Integrated Portable and Stationary Health Impact-Monitoring System for Firefighters
Abstract
:1. Introduction
2. Related Work
3. System Architecture
3.1. The Portable Solution
3.1.1. The Sensing Unit
3.1.2. The Communication Unit
3.1.3. The Processing Unit
3.1.4. The Power Supply Unit
3.2. The Stationary Solution
4. Data Manipulation and Knowledge Extraction
4.1. Portable Solution—REST API
Listing 1. /insert endpoint sent a JSON file. |
{ “Emissions”: { “CO”: 1.3, “SO2”: 0.0, “NO2”: 0.02, “O3”: 0.01, “PM1.0”: 3, “PM2.5”: 4, “PM10.0”: 7, }, “Pi_id”: 1, “Coordinates”: [38.89709, 22.43608] } |
Listing 2. /aqi endpoint retrieved JSON file. |
{ “AQI”: “Good”, “position”: { “Latitude”: 38.89709, “Longitude”: 22.43608 }, “radius”: 2, “sensorId”: 0, “timestamp”: “2024-01-14T10:23:33.675506Z” } |
4.2. Stationary Solution—MQTT Broker
Listing 3. Smart Spot JSON file. |
{ “TimeInstant”: “2024-01-14T13:23:47Z”, “period”: 5, “status”: “connected”, “no2-a4”: 87.452041562704832, “ox-a431”: 31.826860000506845, “pm10”: 16.162157970869008, “pm2”: 11.228752859573594 “pm1”: 7.8326712017601803 } |
4.3. System Scalability and Economic Feasibility
5. Experimental Evaluation
6. Conclusions and Future Plans
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO | Carbon Monoxide |
CO2 | Carbon Dioxide |
O3 | Ozone |
NO2 | Nitrogen Dioxide |
SO2 | Sulfur Dioxide |
IoT | Internet Of Things |
AQI | Air Quality Index |
EAQI | European Air Quality Index |
PM2.5 | Particulate Matter of diameter 2.5 μm |
PM10 | Particulate Matter of diameter 10 μm |
JWT | JSON Web Token |
WSGI | Web Server Gateway Interface |
DIP | Data Ingestion Pipeline |
SAL | Storage Abstraction Layer |
I2C | Inter-Integrated Circuit |
UART | Universal Asynchronous Receiver/Transmitter |
UAV | Unmanned Aerial Vehicle |
UGV | Unmanned Ground Vehicle |
MCU | Micro-Controller Unit |
References
- Navarro, K. Working in Smoke. Clin. Chest Med. 2020, 41, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Grant, E.; Runkle, J.D. Long-term health effects of wildfire exposure: A scoping review. J. Clim. Change Health 2022, 6, 100110. [Google Scholar] [CrossRef]
- Garg, P.; Wang, S.; Oakes, J.M.; Bellini, C.; Gollner, M.J. The effectiveness of filter material for respiratory protection worn by wildland firefighters. Fire Saf. J. 2023, 139, 103811. [Google Scholar] [CrossRef]
- Hwang, J.; Chong, N.S.; Zhang, M.; Agnew, R.J.; Xu, C.; Li, Z.; Xu, X. Face-to-face with scorching wildfire: Potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface. Lancet Reg. Health Am. 2023, 21, 100482. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.M.; Adetona, O.; Song, C. Acute cardiovascular responses of wildland firefighters to working at prescribed burn. Int. J. Hyg. Environ. Health 2021, 237, 113827. [Google Scholar] [CrossRef] [PubMed]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef] [PubMed]
- Raj, J.V.; Sarath, T. An IoT based real-time stress detection system for fire-fighters. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 354–360. [Google Scholar]
- Yamada, A.; Kayano, W.; Kinoshita, R.; Fujiyama, S.; Tsutsui, Y.; Seki, S.; Sakamoto, N.; Hara, S.; Shirakawa, I. A Wireless Personal Safety Monitoring System for Firefighters. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), JeJu, Republic of Korea, 23–26 June 2019; pp. 1–4. [Google Scholar]
- Yizhe, Z. Design and implementation of firefighter signs monitoring system based on internet of things technology. In Proceedings of the 2021 International Conference on Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 29–31 December 2021; pp. 151–154. [Google Scholar]
- Zou, X. Design of Intelligent Wearable Equipment Vital Signs Monitoring System for Firefighters Based on Multi-sensor. In Proceedings of the 2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE), Jinzhou, China, 18–20 August 2023; pp. 1546–1551. [Google Scholar]
- Xiang, Y.; Wang, M.; Liu, S.; Xiong, X.; Luo, J.; Xiao, J. Research on the Design of a Sensor-based Firefighters Safety Guardian System. In Proceedings of the 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE), Wuhan, China, 16–17 December 2022; pp. 1–4. [Google Scholar]
- Choi, M.; Li, G.; Todrzak, R.; Zhao, Q.; Raiti, J.; Albee, P. Designing a LoRa-based smart helmet to aid in emergency detection by monitoring bio-signals. In Proceedings of the 2021 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 19–23 October 2021; pp. 72–75. [Google Scholar]
- Dietz, M.; Striegel, M.; Weigel, R.; Hagelauer, A. A new heat-warning-system based on a wireless body area network for protecting firefighters in indoor operations. In Proceedings of the 2018 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Anaheim, CA, USA, 14–17 January 2018; pp. 34–37. [Google Scholar]
- Tartare, G.; Zeng, X.; Koehl, L. Development of a wearable system for monitoring the firefighter’s physiological state. In Proceedings of the 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg, Russia, 15–18 May 2018; pp. 561–566. [Google Scholar]
- Lai, K.; Yanushkevich, S.N.; Shmerko, V.P. Intelligent stress monitoring assistant for first responders. IEEE Access 2021, 9, 25314–25329. [Google Scholar] [CrossRef]
- Camera, F.; Occhiuzzi, C.; Miozzi, C.; Nappi, S.; Bozzo, A.; Tomola, P.; Bin, A.; Marrocco, G. Monitoring of temperature stress during firefighters training by means of RFID epidermal sensors. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 499–504. [Google Scholar]
- Blecha, T.; Soukup, R.; Kaspar, P.; Hamacek, A.; Reboun, J. Smart firefighter protective suit-functional blocks and technologies. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17 August 2018; p. C4. [Google Scholar]
- Caya, M.V.C.; Casaje, J.S.; Catapang, G.B.; Dandan, R.A.V.; Linsangan, N.B. Warning system for firefighters using e-textile. In Proceedings of the 2018 3rd International Conference on Computer and Communication Systems (ICCCS), Nagoya, Japan, 27–30 April 2018; pp. 362–366. [Google Scholar]
- Le, T.; Huerta, M.; Moravec, A.; Cao, H. Wireless passive monitoring of electrocardiogram in firefighters. In Proceedings of the 2018 IEEE International Microwave Biomedical Conference (IMBioC), Philadelphia, PA, USA, 14–15 June 2018; pp. 121–123. [Google Scholar]
- Hossain, M.A.; Roy, H.S.; Khondakar, M.F.K.; Sarowar, M.H.; Hossainline, M.A. Design and implementation of an IoT based firefighting and affected area monitoring robot. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021; pp. 552–556. [Google Scholar]
- Kumar, T.; Doss, A. AIRO: Development of an Intelligent IoT-based Air Quality Monitoring Solution for Urban Areas. Procedia Comput. Sci. 2023, 218, 262–273. [Google Scholar] [CrossRef]
- Kalia, P.; Ansari, M.A. IOT based air quality and particulate matter concentration monitoring system. Mater. Today Proc. 2020, 32, 468–475. [Google Scholar] [CrossRef]
- Simo, A.; Dzitac, S.; Dzitac, I.; Frigura-Iliasa, M.; Frigura-Iliasa, F.M. Air quality assessment system based on self-driven drone and LoRaWAN network. Comput. Commun. 2021, 175, 13–24. [Google Scholar] [CrossRef]
- Palomeque-Mangut, S.; Meléndez, F.; Gómez-Suárez, J.; Frutos-Puerto, S.; Arroyo, P.; Pinilla-Gil, E.; Lozano, J. Wearable system for outdoor air quality monitoring in a WSN with cloud computing: Design, validation and deployment. Chemosphere 2022, 307, 135948. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, W.A.; Subramaniam, T.; Ong, A.E.; Shu’Ib, M.I.; Wu, W.; De Oliveira, M.A. LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring. Internet Things 2022, 19, 100540. [Google Scholar] [CrossRef]
- Suriano, D. A portable air quality monitoring unit and a modular, flexible tool for on-field evaluation and calibration of low-cost gas sensors. HardwareX 2021, 9, e00198. [Google Scholar] [CrossRef] [PubMed]
- Kortoçi, P.; Motlagh, N.H.; Zaidan, M.A.; Fung, P.L.; Varjonen, S.; Rebeiro-Hargrave, A.; Niemi, J.V.; Nurmi, P.; Hussein, T.; Petäjä, T.; et al. Air pollution exposure monitoring using portable low-cost air quality sensors. Smart Health 2022, 23, 100241. [Google Scholar] [CrossRef]
- Tan, H.; Xu, Z.; Li, X.; Li, L. Design of Air Quality Monitoring System in Battery Testing Workshop. Procedia Comput. Sci. 2022, 208, 94–99. [Google Scholar] [CrossRef]
- Poupry, S.; Béler, C.; Medjaher, K. Development of a reliable measurement station for air quality monitoring based on low-cost sensors and active redundancy. IFAC PapersOnLine 2022, 55, 7–12. [Google Scholar] [CrossRef]
- Healy, M.; Newe, T.; Lewis, E. Wireless Sensor Node hardware: A review. In Proceedings of the 2008 IEEE Sensors, Lecce, Italy, 26–29 October 2008; pp. 621–624. [Google Scholar] [CrossRef]
- Putra, K.T.; Chen, H.C.; Prayitno; Ogiela, M.R.; Chou, C.L.; Weng, C.E.; Shae, Z.Y. Federated compressed learning edge computing framework with ensuring data privacy for PM2. 5 prediction in smart city sensing applications. Sensors 2021, 21, 4586. [Google Scholar] [CrossRef] [PubMed]
- Hand, M.; Katuwal, H.; Calkin, D.E.; Thompson, M.P. The influence of incident management teams on the deployment of wildfire suppression resources. Int. J. Wildland Fire 2017, 26, 615–629. [Google Scholar] [CrossRef]
- Canadian Centre for Occupational Health and Safety. Converting Occupational Exposure Limits from mg/m3 to ppm; Canadian Centre for Occupational Health and Safety: Hamilton, ON, Canada, 2022. [Google Scholar]
- Agency, E.E. European Air Quality Index. Available online: https://airindex.eea.europa.eu/Map/AQI/Viewer/ (accessed on 12 January 2024).
Reference | Values | Position | Network Infrastructure | Processing Unit |
---|---|---|---|---|
[10] | Body Movement, Heart Rate, Temperature, Smoke, GPS | Wearable (Bracelet) | LAN-Wi-Fi 5G | - |
[11] | Heart Rate, Temperature, Smoke Gases Concentration | Outdoor | Bluetooth 3.0SPP, | - |
[15] | Body Movement, Blood Volume Pressure, Echocardiogram, Electrothermal Activity, Electroencephalogram, Electromyogram, Respiration, Temperature | In-body, On-body, Off-body, Mixed | Wearable Sensor Network, Short Range Radio Frequency Standards | - |
[12] | Heart Rate, Temperature, Body Movement | Wearable (Helmet) | LoRa, Bluetooth Low Energy | ESP32 |
[9] | Heart Rate, Body Temperature, Air Pressure, Beidou | Wearable (Watch) | LoRa, 4G | - |
[20] | Flame Detection, Flammable Gas Concentration, Human Detection, Temperature, Humidity | Robot | Wi-Fi | ESP32 |
[16] | RFID Epidermal Temperature | Epidermal, Suit Integrated | Wireless Body Sensor Network, RFID | None used |
[7] | Galvanic Skin Response, Heart Rate, Temperature, Humidity, Gas Concentration | Wearable (Gloves) | Wi-Fi, Xbee, Zigbee, esp8266, MQTT | Arduino |
[8] | - | Wearable (Waist Belt) | Mobile Ad Hoc Network | - |
[19] | Electrocardiogram | Suit integrated | Bluetooth Low Energy | Custom System |
[18] | CO concentration, Pulse Rate, Posture Detection, Temperature, Warning Buzzer | Suit integrated | Any transmitter operating at ISM 2.4GH | Arduino |
[17] | Heart Rate, Movement, Gas Concentration, Temperature, Relative Humidity, GPS | Suit integrated, Commander Control Unit Compontent | Body Area Network Wide Area Network textile bus system Bluetooth version 4 | Arrietta G25 |
[14] | Accelerometer | Intelligent Garment | Xbee | Arduino ATmeg32U4 |
[13] | Temperature | Wearable | Wireless Body Area Network, 6LoWPAN | CC2650 Multistandard Wireless MCU, Cortex-M3, Cortex-M0 |
Reference | Pollutants | Processing Unit | Network Infrastructure |
---|---|---|---|
[25] | CO, CO2, SO2, NO2, PM2.5 | Arduino Uno | LoRaWAN |
[22] | PM1.0, PM2.5, PM10.0 | Node MCU | Wi-Fi |
[27] | PM2.5, PM10.0, CO, NO2, O3 | BMD-340 System On a Module | BLE, Wi-Fi |
[21] | O3, NO2, SO2, CO | Intel Edison | Wi-Fi |
[24] | PM2.5, PM10.0, NO2, O3 | PIC32MM0256GPM048 | BLE |
[29] | NO2, SO2, O3, PM10.0, PM2.5, CO2, VOC | ESP32 | Wi-Fi |
[23] | PM10, PM2.5, SO2, NO2, CO, O3, CO2, NO, CH4, HC, H2 | Waspmote Gas Sensor Board 3.0 | LoRaWAN |
[26] | - | Raspberry 3B+ | Wi-Fi |
[28] | CO, PM2.5 | STM32F103C8T6 | Wi-Fi |
Good | Fair | Moderate | Poor | Very Poor | Extremely Poor | |
---|---|---|---|---|---|---|
PM2.5 | 0–10 | 10–20 | 20–25 | 25–50 | 50–75 | 75–800 |
PM10 | 0–20 | 20–40 | 40–50 | 50–100 | 100–150 | 150–1200 |
NO2 | 0–40 | 40–90 | 90–120 | 120–230 | 230–340 | 340–1000 |
O3 | 0–50 | 50–100 | 100–130 | 130–240 | 240–380 | 380–800 |
SO2 | 0–100 | 100–200 | 200–350 | 350–500 | 500–750 | 750–1250 |
OS | FreeRTOS |
CPU | Dual Core 240 MHz |
RAM | 16 MB |
Connectivity | Wi-Fi, NB-IoT |
Remote Control | Homard Platform |
Energy Consumption | 180–300 mA Active |
Voltage | 5V |
Size | 300 mm × 200 mm × 36.7 mm |
Weight | 1.8 kg |
Gas Sensors | O3, NO2 |
Particle Sensors | PM1.0, PM2.5, PM10 |
Wind Parameters | Temperature, Humidity, Pressure |
Endpoint | HTTP Method | Description | Parameters |
---|---|---|---|
/insert-data | POST | Send data to the server. | JSON file Authentication Credentials |
/get-latest-data | GET | Get the latest added data. | Number of data Authentication Credentials |
/aqi | GET | Get the most recent AQI measurement. | Authentication Credentials |
/data-metadata | POST | Send data to SILVANUS Cloud | SILVANUS Credentials |
/data-visualization | GET | Emissions and AQI visualization. | Authentication Credentials |
Headers | Data Transmission | Authentication | Logout |
---|---|---|---|
Method | POST | POST | DELETE |
Version | HTTP/1.1 | HTTP/1.1 | HTTP/1.1 |
URI | /insert-data | /auth/login | /auth/logout |
Host | silvanus.uth.gr | silvanus.uth.gr | silvanus.uth.gr |
User-Agent | python-request/2.25.1 | python-request/2.25.1 | python-request/2.25.1 |
Accept-Encoding | gzip, deflate | gzip, deflate | gzip, deflate |
Authorization | <JWT> | - | <JWT> |
Accept | */* | */* | */* |
Connection | keep-alive | keep-alive | keep-alive |
Content-Length | 199 | 42 | 0 |
Content-Type | application/json | application/json | - |
Headers | Data Transmission | Authentication | Logout |
---|---|---|---|
Response Version | HTTP/1.1 | HTTP/1.1 | HTTP/1.1 |
Status Code | 200 | 200 | 200 |
Response Phrase | OK | OK | OK |
Server | nginx/1.10.3 (Ubuntu) | nginx/1.10.3 (Ubuntu) | nginx/1.10.3 (Ubuntu) |
Date | <Datetime_Of_Response> | <Datetime_Of_Response> | <Datetime_Of_Response> |
Content-Type | text/html; charset=utf-8 | application/json | application/json |
Content-Length | 2 | 42 | 22 |
Connection | keep-alive | keep-alive | keep-alive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lioliopoulos, P.; Oikonomou, P.; Boulougaris, G.; Kolomvatsos, K. Integrated Portable and Stationary Health Impact-Monitoring System for Firefighters. Sensors 2024, 24, 2273. https://doi.org/10.3390/s24072273
Lioliopoulos P, Oikonomou P, Boulougaris G, Kolomvatsos K. Integrated Portable and Stationary Health Impact-Monitoring System for Firefighters. Sensors. 2024; 24(7):2273. https://doi.org/10.3390/s24072273
Chicago/Turabian StyleLioliopoulos, Panagiotis, Panagiotis Oikonomou, Georgios Boulougaris, and Kostas Kolomvatsos. 2024. "Integrated Portable and Stationary Health Impact-Monitoring System for Firefighters" Sensors 24, no. 7: 2273. https://doi.org/10.3390/s24072273
APA StyleLioliopoulos, P., Oikonomou, P., Boulougaris, G., & Kolomvatsos, K. (2024). Integrated Portable and Stationary Health Impact-Monitoring System for Firefighters. Sensors, 24(7), 2273. https://doi.org/10.3390/s24072273