Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Sensor Setup
2.3. Data Processing
2.4. Feature Extraction
2.5. Machine Learning Models
3. Results
3.1. Classification of MDS-UPDRS III Tasks
3.2. Classification of MDS-UPDRS III Scores
3.3. Prediction of MDS-UPDRS III Scores
4. Discussion
4.1. Overview of Results
4.2. Comparison with Previous Work
4.3. Interpretability of Results
4.4. Limitations
4.5. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg, Strassen, Luxembourg
- Laboratoire National de Santé, Dudelange, Luxembourg
- Centre Hospitalier Emile Mayrisch, Esch-sur-Alzette, Luxembourg
- Centre Hospitalier du Nord, Ettelbrück, Luxembourg
- Parkinson Luxembourg Association, Leudelange, Luxembourg
- Oxford Parkinson’s Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Parkinson’s Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Neurology and Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, University Hospital Tübingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
- Ruhr-University of Bochum, Bochum, Germany
- Westpfalz-Klinikum GmbH, Kaiserslautern, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Neurology Philipps, University Marburg, Marburg, Germany
- Association of Physiotherapists in Parkinson’s Disease Europe, Esch-sur-Alzette, Luxembourg
- Private practice, Ettelbruck, Luxembourg
- Private practice, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands
Conflicts of Interest
References
- Dorsey, E.R.; Bloem, B.R. The Parkinson pandemic—A call to action. JAMA Neurol. 2018, 75, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Parkinson’s Foundation. Statistics. 2023. Available online: https://www.parkinson.org/understanding-parkinsons/statistics (accessed on 22 February 2024).
- Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry 2020, 91, 795–808. [Google Scholar]
- de Bie, R.M.A.; Clarke, C.E.; Espay, A.J.; Fox, S.H.; Lang, A.E. Initiation of pharmacological therapy in Parkinson’s disease: When, why, and how. Lancet Neurol. 2020, 19, 452–461. [Google Scholar] [CrossRef]
- Tödt, I.; Al-Fatly, B.; Granert, O.; Kühn, A.A.; Krack, P.; Rau, J.; Timmermann, L.; Schnitzler, A.; Paschen, S.; Helmers, A.; et al. The contribution of subthalamic nucleus deep brain stimulation to the improvement in motor functions and quality of life. Mov. Disord. 2022, 37, 291–301. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and treatment of Parkinson disease: A review. JAMA 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, M.; Habets, J.G.V.; Herff, C.; Aarts, J.; Stevens, A.; Kuijf, M.L.; Kubben, P.L. Monitoring Parkinson’s disease symptoms during daily life: A feasibility study. NPJ Park. Dis. 2019, 5, 21. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Guo, Y.; Stebbins, G.T.; Mestre, T.A.; Goetz, C.G.; Luo, S. Movement disorder society unified Parkinson’s disease rating scale motor examination retains its 2-domain profile in both on and off states. Mov. Disord. Clin. Pract. 2022, 9, 1149–1151. [Google Scholar] [CrossRef]
- Guo, Y.; Goetz, C.G.; Stebbins, G.T.; Mestre, T.A.; Luo, S. Using Movement Disorder Society Unified Parkinson’s Disease Rating Scale Parts 2 and 3 Simultaneously: Combining the Patient Voice with Clinician Ratings. Mov. Disord. 2023, 38, 453–463. [Google Scholar] [CrossRef]
- de Deus Fonticoba, T.; Santos Garcia, D.; Macias Arribi, M. Inter-rater variability in motor function assessment in Parkinson’s disease between experts in movement disorders and nurses specialising in PD management. Neurologia 2019, 34, 520–526. [Google Scholar] [CrossRef]
- Post, B.; Merkus, M.P.; de Bie, R.M.A.; de Haan, R.J.; Speelman, J.D. Unified Parkinson’s disease rating scale motor examination: Are ratings of nurses, residents in neurology, and movement disorders specialists interchangeable? Mov. Disord. 2005, 20, 1577–1584. [Google Scholar] [CrossRef] [PubMed]
- Shawen, N.; O’brien, M.K.; Venkatesan, S.; Lonini, L.; Simuni, T.; Hamilton, J.L.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Role of data measurement characteristics in the accurate detection of Parkinson’s disease symptoms using wearable sensors. J. Neuroeng. Rehabil. 2020, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Odin, P.; Chaudhuri, K.R.; Volkmann, J.; Antonini, A.; Storch, A.; Dietrichs, E.; Pirtošek, Z.; Henriksen, T.; Horne, M.; Devos, D.; et al. Viewpoint and practical recommendations from a movement disorder specialist panel on objective measurement in the clinical management of Parkinson’s disease. NPJ Park. Dis. 2018, 4, 14. [Google Scholar] [CrossRef]
- Elm, J.J.; Daeschler, M.; Bataille, L.; Schneider, R.; Amara, A.; Espay, A.J.; Afek, M.; Admati, C.; Teklehaimanot, A.; Simuni, T. Feasibility and utility of a clinician dashboard from wearable and mobile application Parkinson’s disease data. NPJ Digit. Med. 2019, 2, 95. [Google Scholar] [CrossRef]
- Li, P.; van Wezel, R.; He, F.; Zhao, Y.; Wang, Y. The role of wrist-worn technology in the management of Parkinson’s disease in daily life: A narrative review. Front. Neuroinform. 2023, 17, 1135300. [Google Scholar] [CrossRef]
- Chandrabhatla, A.S.; Pomeraniec, I.J.; Ksendzovsky, A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. NPJ Digit. Med. 2022, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Rovini, E.; Maremmani, C.; Cavallo, F. Automated systems based on wearable sensors for the management of Parkinson’s disease at home: A systematic review. Telemed. J. e-Health 2019, 25, 167–183. [Google Scholar] [CrossRef]
- Habets, J.G.V.; Spooner, R.K.; Mathiopoulou, V.; Feldmann, L.K.; Busch, J.L.; Roediger, J.; Bahners, B.H.; Schnitzler, A.; Florin, E.; Kühn, A.A. A first methodological development and validation of ReTap: An open-source UPDRS finger tapping assessment tool based on accelerometer-data. Sensors 2023, 23, 5238. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Reichmann, H.; Gentile, G.; Garon, M.; Tedesco, C.; Frank, A.; Falkenburger, B.; Konitsiotis, S.; Tsamis, K.; Rigas, G.; et al. Toward objective monitoring of Parkinson’s disease motor symptoms using a wearable device: Wearability and performance evaluation of PDMonitor. Front. Neurol. 2023, 14, 1080752. [Google Scholar] [CrossRef]
- Monje, M.H.G.; Foffani, G.; Obeso José and Sánchez-Ferro, Á. New sensor and wearable technologies to aid in the diagnosis and treatment monitoring of Parkinson’s disease. Annu. Rev. Biomed. Eng. 2019, 21, 111–143. [Google Scholar] [CrossRef]
- Memar, S.; Delrobaei, M.; Pieterman, M.; McIsaac, K.; Jog, M. Quantification of whole-body bradykinesia in Parkinson’s disease participants using multiple inertial sensors. J. Neurol. Sci. 2018, 387, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Teshuva, I.; Hillel, I.; Gazit, E.; Giladi Nir and Mirelman, A.; Hausdorff, J.M. Using wearables to assess bradykinesia and rigidity in patients with Parkinson’s disease: A focused, narrative review of the literature. J. Neural Transm. 2019, 126, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Vanmechelen, I.; Haberfehlner, H.; De Vleeschhauwer, J.; Van Wonterghem, E.; Feys, H.; Desloovere, K.; Aerts, J.-M.; Monbaliu, E. Assessment of movement disorders using wearable sensors during upper limb tasks: A scoping review. Front. Robot. AI 2022, 9, 1068413. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, N.; Demanuele, C.; Zhang, H.; Volfson, D.; Ho, B.; Erb, M.K.; Patel, S. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. NPJ Digit. Med. 2020, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhan, A.; Mohan, S.; Tarolli, C.; Schneider, R.B.; Adams, J.L.; Sharma, S.; Elson, M.J.; Spear, K.L.; Glidden, A.M.; Little, M.A.; et al. Using smartphones and machine learning to quantify Parkinson disease severity. JAMA Neurol. 2018, 75, 876. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.; Etezadi-Amoli, M.; Arnold, E.M.; Kianian, S.; Mance, I.; Gibiansky, M.; Trietsch, D.; Alvarado, A.S.; Kretlow, J.D.; Herrington, T.M.; et al. Smartwatch inertial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci. Transl. Med. 2021, 13, eabd7865. [Google Scholar] [CrossRef] [PubMed]
- Morinan, G.; Dushin, Y.; Sarapata, G.; Rupprechter, S.; Peng, Y.; Girges, C.; Salazar, M.; Milabo, C.; Sibley, K.; Foltynie, T.; et al. Computer vision quantification of whole-body Parkinsonian bradykinesia using a large multi-site population. NPJ Park. Dis. 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Ong, J.N.; Kim, R.; Park, S.-M.; Choi, J.; Kim, H.-J.; Jeon, B. Objective measurement of limb bradykinesia using a marker-less tracking algorithm with 2D-video in PD patients. Park. Relat Disord 2020, 81, 129–135. [Google Scholar] [CrossRef]
- Güney, G.; Jansen, T.S.; Dill, S.; Schulz, J.B.; Dafotakis, M.; Antink, C.H.; Braczynski, A.K. Video-based hand movement analysis of Parkinson patients before and after medication using high-frame-rate videos and MediaPipe. Sensors 2022, 22, 7992. [Google Scholar] [CrossRef]
- Lam, W.W.T.; Tang, Y.M.; Fong, K.N.K. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. J. Neuroeng. Rehabil. 2023, 20, 57. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, W.; Park, H.; Lee, H.J.; Kim, S.K.; Kim, H.B.; Jeon, B.; Park, K.S. Automatic classification of tremor severity in Parkinson’s disease using a wearable device. Sensors 2017, 17, 2067. [Google Scholar] [CrossRef] [PubMed]
- Broeder, S.; Roussos, G.; De Vleeschhauwer, J.; D’cruz, N.; de Xivry, J.-J.O.; Nieuwboer, A. A smartphone-based tapping task as a marker of medication response in Parkinson’s disease: A proof of concept study. J. Neural Transm. 2023, 130, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Vignoud, G.; Desjardins, C.; Salardaine, Q.; Mongin, M.; Garcin, B.; Venance, L.; Degos, B. Video-based automated assessment of movement parameters consistent with MDS-UPDRS III in Parkinson’s disease. J. Park. Dis. 2022, 12, 2211–2222. [Google Scholar] [CrossRef] [PubMed]
- Sibley, K.; Girges, C.; Candelario, J.; Milabo, C.; Salazar, M.; Esperida, J.O.; Dushin, Y.; Limousin, P.; Foltynie, T. An evaluation of KELVIN, an artificial intelligence platform, as an objective assessment of the MDS UPDRS part III. J. Park. Dis. 2022, 12, 2223–2233. [Google Scholar] [CrossRef] [PubMed]
- Lonini, L.; Dai, A.; Shawen, N.; Simuni, T.; Poon, C.; Shimanovich, L.; Daeschler, M.; Ghaffari, R.; Rogers, J.A.; Jayaraman, A. Wearable sensors for Parkinson’s disease: Which data are worth collecting for training symptom detection models. NPJ Digit. Med. 2018, 1, 64. [Google Scholar] [CrossRef] [PubMed]
- Hipp, G.; Vaillant, M.; Diederich, N.J.; Roomp, K.; Satagopam, V.P.; Banda, P.; Sandt, E.; Mommaerts, K.; Schmitz, S.K.; Longhino, L.; et al. The Luxembourg Parkinson’s study: A comprehensive approach for stratification and early diagnosis. Front. Aging Neurosci. 2018, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Bhatia, K.P.; Burn, D.J.; Goetz, C.G.; Lang, A.E.; McKeith, I.; Quinn, N.; Sethi, K.D.; Shults, C.; Wenning, G.K. Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov. Disord. 2003, 18, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Blank, P. Smart Racket—Instrumented Racket as Real-time Feedback Device for Table Tennis. Ph.D. Thesis, FAU University Press, Erlangen, Germany, 2020. [Google Scholar]
- Khusainov, R.; Azzi, D.; Achumba, I.E.; Bersch, S.D. Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef] [PubMed]
- Bhidayasiri, R.; Martinez-Martin, P. Clinical Assessments in Parkinson’s Disease: Scales and Monitoring. Int. Rev. Neurobiol. 2017, 132, 129–182. [Google Scholar]
- Guido, S.; Müller, A.C. Introduction to Machine Learning with Python: A Guide for Data Scientists; O’Reilly Media: Sebastopol, CA, USA, 2016. [Google Scholar]
- Rovini, E.; Maremmani, C.; Cavallo, F. How wearable sensors can support Parkinson’s disease diagnosis and treatment: A systematic review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef] [PubMed]
- Tien, R.N.; Tekriwal, A.; Calame, D.J.; Platt, J.P.; Baker, S.; Seeberger, L.C.; Kern, D.S.; Person, A.L.; Ojemann, S.G.; Thompson, J.A.; et al. Deep learning based markerless motion tracking as a clinical tool for movement disorders: Utility, feasibility and early experience. Front. Sig. Proc. 2022, 2, 884384. [Google Scholar] [CrossRef]
- O’Brien, M.K.; Shawen, N.; Mummidisetty, C.K.; Kaur, S.; Bo, X.; Poellabauer, C.; Kording, K.; Jayaraman, A. Activity Recognition for Persons with Stroke using Mobile Phone Technology: Toward Improved Performance in a Home Setting. J. Med. Internet Res. 2017, 19, e184. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.I.; Staunton, H.; Lipsmeier, F.; Nobbs, D.; Lindemann, M. Outcome measures based on digital health technology sensor data: Data- and patient-centric approaches. NPJ Digit. Med. 2020, 3, 97. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Boess, F.G.; Taylor, K.I.; Ricci, B.; Poewe, W.; Britschgi, M.; Fontoura, P.; Umbricht, D. A Phase II Study to Evaluate the Safety and Efficacy of Prasinezumab in Early Parkinson’s Disease (PASADENA): Rationale, Design, and Baseline Data. Front. Neurol. 2021, 12, 705407. [Google Scholar] [CrossRef] [PubMed]
- Evers, L.J.W.; Krijthe, J.H.; Meinders, M.J.; Bloem, B.R.; Heskes, T.M. Measuring Parkinson’s disease over time: The real-world within-subject reliability of the MDS-UPDRS. Mov. Disord. 2019, 34, 1480–1487. [Google Scholar] [CrossRef]
- Bremm, R.P.; Werle, A.; Auer, C.; Hertel, F.; Gonçalves, J.; Koch, K.P. TreCap: A wearable device to measure and assess tremor data of visually guided hand movements in real time. arXiv 2021, arXiv:2108.01736. [Google Scholar]
- Stamatakis, J.; Cremers, J.; Macq, B.; Garraux, G. Finger Tapping feature extraction in Parkinson’s disease using low-cost accelerometers. Comp. Intell. Neurosci. 2013, 2013, 717853. [Google Scholar]
PD (n = 33) | Controls (n = 12) | |
---|---|---|
Age at assessment (years, mean ± SD) | 69.8 ± 8.7 | 60.8 ± 9.8 |
Sex (numbers male/female) | 29/4 | 1/11 |
Time since diagnosis (years mean ± SD) | 5.2 ± 4.6 | Not applicable |
Hoehn and Yahr Scale (mean ± SD) * | 2.2 ± 0.7 | 0 |
MDS-UPDRS I total score (mean ± SD) | 9.1 ± 4.6 | 7.9 ± 7.3 |
MDS-UPDRS II total score (mean ± SD) | 10.5 ± 7.1 | 1.3 ± 2.8 |
MDS-UPDRS III total score (mean ± SD) * | 40.9 ± 12.7 | 4.8 ± 3.5 |
MDS-UPDRS IV total score (mean ± SD) | 1.5 ± 2.8 | 0 |
Total sum of MDS-UPDRS I-IV (mean ± SD) | 61.9 ± 19.0 | 14.1 ± 10.9 |
Montreal Cognitive Assessment (mean ± SD) * | 24.1 ± 3.5 | 27 ± 2.8 |
Levodopa Equivalent Daily Dose (mean ± SD) | 499.1 ± 459.4 | Not applicable |
Time since last L-DOPA intake (minutes mean ± SD) | 155.9 ± 113.1 | Not applicable |
Movement | Label | Description of the Movement | MDS-UPDRS Reference |
---|---|---|---|
Task 1 | AR | Forearms/hands rest on lap | 3.17.1 and 3.17.2 |
Task 2 | OA | Outstretched arms and hands with spread fingers | 3.15.1 and 3.15.2 |
Task 3 | FN * | Nose touching via index finger | 3.16.1 and 3.16.2 |
Task 4 | HM | Opening and closing the palm of the hands | 3.5.1 and 3.5.2 |
Task 5 | PS | Arm supination and pronation (aligned with hands) | 3.6.1 and 3.6.2 |
Task 6 | FT | Tapping between thumb and index finger | 3.4.1 and 3.4.2 |
Feature Category | Features | Number of Tri-Axial Features | Number of Magnitude * Features |
---|---|---|---|
Time | Root mean square, range, mean, variance, skew, kurtosis | 18 | 6 |
Frequency | Dominant frequency, relative magnitude, moments of power spectral density (mean, standard deviation, skew, kurtosis) | 18 | 6 |
Entropy | Sample entropy | 3 | 1 |
Total for each sensor type | 39 | 13 |
Tasks | Predicted Class | True Positive and Negative Rate | ||||||
---|---|---|---|---|---|---|---|---|
AR | OA | FN | HM | PS | FT | |||
True class | AR | 68 | 9 | 0 | 1 | 0 | 0 | 0.872 |
OA | 5 | 73 | 0 | 0 | 0 | 0 | 0.936 | |
FN | 1 | 0 | 75 | 0 | 1 | 1 | 0.962 | |
HM | 0 | 0 | 1 | 75 | 1 | 1 | 0.962 | |
PS | 0 | 0 | 1 | 2 | 75 | 0 | 0.962 | |
FT | 0 | 0 | 1 | 1 | 1 | 75 | 0.962 | |
Positive and negative predictive value | 0.919 | 0.890 | 0.962 | 0.949 | 0.962 | 0.974 | Accuracy * 0.942 |
Sensor * | MDS-UPDRS III Tasks ** | |||||
---|---|---|---|---|---|---|
AR | OA | FN | HM | PS | FT | |
Accelerometer | 0.65 (0.59–0.73) | 0.75 (0.68–0.82) | 0.66 (0.59–0.74) | 0.84 (0.76–0.92) | 0.51 (0.40–0.62) | 0.67 (0.57–0.77) |
Gyroscope | 0.71 (0.64–0.78) | 0.77 (0.71–0.85) | 0.70 (0.63–0.77) | 0.72 (0.63–0.83) | 0.82 (0.74–0.91) | 0.77 (0.68–0.86) |
Magnetometer | 0.57 (0.50–0.65) | 0.64 (0.56–0.72) | 0.63 (0.55–0.71) | 0.87 (0.80–0.95) | 0.51 (0.41–0.63) | 0.73 (0.64–0.83) |
Accel + Gyro | 0.69 (0.62–0.76) | 0.77 (0.71–0.85) | 0.73 (0.66–0.80) | 0.86 (0.79–0.94) | 0.85 (0.77–0.93) | 0.71 (0.62–0.81) |
Accel + Magn | 0.69 (0.62–0.76) | 0.75 (0.68–0.82) | 0.68 (0.61–0.76) | 0.90 (0.85–0.97) | 0.51 (0.41–0.63) | 0.73 (0.64–0.83) |
Gyro + Magn | 0.70 (0.64–0.77) | 0.77 (0.71–0.84) | 0.68 (0.62–0.76) | 0.90 (0.84–0.97) | 0.80 (0.72–0.89) | 0.72 (0.63–0.82) |
Accel + Gyro + Magn | 0.72 (0.65–0.79) | 0.78 (0.71–0.85) | 0.72 (0.65–0.79) | 0.92 (0.86–0.98) | 0.82 (0.74–0.90) | 0.75 (0.66–0.84) |
Sensor * | MDS-UPDRS III Tasks ** | |||
---|---|---|---|---|
FN | HM | PS | FT | |
Accelerometer | 0.85 (0.79–0.91) | 0.56 (0.45–0.67) | 0.69 (0.59–0.79) | 0.61 (0.50–0.72) |
Gyroscope | 0.76 (0.69–0.83) | 0.55 (0.44–0.66) | 0.73 (0.63–0.83) | 0.65 (0.55–0.75) |
Magnetometer | 0.52 (0.44–0.60) | 0.68 (0.58–0.78) | 0.54 (0.43–0.65) | 0.70 (0.60–0.80) |
Accel + Gyro | 0.83 (0.77–0.89) | 0.58 (0.47–0.69) | 0.70 (0.60–0.80) | 0.66 (0.56–0.76) |
Accel + Magn | 0.82 (0.76–0.88) | 0.62 (0.51–0.73) | 0.66 (0.56–0.76) | 0.70 (0.60–0.80) |
Gyro + Magn | 0.66 (0.58–0.74) | 0.61 (0.50–0.72) | 0.72 (0.62–0.82) | 0.66 (0.56–0.76) |
Accel + Gyro + Magn | 0.81 (0.75–0.87) | 0.61 (0.50–0.72) | 0.73 (0.63–0.83) | 0.71 (0.61–0.81) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bremm, R.P.; Pavelka, L.; Garcia, M.M.; Mombaerts, L.; Krüger, R.; Hertel, F., on behalf of the NCER-PD Consortium. Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning. Sensors 2024, 24, 2195. https://doi.org/10.3390/s24072195
Bremm RP, Pavelka L, Garcia MM, Mombaerts L, Krüger R, Hertel F on behalf of the NCER-PD Consortium. Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning. Sensors. 2024; 24(7):2195. https://doi.org/10.3390/s24072195
Chicago/Turabian StyleBremm, Rene Peter, Lukas Pavelka, Maria Moscardo Garcia, Laurent Mombaerts, Rejko Krüger, and Frank Hertel on behalf of the NCER-PD Consortium. 2024. "Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning" Sensors 24, no. 7: 2195. https://doi.org/10.3390/s24072195
APA StyleBremm, R. P., Pavelka, L., Garcia, M. M., Mombaerts, L., Krüger, R., & Hertel, F., on behalf of the NCER-PD Consortium. (2024). Sensor-Based Quantification of MDS-UPDRS III Subitems in Parkinson’s Disease Using Machine Learning. Sensors, 24(7), 2195. https://doi.org/10.3390/s24072195