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Abstract: Monitoring blood pressure, a parameter closely related to cardiovascular activity, can help
predict imminent cardiovascular events. In this paper, a novel method is proposed to customize an
existing mechanistic model of the cardiovascular system through feature extraction from cardiopul-
monary acoustic signals to estimate blood pressure using artificial intelligence. As various factors,
such as drug consumption, can alter the biomechanical properties of the cardiovascular system,
the proposed method seeks to personalize the mechanistic model using information extracted from
vibroacoustic sensors. Simulation results for the proposed approach are evaluated by calculating
the error in blood pressure estimates compared to ground truth arterial line measurements, with the
results showing promise for this method.
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1. Introduction

Computational modeling of cardiovascular hemodynamics, although a challenging
task due to the complex properties of various components in the cardiovascular system, can
provide non-invasive, simulated blood flow monitoring, allowing for improved diagnosis
of cardiovascular diseases. In Rosalia et al., a lumped-parameter Windkessel model of
the cardiovascular system was developed that simulated the mechanistic parameters of
the cardiovascular, pulmonary, abdominal, and upper body systems [1]. This allows for
simulated blood pressure readings at various points of the cardiovascular system, including
those close to locations where invasive blood pressure measurements are usually performed
in practice, namely, cuff or arterial line locations.

Cardiopulmonary acoustic signals provide a rich source of information on cardiovas-
cular health and have been used previously to label and detect abnormalities and calculate
blood pressure, paving the way for the detection of cardiovascular disorders. In Guo
et al., a deep learning approach has been presented to automatically annotate heart sound
readings within label groups such as pitch and shape [2]. Abduh et al. used mel-frequency
coefficients based on the fractional Fourier transform to distinguish normal cardiopul-
monary acoustic signals from those that are abnormal using machine learning classifiers
such as support vector machines and k-nearest neighbors [3]. Finally, in Chen et al., the s1
and s2 cardiopulmonary acoustic signal channels are separated and used to estimate the
systolic and diastolic blood pressure values [4]. In addition, another potential and inter-
esting application of the proposed approach is drug effect assessment. Monitoring blood
pressure as a parameter related to cardiovascular activity can help assess the effect of a
certain medication. As drugs such as nonaspirin nonsteroidal anti-inflammatory drugs can
alter the biomechanical properties of the cardiovascular system, affecting an individual’s
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cardiopulmonary acoustic signals and blood pressure, a mechanistic model can be modified
to reflect such changes and further personalized using vibroacoustic signals, assessing the
effect of a specific drug on blood pressure [5].

This paper aims to combine the merits of a mechanistic cardiovascular model and
vibroacoustic sensors to develop a semi-continuous blood pressure monitoring scheme for
cardiovascular state assessment using a machine learning framework. In Section 2, the
proposed methodology and algorithm are presented. Section 3 provides details about a case
where vibroacoustic signals of the heart are preprocessed and used as input to the proposed
approach. In Section 4, simulation results are presented and discussed. Finally, Section 5
provides concluding remarks along with suggestions for performance improvement.

2. Proposed Method and Algorithm

The proposed approach relies mainly on generating an atlas by recording the blood
pressure responses of an existing mechanistic model for a choice of its component pa-
rameters. The employed mechanistic model is detailed in Rosalia et al. [1]. Monte Carlo
simulations were run by randomly changing the values of component parameters and
recording the resulting blood pressure. This builds an atlas from which to infer the relation-
ship between the chosen component parameters in the mechanistic model and the features
extracted from vibroacoustic signals, as well as the relationship between the parameters
of the mechanistic model and the resulting blood pressure values, if needed (this means
that the mechanistic model can entirely be replaced with a function relating the chosen
component parameters to its output blood pressure vector). In the Monte Carlo simulations,
parameter values were drawn randomly from the uniform distribution on an interval
centered at the corresponding values of that parameter reported in the literature [1] (most
of these parameters can be found in Table 1 in [1]).

Figure 1 depicts a block diagram of the proposed approach. In this block diagram, the
relation between the mechanistic parameter vector u and the vibroacoustic signal feature
vector f is denoted by the unknown function g, i.e., u = g( f ).

Figure 1. Block diagram of the proposed data-driven approach.

The blood pressure vector Pv contains the systolic and diastolic blood pressure values
in the steady-state response of the mechanistic model. In the mechanistic model, blood pres-
sure is calculated as a continuous-time variable by solving a system of ordinary differential
equations representing the hemodynamics of the cardiovascular system, taken from [6].
This model represents each ventricle at a given time t as an isovolumetric pressure genera-
tor, Pi(t) that concurrently works with a constant diastolic elastance, Ed, plus time-varying
systolic elastance, Es, (i.e. E(t) = Ed + Esa(t)) and a resistance due to myocardium viscosity,
Rm. These two factors help to establish the fluctuation of ventricular pressure based on the
volume, V(t), and the rate of volume change, dV/dt. The normalized activation function
a(t), representing the time dependence of the isovolumetric pressure, is given by

a(t) =

{
1 − cos(2πtm/ts), if tm < ts

0, if tm > ts
(1)

where ts and tc are systolic and cardiac periods defined by ts = 0.16 + 0.3tc and
tm = mod(t, tc), respectively. It follows that the ventricular pressure is given by
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Pv(t) =

{
Pi(t) + E(t)× (V(t)− Vlp) + Rm

dV
dt systole

Ed(V(t)− Vlp), diastole
(2)

where Vlp is the volume at the linearization point and Pi(t) = Pi0a(t) is the isovolumetric
pressure at Vlp with peak value Pi0. Therefore, these results can be extended to the right
ventricle, PvR(t), by replacing Pi(t) with PiR(t), the right peak isovolumetric pressure at
volume Vlp, Rm with RmR, and E(t) and Ed with ER(t) and EdR, respectively. From the
analog model shown in Figure 2, it can be seen that the input blood flow from systematic
circulation to the right ventricle is regulated by the diodes S1 − S2 in a series with resistances
R1 − R3, and we can model the tricuspid and pulmonary values, respectively, through

S1(t) =

{
1, if ∆P1(t) > 0
0, otherwise

S2(t) =

{
1, if ∆P2(t) > 0
0, otherwise

(3)

where ∆P1(t) and ∆P2(t) are functions depending on regulatory functions PiR(t) and ER(t),
which are related by Kirchhoff’s second law, such that

∆P1(t) = x1(t)− PiR(t)− x2(t)ER(t)

∆P2(t) = PiR(t) + x2(t)ER(t)− x3(t)
(4)

Figure 2. Electronic model of the closed loop cardiovascular system for the right ventricle.

The parameters x1(t) and x3(t) are the state variables for the right venous–atrial
pressure and pulmonary venous pressure, respectively, while x2(t) is the right ventricle
volume time variation during the systole. Using Ohm’s law, we can define the right
ventricular inflow and outflow as

qinR(t) =
∆P1(t)S1(t)

R1

qoutR(t) =
∆P2(t)S2(t)
RmR + R2

(5)

The right heart model is completely defined by the right ventricular pressure by applying
Kirchhoff’s second law to the electrical model in Figure 2.

PvR(t) = PiR(t) + ER(t)x2(t)− RmRqoutR(t) (6)

Likewise, the left heart model can be equivalently derived.
In our approach, the systolic and diastolic blood pressure values in each cardiac cycle

are measured and used in subsequent calculations. Similarly, the ground truth blood
pressure vector Pa contains the systolic and diastolic values from the arterial line blood
pressure continuous-time measurements, as depicted by the red curve in Figure 3. The goal
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is to learn an unknown function g such that the error vector e becomes minimal according
to a predefined metric such as the ℓ2-norm.

Figure 3. Alignment of various signals across cardiac cycles. The arterial line blood pressure has
been scaled down by a factor of 100 for easier comparison. Channel 1 and channel 2 denote the
vibroacoustic signals from the sensor.

For a specific patient, features are extracted from the cardiac cycles in which the
vibroacoustic signals are available. To identify the start and end of cardiac cycles, R-peaks
detected in an ECG signal included in the vibroacoustic signals are used. To detect R-peaks,
the Pan–Tompkins method presented in [7] and implemented in [8] is employed. The
proposed algorithm includes the following steps.

1. For each cardiac cycle with vibroacoustic feature vector f , find the Pv and correspond-
ing u from the atlas that is closest to Pa.

2. Repeat across n cardiac cycles, i.e., for j = 1, . . . , n, to obtain sets
{

uj
}

and
{

Pv,j
}

3. Learn the function g using these sets. Learning candidates considered are a linear
model u = A f and a shallow neural network.

The performance of the model can be assessed by calculating the error e between Pa,
the ground truth arterial line blood pressure, and Pv the blood pressure generated from the
mechanistic model using the parameter vector u estimated using f , extracted from held
out cardiac cycles and the learned functions g.

3. Case Study

In this section, real cardiopulmonary acoustic, ECG, and ground truth arterial line
blood pressure signals are used to implement and assess the performance of the proposed
method when estimating an individual’s blood pressure through the customization of the
mechanistic model based on feature extraction from the vibroacoustic sensor.

3.1. Vibroacoustic Signals

The vibroacoustic, ECG, and arterial line blood pressure signals were obtained during
a retrospective study of hospital inpatients. Data for this analysis were provided by
CardioSounds LLC through a data-sharing agreement with the University of Michigan,
USA. A vibroacoustic sensor developed by CardioSounds LLC was placed on the patient’s
chest to capture non-invasive ECG and heart sound while simultaneous invasive arterial
line blood pressure was measured from the patient’s arm. The vibroacoustic signals were
recorded on two channels, and therefore two choices of mechanistic component parameters
were made. Example signals are plotted in Figure 3, showing how the various signals are
aligned with each other across cardiac cycles.

A tenth order low-pass Butterworth filter with a cutoff frequency of 150 Hz was used to
remove high-frequency noise outside of the frequency band in which heart sounds channels
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have the majority of their energy content. Next, an eight-level wavelet decomposition was
performed using the ‘db4’ wavelet (this wavelet is a member of the Daubechies wavelet
family). The detail coefficients of levels four, five, and six were shrunk by soft thresholding
where the threshold was selected to minimize Stein’s unbiased risk estimate (SURE) for the
entire signal time span [9].

3.2. Arterial Line and ECG Signals

For the arterial line blood pressure signal, a low-pass filter with a cutoff frequency
of 120 Hz was used to remove high-frequency noise. In addition, two notch filters at
60, 120 Hz were applied to remove power line interference and the first harmonic, followed
by a Savitzky–Golay filter of the first order and frame length of 41 to smooth out existing
ripples in the data to make reading the systolic and diastolic blood pressure values easier.
Similarly, a bandpass filter with lower and higher cutoff frequencies at 0.5 Hz and 55 Hz,
respectively, was applied to the ECG signals.

3.3. Choice of Parameters

In the current case, the feature vector f contains two elements from channels 1 and
2, with each element containing the energy in the entire cardiac cycle. Components from
the mechanistic model that were expected to represent the heart sounds in a meaningful
way were chosen to form the vector u. To this end, for the left ventricle, right ventricle, left
atrium, and right atrium, the chosen parameters were the compliance chamber internal
diameter and compliance chamber cylindrical chamber length. For the mitral, tricuspid,
aortic, and pulmonary valves, the chosen parameters were the laminar flow pressure ratio
and minimum area. Therefore, u will be a 16 × 1 vector containing the above parameters
from the mechanistic model. To clarify, the first and second components in u are the
left ventricle compliance chamber internal diameter and compliance chamber cylindrical
chamber length, respectively. The same pattern is repeated for the right ventricle, left
atrium, and right atrium. The ninth and tenth elements in u are the mitral valve laminar
flow pressure ratio and minimum area, respectively. Again, the same pattern is repeated
for the tricuspid, aortic, and pulmonary valves. Here, the valve minimum area refers to
the minimum area of the orifice representing the valve when it is closed. The laminar flow
pressure ratio is also a valve parameter that shows if the flow is laminar or turbulent. For
more information about the parameters used in u, see [1].

4. Simulation and Results

In this section, the simulation results are presented. For each patient, 90 percent of
the detected cardiac cycles were used in training, and the remaining cycles were used in
testing the performance of the method. The blood pressure was measured at the front end
of the descending aorta in the mechanistic model. The systolic and diastolic values were
averaged over the last six cardiac cycles in the steady-state response of the mechanistic
model. The following metrics for measuring error were considered. The relative error in
the norm is defined as

er,n =
∥Pv − Pa∥2

∥Pa∥2
, (7)

and the relative absolute error in either the systolic or diastolic blood pressure values are
defined as

er,a =
|Pv − Pa|

Pa
(8)

where Pv represents the blood pressure predicted from the model and Pa represents the
arterial line ground truth blood pressure value.

Since relative absolute error is presented as a percentage of the ground truth blood
pressure value, the acceptable level of error will differ for systolic and diastolic blood
pressure. Stage 1 hypertension is categorized as having a systolic blood pressure in the
range of 130–139 mm Hg and a diastolic blood pressure in the range of 80–89 mm Hg [10].
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Kallioinen et al. performed a systematic review of studies quantifying blood pressure
measurement inaccuracy, finding errors at ranges from −23.6 to +33 mm Hg for systolic
and −14 to +23 mm Hg for diastolic blood pressure [11]. Therefore, a relative absolute error
less than 33

130 = 0.25 for systolic and 23
80 = 0.29 for diastolic could indicate an improvement

in accuracy over traditional methods for blood pressure measurements. Furthermore, since
clinical ranges for diagnostic blood pressure categories are incremented by 10 mm Hg,
relative absolute errors around 10

130 = 0.08 for systolic and 10
80 = 0.13 for diastolic would

allow for accurate characterization of the general blood pressure level and significant
changes therein.

For comparison purposes, a one-layer neural network with ten hidden layers as well
as a linear model u = A f were used to represent the function g. Data resulting from
5822 Monte Carlo simulations were used to build the atlas. Table 1 lists the range of
parameters that were used in simulations, where ui denotes the ith element of u. To make
computations faster, the mechanistic model was also replaced by a function approximated
by a shallow neural network that was trained using the atlas data (this can be performed
using the same sets of component parameter vectors u and blood pressure vectors Pv
found during training, i.e.,

{
uj
}

and
{

Pv,j
}

for j = 1, . . . , n in the algorithm proposed in
Section 2), at the cost of introducing error in the resulting blood pressure. The employed
neural network had two hidden layers, with ten neurons in the first and five neurons in the
second hidden layer.

Table 1. Mechanistic model parameters chosen to generate the atlas.

Parameter Range Unit

u1 3.4–5.4 cm
u2 6–8 cm
u3 3.8–5.8 cm
u4 4–6 cm
u5 4–6 cm
u6 6.5–8.5 cm
u7 4.6–6.6 cm
u8 4–6 cm
u9 0.9985–0.9995 N/A
u10 0.5 × 10−15–1.5 × 10−15 m2

u11 0.9985–0.9995 N/A
u12 0.5 × 10−15–1.5 × 10−15 m2

u13 0.9985–0.9995 N/A
u14 0.5 × 10−15–1.5 × 10−15 m2

u15 0.9985–0.9995 N/A
u16 0.5 × 10−15–1.5 × 10−15 m2

Results and Discussion

Figure 4 shows the distribution of data points in the atlas when the parameter ranges
listed in Table 1 are used in the mechanistic model when performing the Monte Carlo trials.

As this figure shows, the spread of data points can be an issue as the points are
heavily clustered around certain values. For example, this potentially causes local minima
on the error surface on which back propagation is performed when training a neural
network. Therefore, the region shown in the red circle was used for training the model.
This region contains 5290 data points, constituting the majority of points in the atlas. One
also observes that the systolic and diastolic blood pressure values lying in the red circle
are tightly clustered around 65 and 105, respectively. Figure 5 shows the results for all
test cardiac cycles across two patients. As previously discussed, relative absolute error is
expected to be lower for systolic blood pressure, given the larger range in values. Both
mean systolic and diastolic relative absolute errors fall below the thresholds previously
discussed, suggesting the potential improvement in this method over other non-invasive
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blood pressure measurement systems. In this small case study, linear regression and the
shallow neural network perform similarly, suggesting a linear relationship that can be
modeled without complex modeling. However, introducing additional variations and
wider blood pressure ranges in larger data sets could require model complexity of the
shallow neural network.

Figure 4. Atlas data points generated by Monte Carlo simulations. The majority of generated points
are within the circled region.

Figure 5. Simulation results for test cardiac cycles across two patients. Two models, linear regression
(LR) and shallow neural network (NN), have been assumed for function g, and relative absolute error
in the systolic and diastolic blood pressure values are shown.

Limitations of this approach include the generalizability of assumptions made in the
utilized mechanistic model designed by Rosalia et al. [1] across diverse populations. In
addition, the atlas resulting from the Monte Carlo trials herein clustered around certain
values, which may impact the generalizability of the model when more variations in blood
pressure are present. However, it also reduces the risk of overfitting the shallow neural
network within the context of the current experiment. It is also worth noting that although
the atlas needs to be generated for any choice of parameters forming the vector u, it does
not depend on the choice of features extracted from the cardiopulmonary acoustic signals.
Therefore, if a set of sufficiently relevant parameters from the mechanistic model is chosen,
the atlas needs to be created only once and can be used thereafter for any feature vector.
Future work should improve the mechanistic model to remedy the behavior seen in Figure 4
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and perform additional simulations to rigorously evaluate this method and its applications
in monitoring cardiovascular systems.

5. Conclusions

According to the results presented in Section 4, one can conclude that the proposed ap-
proach shows promise in integrating a mechanistic model that simulates the hemodynamics
of the cardiovascular system and data-driven methods to form a customized blood pressure
estimation scheme, especially if the employed mechanistic model is able to generate blood
pressure values in a more uniform and diverse range. Also, in this paper, the energy of the
entire cardiac cycle in both channels was used to form the feature vector f . To improve
results, one can increase the feature space dimension by including other features extracted
from segmented heart sounds channels. Example features are time span, frequency, and
time–frequency features such as wavelet coefficients.
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