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Abstract: In recent years, soft robotic sensors have rapidly advanced to endow robots with the
ability to interact with the external environment. Here, we propose a polymer optical fiber (POF)
sensor with sensitive and stable detection performance for strain, bending, twisting, and pressing.
Thus, we can map the real-time output light intensity of POF sensors to the spatial morphology of
the elastomer. By leveraging the intrinsic correlations of neighboring sensors and machine learn-
ing algorithms, we realize the spatially resolved detection of the pressing and multi-dimensional
deformation of elastomers. Specifically, the developed intelligent sensing system can effectively
recognize the two-dimensional indentation position with a prediction accuracy as large as ~99.17%.
The average prediction accuracy of combined strain and twist is ~98.4% using the random forest
algorithm. In addition, we demonstrate an integrated intelligent glove for the recognition of hand
gestures with a high recognition accuracy of 99.38%. Our work holds promise for applications in
soft robots for interactive tasks in complex environments, providing robots with multidimensional
proprioceptive perception. And it also can be applied in smart wearable sensing, human prosthetics,
and human–machine interaction interfaces.

Keywords: polymer optical fiber sensors; wearable sensors; machine learning; multi-dimensional
sensing; integrated system

1. Introduction

Soft robotics are gaining growing interest for their great potential in biomedical
devices and robotic performance in extreme environments [1]. For example, soft robots
enable compliance to highly confined spaces or self-locomotion on complex terrain [1–3].
In recent years, soft robots have evolved from traditional one-dimensional open-loop
retractable actuators to three-dimensional closed-loop powerful execution devices [1,3,4].
For a soft robot to interact with its external environment, the perception ability of its
own deformations via the sensors is essential. Traditional robotics mainly utilize resistive
and piezoelectric type sensors, known for their high sensitivity and stability, and mature
fabrications [5–9]. However, most of these electrical sensors struggle to operate in harsh
industrial conditions that involve humidity and chemical corrosion, and they also face
challenges in prolonged operations in complex electromagnetic environments [3,7,10,11].
Soft and wearable sensing devices based on optical waveguides (optical fibers) have
emerged recently, and compared with their electronic counterpart, optical sensors have
anti-electromagnetic interference and electrical capabilities [10–20]. In addition, optical
sensing systems have the characteristics of a large transmission bandwidth, multiplexing,
and diversified modulation/demodulation [11,21].

With respect to materials, the optical fiber sensors are mainly made of fused silica and
polymers. The silica-type sensors usually show a high optical sensitivity, small insertion
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loss, and footprint. For example, Li et al. [13] reported a packaged hybrid plasmonic
microfiber knot resonator for human health monitoring. They showed that the strain gauge
factor was as large as 13,700, and the pressure sensitivity was 0.83 kPa−1. Zhang et al. [12]
demonstrated ultrasensitive skin-like optical sensors based on a micrometer-scale fiber
waveguide. They achieved an unprecedented pressure sensitivity of 1870 kPa−1, a low
detection limit of 7 mPa, and a fast response time of 10 µs. Despite these recent advances,
the conventional silica fiber sensors show a small dynamic range of mechanical deformation
limited by the strength of the silica material, although extra structure design can improve
the performance [11]. For soft robotic sensing applications, the optical sensors based
on polymer materials have natural advantages since their mechanical modulus is close
to human tissues, and they have better biocompatibility and stretchability [10,11,22,23].
Zhao et al. [14], reported an optoelectronically innervated soft prosthetic hand by using
stretchable optical waveguides. They intentionally utilized high-loss materials to improve
sensitivity during elongation. Guo et al. [24], demonstrated the highly flexible and stretch-
able strain sensors for human motion detection. They leveraged the wavelength-dependent
absorption properties of the dye-doped polydimethylsiloxane (PDMS) fibers. Most of the
soft sensors are designed to measure a certain type of deformation, and multimodal recog-
nition usually relies on the high densities of sensors or complex analytical models [25–27].
Recently, Meerbeek et al. [25], proposed an internally luminescent elastomeric foam with
proprioception. This soft sensory foam was trained using machine learning techniques
to detect its deformation. This data-driven and machine-learning method overcomes the
deficiency of conventional sensor decoding systems relying on physical modellings and
can thus provide a new paradigm in advanced soft robotic sensors [17,28,29].

Here, we report a soft polymer optical fiber (POF) sensor for intelligent mechanical
deformation recognition. The proposed optical sensing system is achieved by assembling
the light-emitting diode (LED), POF sensors, and image sensors, as shown in Figure 1.
We systematically study the sensor’s response to strain, bending, pressing, and long-term
durability. By leveraging the intrinsic correlations of neighboring sensors and machine
learning algorithms, we demonstrate the spatially resolved detection of the pressing and
multimodal deformation of elastomers using a few POF sensors. Specifically, the developed
intelligent sensing system can effectively recognize the two-dimensional (2D) indentation
position with a prediction accuracy as large as ~99.17%. And the average prediction
accuracy of the combined strain and twist is ~98.4%. Furthermore, as a proof-of-concept
demonstration, we fabricate an integrated intelligent glove embedded with POF sensors for
the recognition of hand gestures with a high recognition accuracy of 99.38%. The proposed
optoelectronic sensors hold potential applications in soft robotics, wearable sensing, and
human–machine interaction interfaces in the future.
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image of packaged POF sensors array in a silicone rubber with input light source. The scattering
light spots indicate the embedded POF sensors. The right panel is the side view of the packaged
POF device. (c) Image of POFs guiding light source. Inset is the microscope image of a polished POF
endface. The scale bar is 200 µm. (d) Image of light-emitting diode (LED) sources connected to POFs.
(e–g) Images of a POF sensor in the relaxed, stretched, and curved conditions, respectively. (h) Image
of cascading POF sensors composing three units.

2. Materials and Methods

Figure 1a illustrates the schematic diagram of the POF sensor device used for detecting
multi-dimensional deformations of elastomer block, including bending, stretching, and
torsion. The POF sensors array is embedded in a silicone elastomer (Figure 1b), which can
support mechanical strength for sensors. The single POF sensor is fabricated as follows.
First, we cut off a commercial POF of diameter 500 µm (polymethyl methacrylate, SC500-22
SUNMO, Shenzhen, China) with a cleaver. Then, we mechanically polish the output POF
endface with a lapping film (1 µm grit, LF1P, Thorlabs, NJ, USA) as shown in Figure 1c.
Finally, we connect the POFs in a rubber tubing and use ultraviolet (UV) glue (D-5604,
ZhuoLide, Foshan, China) to seal the connection. The UV glue is cured with a 365 nm UV
light source for ~30 s. Note that, in the experiment, it is observed that, when the strain
reaches 200%, the curved UV glue will break off, and thus the repeatability of the sensors is
spoiled. The air gap between the bridged POFs endface is initially set as ~700 µm. The small
air gap is designed to enhance the deformation sensitivity of POF sensors, based on the fact
that deformation frustrates the light transmission ability in the connected POF section [20].
The air gap distance is compromised by the detection sensitivity and the insertion loss. An
LED serves as the light source, which is simply attached to a cleaved POF endface, and UV
glue is utilized to fix the connecting section, as shown in Figure 1d. The emission of LED
covers broad spectra in the visible region, and the typical coupling power into a POF is
measured ~ 28 µW. The multi-POF bundle is assembled into a 3D-printed plastic block, and
their real-time optical intensity responses are collected by an imaging camera (Figure 1a).
Here, we use a high-resolution camera (MIchrome 5 Pro, Tucsen, Fuzhou, China) with a
tube lens system to collect the sensors’ signals by default. For the integrated wearable
sensors, a low-resolution image sensor (LT-USB802, Blue Sky Technologies, Shenzhen,
China) is used to collect the sensors’ light signals. Each sensor’s output light intensity is
extracted from the captured pictures. Specifically, the light intensity in a POF core region
is extracted and summarized over the core region, which is regarded as the POF output
intensity. Note that most previously reported soft optical sensors implement separate
photodetectors or spectrometers to detect or decode the optical signals, and thus it would
be challenging to scale up the massive sensing arrays and increase the cost [11–13,15–17].
In contrast, the proposed image-based detection can readily scale up the sensor network
without an additional cost [25].

When the POF sensors are stretched or curved, the light coupling between the con-
nected fiber endface is changed as shown in Figure 1e–g, resulting in modulating the
transmitting power. For example, with applied stress, as depicted in Figure 1f, the rubber
tube undergoes a certain deformation, increasing the distance between the fiber endfaces,
and consequently, increasing the transmission light loss. Additionally, multiple POF sen-
sors can be cascaded for distributed detections (Figure 1h). The maximal cascading sensors
are limited by the insertion loss of the POF sensor unit. Thus, the proposed soft POF sensors
can be used to detect the stretching, bending, and torsional deformation of the elastomer,
as discussed later.

3. Results and Discussion
3.1. Quantification of POF Sensors to Mechanical Deformations

To quantify the optical sensitivity, stability, and dynamic response of the POF sensors,
various tests are conducted. For the tensile sensing measurement, the POF sensor was fixed



Sensors 2024, 24, 2253 4 of 11

on a one-dimensional translation stage, and the strain was applied incrementally with a
step size of ~14.28%, ranging from a relaxed state to a maximal strain of ~157.08%. As
shown in Figure 2a, the normalized transmitted light intensity significantly decreases with
increasing strain, and the repeatability is reasonably good for practical applications. We
define strain sensitivity as S = ∆I/ε, where ∆I is the change in normalized intensity and ϵ is
the change in strain [17,22]. Thus, the extracted strain sensitivity is approximately −0.2.
The POF sensor was subjected to a cyclic tensile strain of 100% for 677 cycles, demonstrating
stable strain responses (Figure 2b). In the strain durability test, one pigtail of the single POF
sensor is fixed on the stage, and the other pigtail is fixed on an electronically controlled
translation stage. The translation stage is programmed to periodically move forward
and backward. The camera is also programmed to record the POF output light intensity
synchronously. The dynamic response was also recorded during strain cycles, through
continuous photography with a frame rate of 20 fps as shown in Figure 2c. Note that a
much higher frame rate can be obtained from a commercial image sensor, while the 20 fps
framerate should be suitable for mechanical motion detection.
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Figure 2. Characterizations of the mechanical sensing performance of POF sensors. (a) Normalized
transmitted light intensity of a POF sensor related to the applied strain. The insets show the selected
images of the output POF endface. The scale bar is 250 µm. (b) Straining durability test of the
POF for a strain of 100%. (c) Dynamic responses of a POF sensor during stretching and recovery
cycles. (d) Normalized transmitted light intensity of a POF sensor related to the bending angle. The
insets show the selected images of the output POF endface. The scale bar is 250 µm. (e) Bending
durability of the POF sensor at 1000 cycles. (f) Dynamic response of the POF sensor during bending
and recovery cycles. The output light intensity is normalized by the maximal value of light intensity.

As for bending sensing, the POF sensor was fixed on a rotation stage, and bending
angles from 3◦ to 60◦ were applied with a step size of 3◦. Figure 2d shows that the
normalized output light intensity decreases with increasing bending angles, indicating
good repeatability. It is found that the sensor is not quite sensitive to a small bending
angle < 20◦, which can be attributed to the large numerical aperture (0.5) of POF and
the small gap distance [20]. In the linear bending response range (30–60◦), the derived
sensitivity is −2.1%/◦ and is comparable to the recently reported soft fiber sensors [20,22].
The bending sensitivity can be improved by simply tuning the air gap distance, although
the effective angle range detection can be compromised [20]. The bending durability of the
POF sensor was verified through 1000 bending cycles, as shown in Figure 2e. Dynamic
responses during bending and recovery cycles were also measured, as shown in Figure 2f.
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3.2. Demonstration of Spatially Resolved Pressing Recognition

The spatially resolved touch sensing has vibrant applications in human–machine
interaction and soft robotic systems [1,2,30,31]. To this end, we fabricated a soft touchpad
with an embedded sensor array, as shown in Figure 3a. Nine POF sensors were arranged
to form a sensing area of 24 mm × 24 mm (black dash grid). The designed effective
sensing area is based on the spatial indentation response of a single sensor, as shown in
Figure 3b. Note that we fabricate a square elastomer embedded with a single sensor, as
shown in Figure 3b inset. To obtain the spatial response map, we use a cylindrical rod
with a diameter of ~ 2 mm as a probe to load on the elastomer and collect the output light
signal simultaneously. The step distance of each measurement is set as 2 mm. We also
measured the indentation response at four typical positions (Figure 3c). Generally, the POF
sensor can only respond to an indentation depth larger than ~1.2 mm, which agrees with
the buried depth of the sensors. In addition, the anisotropic indentation response is clearly
observed, that is, the pressing along the axial direction shows a higher sensitivity than that
of the orthogonal direction. Intuitively, the sensitive region distributes around the two POF
endfaces. For 2D pressing recognition, a 13 × 13 grid is established with 2 mm spacing,
and pressing is applied at each grid intersection, i.e., 169 detection points. Figure 3d shows
that the first-row sensors (sensors 1⃝– 3⃝) respond to the sequential indentation, i.e., X
position No. = 1–13, Y position No. = 1. Since a single POF sensor has a certain detection
area, there is a correlated response in the indentation motion. By harnessing the intrinsic
correlations of neighboring sensors, it should be possible to realize distributed sensing
with a small number of detection units. Here, as a proof-of-concept demonstration, we
test the recognition of 169 (13 × 13) positions using a 3 × 3 sensors array, as indicated in
Figure 3a. We collected 50 output fiber images per indentation position, and the Random
Forest algorithm was used to process the datasets [32]. Figure 3e shows the 179 randomly
selected sensing data from different press locations as inputs, with the counts indicating
the number of sensing data at a certain position. Figure 3f shows the predicted results of
the pressing positions and their counts. The predicted results agree well with the inputs,
and thus the proposed intelligent sensing system can well recognize the 2D indentation
position, and the prediction accuracy is ~99.17%.
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Figure 3. Demonstration of the spatially resolved detection of pressing. (a) Image of soft packaged
sensors array composing nine POF sensors. The POF sensors are arranged into a 3 × 3 array (labeled
with 1⃝– 9⃝), and thus the sensing area (24 mm × 24 mm) is divided into smaller sensing regions of
13 × 13 (black dashed grid). The scale bar is 6 mm. (b) Spatial mapping of a single POF sensor response
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under a constant indentation depth of 3 mm. Inset is the optical image of a square elastomer
embedded with a single POF sensor. The black dashed area is the testing region. The scale bar is
12 mm. (c) The indentation response for four typical positions. The measured positions are marked
in (b). (d) The response of three embedded POF sensors (first row sensors) for sequential pressing
along the y = 1 row. (e) The partial dataset of the spatial pressing response of POF sensors. (f) The
Random Forest algorithm predicts the pressing position based on the sensing information of the
sensor array.

3.3. Demonstration of Multimodal Deformation Recognition

The soft robotics is gaining research interest for their compliance to confined spaces
or locomotion on uneven terrain [1–3]. For a soft robot to interact with its surroundings,
the perception ability of its deformations via the sensors is required. Here, we leverage the
correlated sensors array and machine learning to realize complex multi-dimension deforma-
tion, i.e., bend, stretch, and twist. To test the deformation recognition of bending/stretching
and torsion, another strip-shaped elastomer embedded with sensors was fabricated, as
shown in Figure 4a. The POF sensors array uses eight sensing components, arranged in an
axial distance of 2 cm. The size of the entire elastomer was 105 mm × 20 mm× 8 mm. For
multi-dimensional deformations, the elastomer was fixed between a one-dimensional trans-
lation stage and an electric rotating stage. The device was subjected to bending/stretching
by manually tuning the displacement of the translation stage from −4 mm to 2.5 mm with
a step of 0.5 mm. The typical bending state of the elastomer is illustrated in Figure 4b.
Note that, here, the bending of elastomer is obtained by the negative displacement of the
elastomer. The torsion angle is controlled by the rotating stage from −120◦ to 120◦ with a
step of 30◦. Figure 4c shows the images of twisted elastomers.
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Figure 4. Multi-dimensional deformation detections. (a) Image of the experimental setup of POF
sensors for multi-dimensional deformation detection. The inset is the output of POF sensors.
(b (b1,b2)) Images of elastomer block with embedded POF sensors array in bent state (−4 mm
displacement): (b1) top view; (b2) side view; (c (c1,c2)) images of elastomer block in torsion state (120◦

twist): (c1) top view; (c2) side view. (d) Schematic diagram of random forest algorithm. (e) Accuracy
of different algorithm models for predicting the mechanical states (bend/stretch and twist) of the
elastomer. (f) Input dataset of multi-dimensional deformation of the elastomer. (g) The random forest
algorithm predicts the deformation states of the elastomer.
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Similar to previous pressing recognition, here we again use the classical Random
Forest algorithm to train the collected labeled dataset, and the schematic operation flow is
shown in Figure 4d. In the training, 80% of the collected dataset is used to train the model,
and 20% is used to validate. The average prediction accuracy of combined strain and
twist is ~98.4%. We also compare the prediction accuracy among nine machine learning
algorithms, including random forest, extra trees, KNeighbors, decision tree, MLP, SVC,
AdaBoost, GaussianNB, and quadratic discriminant analysis [32–36], as shown in Figure 4e
(see also Table 1). We find that random forest, extra trees, KNeighbors, and decision tree
achieve a high accuracy rate exceeding 95%. Due to the advantages of easy-to-adjust
hyperparameters, high accuracy, concise algorithm content, and fast operation speed, the
random forest algorithm is used for verification in the subsequent verification. Figure 4e,f
shows that the developed algorithm can well recognize the combined deformation states
of elastomers.

Table 1. Comparison of deformation recognition for different algorithms.

Algorithm Prediction Accuracy
for Strain (%)

Prediction Accuracy
for Twist (%)

Prediction Accuracy
for Combined Strain

and Twist (%)

Random forest 99.13 99.71 98.37
Extra trees 99.86 99.95 98.85

KNeighbors 99.95 99.90 98.75

Decision tree 97.31 98.70 95.291
MLP 86.64 82.32 76.56

SVC 74.05 53.58 63.30
AdaBoost 33.68 26.81 5.96

GaussianNB 67.23 34.31 23.34
Quadratic

Discriminant analysis 99.09 81.84 77.23

3.4. Integrated Glove Sensors for Hand Gesture Recognition

The real-time detection of hand motions has many practical applications such as
human–machine interaction, and prosthetic, or robotic hands design [3,6,28]. Here, we
achieve an intelligent glove for real-time hand gesture recognition by combining soft
POF sensors and random forest algorithm. We fabricate five soft stripe elastomers with
embedded POF sensors, and then sew these elastomers onto the fingers of the glove, as
shown in Figure 5a. The stripe soft sensors are obtained by putting the POF sensor into a
3D-printing plastic mold and then pouring the silicone gel for two hours precuring and
half an hour heating (@ 80 ◦C). Like the previous measurements, LEDs are implemented
as the light source, and at the receiving end, the output POF sensors are captured via a
microscope imaging system. As a proof-of-concept demonstration, we focus on recognizing
16 typical hand gestures as shown in Figure 5a inset. Figure 5b shows the dynamic response
of five POF sensors to various hand gestures. There are clear output light intensity changes
for each hand gesture motion, which verifies the good sensitivity of the sensors for motion
detection. We also test the cyclic response of sensors to a loop of gestures, i.e., sequential
bending of thumb and index fingers, and their time-variable light intensity signals are
shown in Figure 5c. The relatively good repeatability of the output light intensity change
proves the robustness of the POF sensors.

In the training of gesture recognition datasets, we collect 16 gestures with labeled sen-
sor responses. Each single gesture dataset contains 100 pictures; thus, a total of 1600 pictures
was collected. We used 80% of the total dataset to train the model, and the remaining 20% to
validate. When training the model, we investigate the relationship between the accuracy of
the model and the size of the training dataset. It is observed that, when the training dataset
reaches 5% of the total data size, the model’s accuracy has already reached 96% (Figure 5d),
indicating the stability and robustness of the proposed sensing system. The results of
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validating the confusion matrix for 20% of the entire dataset are shown in Figure 5e. The
results show that the accuracy of the gesture recognition glove reaches 99.38%.
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Figure 5. Demonstration of hand gesture recognition with POF sensors array. (a) Image of glove
integrated with packaged POF sensors array and detection system. The output POF arrays are
collected by a microscope image system. The inset shows the images of 16 different hand gestures
for recognition. (b) The dynamic response of four-finger POF sensors under different gestures. The
sensors are labeled with their deposition figures. (c) The cyclic stability of two POF sensors under
repeated hand motions. Sensor T: thumb, sensor I: index. (d) The relationship between the accuracy
of the training model and the size of the training dataset. (e) The confusion matrix of the experimental
results. The blue box indicates the correct prediction counts.

For practical applications, it is important to integrate all the optical elements in a
small footprint. In the aforementioned signal detections, we implement a bulky microscope
imaging system to capture the output images of POF sensors. Here, we show that the signal
detection can be realized by simply attaching the POF endface to an image sensor (LT-
USB802), as shown in Figure 6a-b. The POFs are assembled into a 3D printing block, and
the block is then directly attached to the image sensor, achieving an integrated, lightweight,
and portable system. There are several advantages in such a detection configuration; first,
the cost and footprint of the detection system are simultaneously reduced. Moreover, the
robustness of the system is also improved without separate optical elements. The flow
chart of the signal processing algorithm is shown in Figure 6b, including data collection,
classifier training, and model inference. The guidelines for using such intelligent gloves are
as follows. The user puts on the glove and actions according to the selected gestures, and
during this time, the system can automatically collect the hand gesture datasets and train
the model. Then, the system can be used to recognize the newly input hand gestures. The
real-time recognition of hand gestures is shown in Figure 6d–g. The developed algorithms
can recognize hand gestures precisely, which can be readily applied to human–machine
interactions. We envision that, with more datasets of hand gestures, the intelligent glove
should be able to recognize and model the hand motions.
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Figure 6. Intelligent hand gesture recognition with an integrated detection system. (a,b) Images of an
integrated data acquisition system. The POF arrays are adapted into a printed block, which is then
attached to a commercial image sensor. (c) Flow chart of real-time gesture recognition algorithms.
The algorithms mainly contain three parts: data collection, classifier training, and model inference.
(d–g) Demonstration of the real-time detection of hand gestures via the optical sensing system. The
red-dashed box indicates the real-time output light field of POF sensors.

4. Conclusions

In summary, we propose a soft POF sensor for mechanical deformation recognition.
We systematically study the sensors’ response to strain, bending, pressing, and long-term
durability. By leveraging the intrinsic correlations of neighboring sensors and machine
learning algorithms, we demonstrate the spatially resolved detection of pressing and multi-
dimensional deformation of elastomers. The developed intelligent sensing system can well
recognize the 2D indentation position with a prediction accuracy as large as ~99.17%. And,
the average prediction accuracy of combined strain and twist is ~98.4%. Furthermore, we
demonstrate an integrated intelligent glove for the recognition of hand gestures with a high
recognition accuracy of 99.38%. Our work may provide a cost-effective solution to practical
applications in human–machine interactions and soft robotic sensors.
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