to Moderate

Complexity Moderate High High Low to Moderate

Applications

High step-up voltage
applications, LED
drivers, renewable

energy systems, electric
vehicles

High power
applications, PV
systems, electric

vehicles

Renewable energy
systems, grid-tied

inverters

General voltage
boosting applications

Recent Technological
Developments Design and control Advances in control

strategies
Cascade control

techniques
Continuous

improvements

The analysis and comparison of the QBC with cascade, interleaved, and traditional
boost converters in the above chart has brought attention to the urgent need to develop high-
gain DC-DC converters. The losses associated with the inductor, filter capacitor, and main
switch in a conventional DC-DC boost converter limit the achievable voltage gain. Given
the significant voltage stress across the switching device, it is crucial to select a switching
device with a high voltage rating. Despite their advantages in reducing input current
ripple, interleaved converters face challenges when it comes to handling low voltage gains
and require a multitude of components, resulting in larger sizes and decreased efficiency.
One popular technique for obtaining a modest voltage out of typical DC-DC converters is
cascading. By increasing the number of switches in a cascaded power converter, it becomes
possible to achieve an average ratio of voltage conversion. To optimize the margin, the
input supply is directly transmitted to the first stage of the cascaded converter, where the
duty cycle is increased to raise the voltage. As the duty cycle decreases in succeeding stages,
the impact of switching losses becomes less significant. There is a high number of switches,
complex circuitry, and control switches present at every level. The extensive collection of
inductors, diodes, capacitors, and active switches lead to a decrease in durability, while still
maintaining a high voltage conversion ratio. The QBC partially mitigates the limitations
of these converters. The QBC method is implemented in a step-by-step manner using a
single switch and a set of uncontrolled switches (diodes). There is still a notable drawback
that remains, as the overall gain of the QBC is determined by multiplying the voltage gains
of each stage. The QBC’s fourth-order mechanism introduces additional complexity and
reduces efficiency, while the regulated switch experiences significant voltage stress, which
is its main drawback. The overall output voltage is equivalent to the voltage strain across
the controlled switch. As a result, a switch with a higher rating is required, leading to an
increase in the price of the converter. Various techniques are employed in converters to
produce a high voltage, minimize voltage strain, and enhance efficiency. These strategies
involve utilizing switched capacitors (SC), switched inductors (SI), or a combination of
the two. There is a growing demand for power electronics technologies that are effective
and adaptable, which has led to the need for innovative architectures that can greatly
increase voltage upscaling. The demand for high-gain converters is increasing due to the
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rapid expansion of various technical applications, including renewable energy systems and
electric automobiles.

3. High-Gain Quadratic Boost Converter Topology

The high-gain quadratic boost converter (HG-QBC) architecture shown in Figure 10
is widely recognized as a crucial component in the transformation of electric propulsion
system performance and efficiency standards. The fundamental requirement for enhanced
voltage conversion is addressed by HG-QBCs, making them indispensable. This, in turn,
enables a more efficient and seamless energy flow within EVs. This advancement represents
a deliberate move towards aligning power electronics with the ever-changing world of
sustainable transportation. HG-QBCs have a unique quadratic input–output relationship
that allows them to efficiently convert voltages, surpassing the capabilities of traditional
boost converters. Furthermore, this enhancement plays a crucial role in improving the
overall efficiency of electric propulsion systems. It also plays a significant part in supporting
the electric mobility ecosystem’s sustainability objectives [38,39]. The illustration below
showcases the HG-QBC topology, highlighting its intricate architecture and its potential to
bring about a significant transformation in energy conversion for electric automobiles.
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HG-QBCs are crucial in the quest for environmentally friendly EVs because of their
exceptional quadrature boost capabilities. Scientists are exploring intermittent and unpre-
dictable energy sources, such as solar power and fuel cells, as potential power sources for
EVs, driven by the goal of sustainable development. Nevertheless, ensuring a consistent en-
ergy supply for EVs remains a formidable task, given these sources’ inherent intermittency
and unpredictability. To understand HG-QBCs comprehensively, it is essential to grasp
their functioning, operation, efficiency testing, and compatibility with different renewable
energy sources. Academics have made significant design optimizations to ensure that
the HG-QBC can be charged with various energy sources, making it suitable for electric
mobility in different input scenarios. These converters need to meet specific performance
criteria to guarantee reliability, lifespan, and compliance with industry requirements [40].
Thanks to advancements in this field, specific standards have been established to regulate
the practical application of HG-QBCs. These standards ensure their seamless integration
with other energy sources, particularly in the development of EV. Research is focused on
developing standards for integrating HG-QBCs with various energy resources. However,
it is still being determined if these standards will be fully implemented in real-world
scenarios and if they will be reliable and durable. HG-QBCs are highly regarded for their
essential role in advancing EV sustainability, owing to their exceptional quadrature boost
capabilities. Researchers are investigating intermittent and unpredictable energy sources,
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like solar power and fuel cells, as potential power sources for EV, driven by the aim of
sustainable development. However, guaranteeing a reliable energy supply for electric cars
is still a significant challenge, considering these sources’ natural fluctuations and uncer-
tainties. To fully comprehend HG-QBCs, it is crucial to thoroughly understand how they
work, their operation, efficiency testing, and their compatibility with various renewable
energy sources. Researchers have implemented essential design improvements to ensure
that the HG-QBC can be charged using multiple energy sources, making it ideal for electric
mobility in various input scenarios. These converters must satisfy specific performance
criteria to ensure reliability, longevity, and adherence to industry standards [40]. Recent
progress in this area has allowed for the establishment of precise guidelines to control
the real-world use of HG-QBCs. These standards guarantee a smooth integration with
other energy sources, especially in advancing EVs. Our aim is to establish standards for
seamlessly integrating HG-QBCs with different energy resources. However, it remains to
be seen whether these standards will be effectively implemented in practical situations and
whether they will demonstrate reliability and durability.

In this section, a few high-gain prior-art converters based on QBC topology are
examined. It also describes other boosting topologies, such as voltage lifting, voltage
doubler circuits, switch capacitors, switch inductors, and switch capacitors and inductors.
These topologies are typically combined with a QBC to achieve high-voltage gain. These
boosting methods can be divided into three groups: switch capacitors, switch inductors,
and hybrid switch capacitors and inductors.

3.1. Switch Capacitor-Based High-Gain Quadratic Boost Converters

In this configuration, switch capacitors are used in conjunction with either conven-
tional QBCs or modified QBCs to create the innovative high-gain converter. The circuit
diagram of a conventional QBC is presented in Figure 5. The uncontrolled or controlled
switched capacitors are connected in a specific way with QBCs so that they store and release
energy in each cycle, which effectively enhances the gain of the converters. This section
presents two high-gain converters that utilize the switch capacitor topology. Furthermore,
two distinct modes of operation, Mode-I when switch S is turned ON and Mode-II when
switch S is closed, are taken into consideration.

3.1.1. High-Gain Quadratic Boost Converters I (HG-QBC I)

The high-gain converter illustrated in Figure 11, disclosed in [41], introduces a revised
voltage-lift cell for a QBC to enhance voltage gain and reduce switch voltage stress. An anal-
ysis and comparison are performed to understand the operating principle of the converter
under consideration by comparing it with similar single-switch high-gain converters. A
validation study is conducted to verify and validate the findings of the theoretical analysis.
Compared to the standard voltage-lift cell, the modified version, with an extra capacitor
and diode, effectively reduces switch voltage stress and enhances voltage gain. The study
primarily analyzes the waveforms and modes of operation of the suggested QBC. This QBC
utilizes a modified voltage-lift cell and operates in continuous conduction mode. Based
on a comparison study with existing high-gain converters, the recommended converter
achieves the lowest switch voltage stress and the most significant voltage gain for a specific
duty ratio. Confirming the theoretical analysis, the experimental results demonstrate the
effectiveness of the suggested converter. Based on the results, it is evident that the pro-
posed converter with the improved voltage-lift cell outperforms conventional single-switch
high-gain converters. This makes it an ideal choice for applications requiring a significant
voltage increase.

Gain =
V0

VS
=

2

(1 − D)2 (16)
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Figure 11. (a) Circuit diagram of QBC based high-gain converter (b) Mode-I Operation (c) Mode-
II Operation.

3.1.2. High-Gain Quadratic Boost Converters II (HG-QBC II)

The high-gain converter shown in Figure 12 is described in [42]. The authors inves-
tigate the expanding demand for high-voltage gain DC-DC switching converters across
various sectors, including renewable energy, healthcare, manufacturing, and transporta-
tion. Regarding conventional QBCs, the authors offer a solution to the issue of increased
voltage stress on the active and passive switches. The combination of an output filter with
a voltage multiplier cell accomplishes this. To make the converter more accurate, the paper
gives formulas for the inductor and capacitor voltages and currents and the corresponding
ripples. A methodical strategy for creating an average current-mode controller is suggested
to examine the converter’s dynamic behavior comprehensively. This method produces
a linear averaged, nonlinear averaged, and bilinear switched model. According to the
findings of the tests, the switching regulator is quite robust. This demonstrates a prototype
that can provide 220 V and 300 W power output. Both the input and output currents of
the proposed converter are stable, and it is incredibly efficient. This characteristic makes
it possible to use a broad range of renewable energy sources, increasing the longevity of
those sources and the equipment that uses them.

Gain =
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Figure 12. (a) Circuit diagram of QBC based high-gain converter (b) Mode-I Operation (c) Mode-
II Operation.

3.2. Switch Inductor Based High-Gain Quadratic Boost Converters

In this configuration, switch inductors are used with either a traditional QBC or a
modified QBC to create a state-of-the-art high-gain converter. To increase the converters’
gain, a certain way of connecting the controlled or uncontrolled switching inductors to
the QBC allows them to store and release energy throughout each cycle. In this section,
two high-gain converters that utilize the switch inductors’ topology are described. In
addition, two different modes of operation, Mode-I when switch S is ON and Mode-II
when S is closed, are discussed.

3.2.1. High-Gain Quadratic Boost Converters III (HG-QBC III)

The high-gain converter represented in Figure 13 is explained in [43]. The article
introduces a novel high-voltage gain converter that takes advantage of the asymmetric
input voltage of inductors. The converter showcases impressive power density, a favourable
output, and a consistent input, making it an ideal choice for renewable energy applications.
The efficiency, small-signal analysis, practical voltage gain, steady-state performance,
and operating theory of the converter have been analyzed. A comprehensive analysis is
conducted on various components to assess and compare the current converters. This
includes evaluating the voltage gain, effectiveness index, stress on power devices (both
voltage and current), switching device ratings per unit, and other relevant factors such
as output polarity and the availability of common ground. The suggested converter is
compact and highly efficient, with a lower power rating for the switching device and an
enhanced effectiveness index. A laboratory prototype with a power output of 150 W is being
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used for experiments to confirm its functionality. The converter comprises three diodes,
two inductors, three capacitors, a load resistance, and two active power semiconductor
switching switches that operate in synchronization. The experiment’s findings align with
the theoretical predictions for the converter, and the achieved voltage gain closely resembles
the ideal but imperfectly implemented voltage gain.

Gain =
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II Operation.

3.2.2. High-Gain Quadratic Boost Converters IV (HG-QBC IV)

The high-gain converter shown in Figure 14 is explained in [44]. This article introduces
a DC-DC converter that achieves a substantial voltage gain while operating without a
transformer and is suitable for low to medium-power applications. The miniaturization
of the converter is achieved using only two inductors, which nonetheless permit a broad
range of duty ratio modifications to attain the target output voltage. Using low voltage-
rated components helps to lessen voltage stress across switches, which is what makes this
converter unique. It also boasts a robust quadratic gain. It is easy to control the input
current because it is continuous. It is possible to use the converter in either of two modes:
Mode I or Mode II. The typical voltage stress of the proposed converter switches is lower
than that of alternative topologies. The converter’s functional model was created in a
controlled environment utilizing the power circuit board approach. This converter can
handle input voltages between 12 and 20 volts and provides up to 200 watts of electricity,
according to its specifications. Its switching frequency is 50 kHz. The converter cannot
function without the constant current mode (CCM) features, which include continuous
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inductor currents and low voltage stress across the switches. The thermal model shows
an outstanding efficiency of 94.5% when run on 24 volts. In addition, it uses less than 91%
energy for the whole 200-watt input power cycle, which is rather impressive.

Gain =
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3.3. Hybrid Switch Capacitor and Inductor-Based High-Gain Quadratic Boost Converter

In this configuration, a combination of switch capacitor and inductor is utilized
alongside either a conventional QBC or modified QBC to develop a cutting-edge high-
gain converter. The uncontrolled or controlled hybrid switch capacitor and inductor are
interconnected in a specific manner using a QBC to efficiently store and release energy
in each cycle, thereby significantly boosting the converters’ gain. Here, six examples of
high-gain converters that make use of the hybrid switch capacitor and inductor topology
are analyzed. Additionally, two different operating modes, Mode-I for when switch S is in
the on position and Mode-II for when switch S is closed, are taken into consideration. These
two modes of operation offer flexibility in managing the energy flow and maximizing the
high-gain converter’s performance. In many applications where large gains are essential,
the converters that are being introduced provide dependable and effective solutions.
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3.3.1. High-Gain Quadratic Boost Converters V (HG-QBC V)

The high-gain converter shown in Figure 15 is derived from [45], which explores a DC-
DC boost converter with a quadratic voltage gain specially tailored for medium- and low-
power applications. The design of the converter incorporates a single-stage, non-isolated
configuration. The recommended converter provides a much higher level of efficiency when
compared to a typical QBC. It accomplishes this through a streamlined design incorporating
just one switch, making implementation easier. This product is highly compatible with
renewable energy sources because of its continuous current mode operation and lack
of a linked inductor. Compared to other currently available topologies, the suggested
converter showcases exceptional performance in terms of efficiency and voltage gain,
especially in non-isolated scenarios. This study analyzes the findings from a simulation,
experimental data, and comparisons with other converters. It also covers expressions
for steady-state operating, efficiency, and voltage gain, considering nonidealities. The
efficiency of the suggested converter has been verified to be over 88% through extensive
simulations and experiments.
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Figure 15. (a) Circuit diagram of QBC based high-gain converter (b) Mode-I Operation (c) Mode-
II Operation.

3.3.2. High-Gain Quadratic Boost Converters VI (HG-QBC VI)

The high-gain converter depicted in Figure 16 [46] is a novel non-isolated DC-DC
converter with superior voltage gain and reduced component stress. Its steady current
output and simplified switches demonstrate outstanding performance in microgrids. The
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authors investigate the converter’s operation under steady-state settings and compare
its efficiency to existing high-gain topologies. The PLECS program rates the converter’s
power loss and efficiency by incorporating the switching characteristics in the datasheet.
The procedure starts with developing a lab hardware model and testing the outcomes
through simulation. The converter’s gain, around 2.5 times more than a typical QBC, is
based on the Volt-Sec balancing theory. The proposed topology offers a notable benefit for
duty ratios between 0.2 and 0.8 among non-discrete topologies. Considering the operation
of the diodes and switching losses determines the converter’s efficiency. To cut overall
switch losses by around 18%, it is possible to use diodes or Schottky diodes with lower
cut-in voltages. This converter displays a peak efficiency of over 90% at 16 V and 80 W,
which is rather excellent. Therefore, it is a perfect choice for high-efficiency and power-
density applications. Its compact size and advanced control features make it suitable for
various applications.
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Figure 16. (a) Circuit diagram of QBC based high-gain converter (b) Mode-I Operation (c) Mode-
II Operation.

3.3.3. High-Gain Quadratic Boost Converters VII, VIII, and IX (HG-QBC VII, VIII, and IX)

Figures 17–19 illustrate the high-gain converter disclosed in [47]. This work introduces
three different non-isolated QBC topologies, all of which use a single switch to provide
a high voltage gain with little voltage stress on the switches. These topologies use VMC,
which consists of capacitors and switching inductors, to boost the converter’s voltage and
gain. To calculate the converter’s non-ideal voltage gain, elements such as the parasitic
capacitance, ON-state resistances of the switches and diodes, and continuous conduction
mode are considered. While doing the efficiency study, the PLECS program considers
the conduction and switching losses of the passive and switching parts. To ensure the
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functionality of the converters that have been described, an experimental prototype is
developed and extensively tested. To keep the DC-link voltage stable, these converters,
when positioned at the inverter’s front end, work great for microgrids’ medium power
applications. The article showcases a variety of QBCs that enhance the voltage gain using
switching capacitors. Comparing the recommended converter-I to the regular QBC, it is
evident that the latter has a higher gain and less voltage stress across the output voltage.
This method, which requires only one switch and provides a constant input current, is
ideal for microgrids and solar photovoltaics use. A single switch connects the two separate
DC-DC converters that make up Converters-II and III. In addition to an output capacitor,
each converter has four capacitors and five diodes. The suggested topology relies on an
input-side inductor to maintain a constant current state with little variation. In comparison
to standard QBCs, the output voltage of Converter-III is four times higher thanks to the use
of two voltage multiplier cells and a switching inductor boost cell, which are upgrades over
Converter II. The proposed DC-DC converters were evaluated regarding current topologies
using criteria such as component count, voltage gain, current stress, and switch voltage
stress. Converters I and II use a smaller number of components in comparison to the other
topologies in their reference. While all three converters achieved voltage gains, Converter
III was the least efficient, while Converters I and II were the most efficient. Converter II is
the most effective choice among the three recommended converters, as it has high efficiency
and less stress from the voltage and current. Presenting these three novel high-gain DC-DC
converter topologies, this work concludes that they are all superior for duty-gain operation
in renewable power applications. These converters’ low voltage stress, high efficiency, and
significant voltage gains have earned them widespread acclaim. The experimental results
validate the usefulness of the proposed converters.

Gain =
V0

VS
=

2

(1 − D)2 (22)

Gain =
V0
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=

2

(1 − D)2 (23)
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V0
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=

4

(1 − D)2 (24)

3.3.4. High-Gain Quadratic Boost Converters X (HG-QBC X)

The high-gain converter illustrated in Figure 20 [48], derived by integrating a VMC
and a QBC, is a revolutionary design for a DC-DC converter. Although the converter’s
switch use factor is significant, the voltage stress on the semiconductor devices is modest.
The voltage stress of the VM cell is what defines its excellence. This converter has the same
parts as any other voltage-lift converter. An experimental 40 W model is built to confirm
the practicality and accuracy of the theoretical computations. The prototype receives 12 V
as input and produces 96 V as output. Renewable energy systems, whether connected to
the grid or not, rely on high-voltage-gain DC-DC conversion, and this research intends to
develop new topologies for this process. The operating frequency, duty cycle, number of
multiple cells, and output current are essential factors that significantly impact the design
of a converter’s capacitor. Examining four different converters utilizing voltage gain and
voltage stress as metrics, compared to the proposed 89-component, non-isolated high-gain
DC-DC converter. The voltage stress on the switch and output diode is coupled with a
duty cycle of 0.3, 0.5, or 0.7 in this converter. Consequently, it obtains a 2.04 W voltage
gain. The voltage conversion ratio dwarfs the line voltage, which boasts a robust static gain.
Adding more multiplier cells reduces the voltage applied to semiconductor devices, which
protects switches and output diodes from damage. The number of cells directly affects
this. A voltage multiplier cell and a QBC are included in the converter’s architecture to
produce an ideal input current for fuel cell applications. A current free of ripples is made
because of this. A simple control circuit and one active switch are all needed to get things
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going. Operating at half-load, the converter obtains an efficiency rating of 88% and boasts
a user-friendly design.
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3.3.5. High-Gain Quadratic Boost Converters XI (HG-QBC XI)

The high-gain converter shown in Figure 21 that is disclosed in [49], introduces a
non-isolated QBC with increase in gain by a factor of three. The QBC uses a VMC in place
of the second inductor and a switch capacitor network to increase the gain. A greater
voltage gain and less voltage stress on the switch are the outcomes of this change. There
is a noticeable improvement over competing non-isolated boost converters thanks to the
boost converter’s circuit design. Its shared ground feature and capacity to sustain a steady
input current are the sources of this benefit. Our suggested QBC has superior input current
and common ground characteristics compared to competing non-isolated high-gain boost
converters. Using PLECS software (4.7.6), the study evaluates the outcomes and provides a
thorough analysis and design of components. The suggested Quasi-Buck Converter may
reach a peak efficiency of about 94% when fed a 48 V input voltage and produces a 385
V output voltage while accounting for component losses. Reducing component-related
losses, such as switching and conduction losses, is a viable option for improving efficiency.
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Figure 21. (a) Circuit diagram of QBC based high-gain converter (b) Mode-I Operation (c) Mode-
II Operation.

3.4. Summary

The details of the circuit’s topology, their modes of conduction, and the gain equa-
tions presented by different possible authors. It demonstrates how to use quadratic boost
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topology in the operation of a high-gain converter design. In addition to this, numerous
research articles have utilized QBC topology to develop innovative high-gain converters.
But the design of high-gain converters utilizing the QBC topology necessitates thorough
examination of the various issues and constraints that may arise. The achievement and
maintenance of high gains is inherently difficult, which requires sophisticated control algo-
rithms and real-time tuning to assure stability. One major restriction that could impact the
dependability and lifespan of the system is the voltage stress that components encounter,
especially semiconductor devices. Also, many potential uses for these converters could
be limited by how sensitive they are to the input voltage range. The complexity of QBC is
further compounded by the necessity for accurate output voltage management, electromag-
netic interference problems, and efficiency challenges at light load situations. Additional
challenges include dealing with transient responses, dealing with non-ideals, guaranteeing
safety under different settings, and balancing the economic implications [50–56]. To over-
come these obstacles and maximize the performance of HG-QBC, one must carefully choose
components, manage heat, follow safety protocols, and employ exacting design method-
ologies. High-gain converters provide several kinds of difficulties, which are described in
detail in Table 2, along with solutions to these challenges.

Table 2. Challenges associated with high-gain converter and their mitigation techniques.

Challenges/Limitations Description Mitigation Strategies

Efficiency Increasing the voltage gains leads to an
increase in the switching losses.

Improve efficiency by incorporating
advanced switching topologies.

Output Voltage Ripple The ripple in the output voltage has
increased.

Utilize advanced filtering methods, such
as LC filters, to reduce ripple.

Complex Control Algorithms
Advanced control algorithms and real-time
adjustments are necessary for achieving high
voltage gains while maintaining stability.

Enhance the flexibility and adaptability
of your system by utilizing digital
controllers and sophisticated control
algorithms.

Voltage Stress on Components
The high voltage levels put stress on diodes
and transistors, leading to decreased
efficiency and dependability.

Carefully consider technologies that can
handle greater voltages and make sure to
select components with precision.

Input Voltage Range Sensitivity

Variations in input voltage may limit the
system’s applicability, requiring the addition
of extra circuitry or control methods to
guarantee proper functioning.

Use voltage regulation techniques and
construct circuits for input voltage
conditioning.

Efficiency at Light Load Conditions The inefficient light loads can be hampering
the overall energy efficiency of the system.

Improve circuit design to increase
efficiency across various load
circumstances and utilize low-power
modes.

Reliability The Reliability can decline as component
stress increases.

Perform thorough reliability testing and
set up backup systems for crucial
applications.

Electromagnetic Interference (EMI) A high switching frequency causes EMI,
requiring EMI filters and EMC compliance.

To reduce electromagnetic interference,
make sure that shielding, filtering, and
compliance with EMC standards are
implemented properly.

Precise Output Voltage Regulation
Meticulous design considerations are
necessary for precise output voltage
regulation in dynamic circumstances.

Use specific components, include
regulation circuits, and set up feedback
control systems to guarantee precise
performance.
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Table 2. Cont.

Challenges/Limitations Description Mitigation Strategies

Transient Responses
Performance may be impacted by controlling
transient responses during load or input
changes and parasitic elements.

Optimize circuit design for maximum
performance by carrying out
comprehensive evaluations and
implementing compensating plans.

Size and Weight
It may be necessary to use larger inductor
and capacitor sizes to meet the system’s
requirements.

Discover cutting-edge component
technologies and lightweight materials to
enhance performance.

Complexity

Complex configurations of the control and
feedback systems have developed to fulfill
the requirements of sophisticated
applications.

Work with experts in control systems to
simplify processes and create
cutting-edge automation algorithms.

Cost Implications
The components and design complexity may
raise production costs, affecting the system’s
economic feasibility.

Analyze affordable options that satisfy
exacting performance standards.

Temperature Management Increased system temperatures are caused by
amplified power losses.

To maximize cooling efficiency, develop
and implement cutting-edge thermal
management technologies.

Scalability Scaling at different power levels presents
challenges.

Create systems that can easily adjust to
changing requirements by collaborating
with experts in power systems.

Practical Implementation Challenges Integrating the system with existing systems
poses certain challenges.

To enable smooth integration and carry
out comprehensive field testing, work
closely with industry partners.

Application Range Extensive usage of the technology in
low-power applications is not feasible.

Collaborating with domain experts to
provide individualized solutions,
investigate hybrid solutions to increase
application scope.

4. Comparative Analysis

To overcome these challenges, several potential authors have proposed various de-
signs for high-gain converters based on different boosting strategies. Every suggested setup
comes with its own set of pros and cons. The design of the converter is influenced by its
intended function. Before incorporating high-gain converters in practical scenarios, it is
crucial to have a thorough grasp of the different factors linked to these converters. Several
high-gain converters using the QBC topology, as suggested by previous researchers, are
compared in Table 3. The document presents significant information regarding various
converter topologies, including the voltage gain, number of components (S: switch, L:
inductor, C: capacitor, D: diode), switching mode, control techniques, input current type,
input source, common ground, use cases, efficiency, hardware implementation, cost, and
distinguishing features. This comprehensive chart can assist researchers and engineers
in making informed assessments in accordance with their specific needs. Furthermore,
the comparative analysis illuminates the merits and demerits of every converter topol-
ogy, enabling a thorough comprehension of their efficacy across various scenarios. By
considering each of these elements, engineers and researchers can efficiently select the
most appropriate converter topology to meet the requirements of their applications. In
addition, the comprehensive chart functions as an asset for forthcoming investigations
and advancements in power electronics, establishing a robust groundwork for subsequent
progressions in converter technology.
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Table 3. (a)–(d) Comparing various high-gain converter technologies developed by different researchers.

(a)

References [49] [57] [58] [59] [60] [61] [62] [63]

Converter type M-QBC-1 Bidirectional QBC QBC-1 M-QBC-2 M-QBC-3 QBC-2 M-QBC-4 M-QBC-5

Boosting type VMC QBC QBC Switching
Capacitor coupled inductor QBC Switch Inductor Switch Inductor and

Capacitor

Voltage gain 3
(1−D)2

1
(1−D)2

1
(1−D)2

3
(1−D)2

3−D
(1−D)2

1
(1−D)2

1
(1−D)2

1
(1−D)2

No of
components

S 1 4 1 2 1 1 2 1

L 3 2 2 2 3 2 2 2

C 4 2 2 4 3 2 2 2

D 7 0 3 4 5 3 2 3

Voltage stress (Switch) 2V0
3 V0(2 − D) V0

2
Vs

(1−D)2
3Vs

(1−D)
V0
2

Vs
(1−D)2

Vs
(1−D)2

Voltage Stress
(Diode)

2Vs
(1−D)

Vs
(1−D)

V0
2Vs

(1−D)2
2Vs

(1−D)2 V0
(2−D)Vs

(1−D)2
2Vs

(1−D)2

Control Techniques PWM PWM SMC Soft
switching/PWM PWM current-control average current

mode control PWM

Input current type Continuous Non pulsating Pulsating continuous Continuous Pulsating Non pulsating Continues

Input Source Renewable battery PV Solar DC Source DC Source Solar/FC Solar

Common ground Yes Yes Yes Yes No Yes Yes No

application Sustainable
Energy EV/HEV Microgrid sustainable energy Microgrid sustainable energy EV Renewable energy

efficiency 94% 94.7% 95% 95.3% 94.8% 94% 95% 94.4%

Hardware
Implementation Yes Yes Yes Yes Yes No No No

Cost Minimum High Low High High Low Medium Medium

Feature
Reduces the

switch’s voltage
stress

Absolute common ground
with a broad voltage

spectrum

System design
more stable.

ZVS and ZCS
reduce switching
losses and reverse

recovery.

High voltage
strains are reduced

via passive
clamping circuits.

Enhanced
performance and

stability

Reducing the
copper losses

Reduced capacitor
voltage stress
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Table 3. Cont.

(b)

References [64] [65] [66] [67] [68] [69]

Converter type QBC-3 M-QBC-6 M-QBC-7 M-QBC-8 Quadratic
Buck-Boost M-QBC-9

Boosting type Interleaved Switched Capacitor Switched Inductor Coupled Inductors Quadratic Switched Inductor

Voltage gain 4
(1−D)2

3−D
(1−D)2

3+D+n(1−D)

(1−D)2
(n2+(1+n)(3+D))

(1−D)2

(
D

(1−D)

)2 4−4D+D2

(1−D)2

No of components

S 4 2 2 2 2 2

L 5 2 4 2 3 2

C 5 4 5 5 3 4

D 7 4 5 5 2 4

Voltage stress (Switch) V0
4

(2−D)V0
(1−D)2

(1−D)V0
3+D+n(1−D)

(1+n+nD)V0
(n2+(1+n)(3+D))

1−D
D2

Vs
(1−D)2

Voltage stress (Diode) V0
2

2V0
(1−D)2

(2+n(1−D))V0
3+D+n(1−D)

(n2+2+3n)V0

(n2+(1+n)(3+D))
1−D
D2

Vs
(1−D)2

Control techniques PWM PWM Voltage Control PWM PWM Voltage Control

Input Source Renewable
Energy Renewable Energy Solar Solar Renewable

Energy PV

Common ground No Yes Yes Yes Yes Yes

Application microgrid Microgrid Microgrid Microgrid Grid Energy Storage

Efficiency 95.82% 90% 96.28% 94.3% 95.96 93.6

Hardware implementation Yes Yes Yes Yes Yes Yes

Cost V. High High V. High V. High Medium High

Feature Reduce the
Current Ripple Low voltage stresses Less stress on the voltage across the

output diodes
Switches and diodes have minimal voltage

stress.

Decreased
input/output

capacitor
current stress

Low stress across
devices
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Table 3. Cont.

(c)

References [70] [71] [72] [73] [74] [75]

Converter type Quadratic Buck-Boost Quadratic Boost–Cuk QBC-4 QBC-5 Quadratic Buck-Boost M-QBC-10

Boosting type Quadratic Quadratic Quadratic Quadratic Switch Capacitor Voltage Doubler

Voltage gain
(

D
(1−D)

)2 1+D
(1−D)2

1
(1−D)2

1
(1−D)2

D
(1−D)2

2n+1+D
(1−D)2

No of components

S 1 1 1 2 2 2

L 3 3 2 2 2 2

C 3 4 2 3 2 5

D 5 4 3 3 2 5

Voltage stress (Switch) Vs
D2

D(2+D+D2)V0

(1−D)2
V0
2

V0
2

V0
2

(1+D)V0
(2n+1+D)

Voltage stress (Diode) (1−D)Vs
D2

D(1+D)V0
(1−D)2 V0 V0 V0

(1−D)V0
(2n+1+D)

Control techniques Voltage Control Voltage Control Sliding-Mode Controllers Modified Sliding-Mode
Controllers Voltage Control Voltage Control

Input Source Battery Fuel Cell DC Source Solar Battery Renewable Energy

Common ground Yes Yes Yes Yes Yes Yes

Application Industrial applications EVs EVs Microgrid Industry Microgrid

Efficiency 92% 94% 94.4% 89% 91.4% 94.3%

Hardware implementation No Yes No Yes Yes No

Cost High Medium Low Low Medium High

Feature Simple construction
design

Low voltage stress on
switch and output

components

A fixed-frequency
PWM-based SM controller is

proposed.

discusses DCM operates at
variable switching

frequency.

Zero output voltage
ripple is possible.

Low input/output current
ripple
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Table 3. Cont.

(d)

References [76] [77] [78] [79] [80] [81]

Converter type M-QBC-11 QBC-6 Ultrahigh Boost M-QBC-12 Buck-Boost M-QBC-13

Boosting type Switched Capacitor QBC Voltage multiplier Multiplier Cell Zeta Coupled Inductor

Voltage gain 1
(1−D)2

1
(1−D)2

5−D(4−D)

(1−D)2
1+D

(1−D)3
D2

(1−D)2
3+2D
(1−D)2

No of components

S 2 2 2 2 1 1

L 2 3 2 3 3 4

C 2 5 4 3 4 4

D 2 5 4 2 4 5

Voltage stress (Switch) V0
2

V0
2

(1−D)V0
5−D(4−D)

2Vs
(1−D)2

D2V0
(1−D)2

V0
3+2D

Voltage stress (Diode) V0
2 V0

(2−D)V0
5−D(4−D)

(1−D)Vs

(1−D)2
V0

(1−D)2
(2+D)V0

3+2D

Control Techniques PWM Modified Current Voltage Control Modified Voltage Voltage Control PWM

Input Source Renewable energy DC Source Battery Renewable energy DC Source Fuel Cell

Common ground Yes Yes Yes Yes Yes No

Application Low Energy Storage Microgrid EVs Microgrid Renewable energy EVs

Efficiency 94.5% 93.4% 96.4% 93.6 94.2% 94.5%

Hardware implementation Yes No Yes No Yes Yes

Cost Medium Low High High Medium V. High

Feature Minimize the output
voltage ripple

Propose voltage-mode
control techniques

higher gain with high
efficiency.

Ultra-high level of voltage
gains with a low stress

across diode

Low voltage stress on
diode

Voltage stress on the power
switch is less
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Table 3 (a)–(d) show that there are significant differences in several parameters when
comparing different high-gain converter technologies. These include the following: con-
verter type, boosting type, voltage gain, number of components, voltage stress on switches
and diodes, control techniques, input current type, input source, usage, efficiency, cost, and
specific features. The comparison covers over 26 articles, all of which showcase different
converter designs and their characteristics. Several research papers, such as [58–63], have
been devoted mainly to the search for higher efficiency levels, between 94% and 95.3%,
attained by applying sophisticated control techniques and complex circuit modifications.
Among these efforts, [58] is noteworthy because it emphasizes the improvement of system
stability using soft-switching methods, while [61] focuses on reducing copper losses to
improve overall performance. On the other hand, the efficiency metrics reported in [65,80]
are comparatively lower, at 90% and 91.4%, respectively. This could be due to different
design priorities or implementation challenges. For most contributions, PWM remains the
predominant control modality, providing strong regulatory capacities [49,57,64,67,70,76,77].
Different investigations have produced different voltage gain formulas; some have achieved
remarkable gains [66,68,72], while other studies have placed more emphasis on the atten-
uation of stress between components [69,74]. To support a wide range of applications,
including sustainable energy, microgrids, electric vehicles, batteries, fuel cells, and renew-
able energy, all are included in the exploratory scope [49,58,64,70,76]. Notably, studies
like [71,75] focus on applications like electric cars and industrial settings, demonstrating
a sophisticated strategy catered to industry-specific requirements. A significant number
of studies [49,57,58,64,67,76,77] involve hardware realization, but [70,75] give theoretical
models without any physical instantiation. Cost factors vary, with certain technologies
requiring large implementation investments [58,64,80], while other technologies put cost-
effectiveness first [49,76]. Several of the contributions highlight methods for reducing
the voltage stress on diodes and switches [58,61,69,74,80], which improve longevity and
dependability. Additionally, the widespread use of component optimization methods to
minimize stress and ripple [65,72,74] greatly enhances overall performance. These high-
gain converter technologies are highly versatile and adaptable due to their tailored features
that address specific application demands. Examples of such features include minimizing
voltage stresses for microgrid deployments [66,71,75] and reducing output ripple for energy
storage systems [76,77].

Researchers have created a wide array of high-gain converter technologies, and this
comparison sheds light on them all, revealing their efficiency, performance, and potential
domain-specific applications. It stresses the significance of low-cost design, efficient control
strategies, and methods for reducing voltage stress in high-gain converters. The research
also reveals how people are trying to improve converter performance to meet the changing
demands of various power electronics and renewable energy system applications.

5. Future Research Directions

Many recent research articles have focused on developing topologies for high-gain
converters. These articles pay close attention to critical aspects such as reducing current and
voltage stress on power semiconductor devices, implementing soft switching to minimize
losses, optimizing structure simplicity, and achieving a high voltage conversion ratio with
a low duty ratio. Researchers delve into intricate aspects, conducting comprehensive
steady-state analyzes, elucidating operational mechanisms, delineating component design
principles, delving into Boundary Conduction Mode, and conducting prototype testing to
validate theoretical studies. While derived topologies often focus on steady-state analysis,
it is crucial to place a greater emphasis on comprehending the dynamic performance
of converters and developing controllers to address real-world circumstances [82–84].
After carefully analysing the findings from the mentioned studies, Table 2 highlights the
challenges of high-gain converters and suggests potential strategies to address them.

There are several methods to enhance the performance and efficiency of high-gain
converters that rely on QBCs. Firstly, it may be feasible to enhance the converter’s efficiency
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and reduce switching losses by implementing contemporary semiconductor materials and
technologies in the switch element. To enhance the converter’s dynamic response and
stability, it is possible to implement control algorithm optimizations such as sophisticated
modulation techniques or predictive control strategies. Introducing new magnetic com-
ponents with improved core materials and designs could potentially lead to reductions
in size, weight, and losses. Exploring innovative energy storage elements, like super-
capacitors or enhanced capacitors, has the potential to enhance our ability to store and
transmit energy. Enhancing the dependability and resilience of high-gain converters based
on QBC can be achieved through the implementation of adaptive and creative features
such as fault-tolerant systems or self-tuning parameters [85–87]. The suggested enhance-
ments aim to achieve improved performance, efficiency, and dependability across various
converter applications.

Apart from this, ongoing research also heavily emphasizes the development of new
high-gain topologies. Future research efforts will be directed at developing novel high-
gain converter topologies that seamlessly integrate conventional converter architectures
with distinct boosting techniques. An assortment of various boost techniques based on
uncontrolled switch inductors and switch capacitors are illustrated in Figures 22 and 23. By
incorporating these advanced technologies into traditional converter topologies, researchers
aim to improve the overall performance and efficiency of power conversion systems. The
objective of this integration is to develop a noble high-gain converter by merging the best
features of traditional converter designs with advanced boosting techniques. Exploring and
applying these innovative topologies could potentially revolutionize power conversion,
leading to the development of advanced and energy-efficient electrical systems in the
future. These advancements promise to significantly enhance energy efficiency, reducing
power consumption across various industries and applications. Integrating these cutting-
edge topologies into power conversion systems aligns with environmental sustainability
goals and offers significant cost savings. Minimizing power consumption and enhancing
energy efficiency are crucial in mitigating our environmental footprint and fostering a more
sustainable future.
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6. Conclusions

This review article has explored the crucial role of DC-DC converters in EV applica-
tions, specifically highlighting the transition to high-gain boost converters. To optimize
performance, it is essential to utilize a high-gain converter based on a QBC. The impor-
tance of DC-DC converters in EVs and the rationale for using high-gain boost converters
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are elucidated in an informative way. Conventional QBC circuit design and its analysis
has been confirmed through experimental study. Furthermore, the article provided an
exhaustive overview of the characteristics and designs of high-gain converters based on
the QBC topology and an analytical evaluation of several approaches utilized for their
design. Moreover, the survey highlighted the limitations and downsides of the present-day
high-gain converters, such as their high cost and poor efficiency. It also highlighted the
importance of fixing these issues so high-gain converters can be used to their maximum
potential in EVs. The results of this survey will guide future studies and innovations in
high-gain converter technology, which will benefit the EV industry.
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