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Abstract: Efficient energy management in residential environments is a constant challenge, in which
Home Energy Management Systems (HEMS) play an essential role in optimizing consumption.
Load recognition allows the identification of active appliances, providing robustness to the HEMS.
The precise identification of household appliances is an area not completely explored. Gaps like
improving classification performance through techniques dedicated to separability between classes
and models that achieve enhanced reliability remain open. This work improves several aspects
of load recognition in HEMS applications. In this research, we adopt Neighborhood Component
Analysis (NCA) to extract relevant characteristics from the data, seeking the separability between
classes. We also employ the Regularized Extreme Learning Machine (RELM) to identify household
appliances. This pioneering approach achieves performance improvements, presenting higher
accuracy and weighted F1-Score values—97.24% and 97.14%, respectively—surpassing state-of-the-
art methods and enhanced reliability according to the Kappa index, i.e., 0.9388, outperforming
competing classifiers. Such evidence highlights the promising potential of Machine Learning (ML)
techniques, specifically NCA and RELM, to contribute to load recognition and energy management
in residential environments.

Keywords: machine learning; household appliances; active power; appliance recognition

1. Introduction

The rising demand for electrical energy presents a challenge to sustainable consump-
tion, affecting various sectors. According to Kim et al. [1], considering diverse sources
like biomass and natural gas, the residential sector contributes 27% to global consumption.
Moreover, as per Rashid et al. [2] and Bang et al. [3], due to malfunctioning appliances
and improper consumption habits, 30% of energy is wasted. One way to contribute to
sustainable consumption and minimize such issues is to adopt Home Energy Management
Systems (HEMS).

HEMS refers to technologies developed to manage the electricity consumption in
households or commercial buildings. According to Motta et al. [4], a HEMS architecture
consists of a controller and smart outlets to connect household appliances to the electrical
grid. The electricity demand of a household may exhibit seasonal variations, influenced by
the type of appliances in operation, such as heaters and air conditioning devices. However,
HEMS is capable of monitoring such appliance activities, incorporating additional function-
alities such as load disaggregation techniques presented by Lemes et al. [5], methods for
anomaly detection in appliances as per Lemes et al. [6], and load recognition mechanisms
as reported by Cabral et al. [7].
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Load recognition means identifying appliances in operation and emerges as an essen-
tial building block for advancing home energy management systems. Load recognition also
contributes to load disaggregation methods, allowing specific identification of devices after
the disaggregation procedure. Furthermore, load recognition is fundamental to building
robust appliance databases by analyzing electrical signals, making this process more precise
and automatic. In the diversified domestic environment, where various appliances such as
microwaves, dishwashers, air conditioning, freezers, and heaters operate, HEMS’ capability
to determine which appliance is operating is indispensable. This functionality takes on
a relevant practical dimension when replacing appliances connected to the smart outlets.
In this case, the HEMS automatically identifies the new appliance in operation with the
load recognition system. The same practical importance can be observed for automated
database construction.

Currently, there is a trend towards using Machine Learning (ML) in state-of-the-art
solutions for load recognition. Some works employ models considered computationally
costly, such as Mian Qaisar and Alsharif [8] with the Artificial Neural Network (ANN), De
Baets et al. [9], Faustine and Pereira [10], and Matindife et al. [11] with the Convolutional
Neural Network (CNN), and Huang et al. [12] and Heo et al. [13] with the Long Short-Term
Memory (LSTM). Other studies apply architectures with lower computational costs, such as
Qaisar and Alsharif [14] with k-Nearest Neighbors (k-NN), Soe and Belleudy [15] with Clas-
sification and Regression Trees (CART), Qaisar and Alsharif [14] and Soe and Belleudy [15]
with Support Vector Machine (SVM), and Zhiren et al. [16] with the standard Extreme
Learning Machine (ELM). Furthermore, reducing the amount of information needed to
identify the appliance in operation is a pertinent feature of the solutions. According to
Cabral et al. [7] and Soe and Belleudy [15], it is feasible to achieve this using ML techniques
for feature extraction, such as Linear Discriminant Analysis (LDA), Principal Component
Analysis (PCA), and others. Conversely, we can limit the amount of information required
regarding household appliances by solely using a single type of electrical signal, such
as voltage, current, reactive power, or active power.

Designing an approach that guarantees high performance, reliability, and the short
training time of ML models using only a single type of electrical signal represents a crucial
challenge in the load recognition area. Several approaches are seeking to achieve these
objectives. Presently, the modern methods for load recognition use images generated from
electrical signals such as voltage, current, active power, and others. The advantages of this
approach are substantiated by the works as Faustine and Pereira [10], Matindife et al. [11],
Gao et al. [17], De Baets et al. [9], and Cabral et al. [7]. In this regard, the motivation of
this study is to propose enhancements to the load recognition system in HEMS. To achieve
this, the current study utilizes images generated exclusively from the active power data of
household appliances. The present work contributes to advancements in the load recog-
nition area, introducing novel applications not previously explored in the literature. Our
analysis investigates the underlying factors, highlighting Neighborhood Component Anal-
ysis (NCA) as a promising alternative technique for feature extraction in load recognition.
Besides reporting the quantitative improvements over existing methods, we also emphasize
the qualitative benefits, such as the enhanced system reliability through employing the
Regularized Extreme Learning Machine (RELM) classifier instead of the standard ELM.
Furthermore, our work seeks to optimize the capabilities of ML models to the maximum
through the combination of Grid Search (GS) with K-fold Cross-Validation (K-CV). The re-
sults of the proposed system reveal the highest accuracy values, weighted average F1-Score
(F1), and Kappa index (κ) when compared to the most modern methods in the literature.
The innovations implemented also guarantee low training time. These results confirm the
superiority of the innovations proposed in this manuscript. Furthermore, our solution
is part of the research project under development named Open Middleware and Energy
Management System for the Home of the Future. The project is a collaboration between the
University of Campinas, the Eldorado Research Institute, and the Brazilian energy supplier
Companhia Paranaense de Energia (COPEL).
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Major Contributions

The principal contributions of our work are as follows:

1. Gaps like enhancing classification performance via approaches dedicated to sepa-
rability between classes and models that reach improved reliability remain open.
According to Manit and Youngkong [18], NCA provides enhanced class separability.
In this study, we adopt NCA to extract relevant characteristics from the data, seeking
the separability between classes to improve classification performance. We also apply
the RELM to achieve higher reliability when identifying household appliances. It
is relevant to mention that this work is the first to use NCA and RELM for load
recognition. Besides the RELM-NCA pair, it is the first to verify the NCA-ELM pair
for this task;

2. The values obtained for the performance metrics reveal the promising potential
of ML techniques, specifically NCA and RELM, to contribute to load recognition.
Using the ‘Personalised Retrofit Decision Support Tools for UK Homes using Smart
Home Technology’ (REFIT), the proposed approach achieved 97.24% accuracy and
97.14% F1. As well as via the Reference Energy Disaggregation Dataset’ (REDD),
the method reached 96.53% accuracy and 96.48% F1. For both, the proposed approach
has achieved performance improvements in load recognition. For the REFIT dataset,
the difference between RELM and ELM reveals a 0.36% accuracy advantage for the
RELM model. This advantage is the same for RELM compared to the SVM of the
state-of-the-art system proposed in Cabral et al. [7]. For the REDD dataset, RELM’s
advantage over SVM is 0.21%. RELM’s advantage over ELM for the same dataset
is 2.71% accuracy. Furthermore, we can see a trend favoring the proposed method
when we examine the accuracy of other state-of-the-art methods from the references.
When comparing the best result of the proposed method, 97.24% accuracy, with the
third-placed method in Qaisar and Alsharif [14], the difference is 1.84%;

3. Our method provides an ultra-low training time of 0.082 s with the REFIT database,
less than the SVM of the technique reported in Cabral et. al [7], which has a time of
0.469 s. This result means that the proposed approach is approximately 5.72 times
faster than the competitor, representing a time saving of 82.52% compared to the
competitor. Concerning ELM, the proposed approach is 2.33 times faster and saves
approximately 57.07% of the time. When checking the REDD database, the proposed
method has a training time of 0.123 s, while the SVM has 0.167 s. In this case,
the proposed method is 1.36 times faster than the SVM, saving approximately 26.35%
of the time. For the REDD dataset, the proposed approach requires more time than
ELM to complete its training process. However, only the proposed approach has the
shortest achievable time compared to the other methods: 0.082 s.

The structure of the remainder of this paper is as follows: Section 2 provides a detailed
background to lay the foundation for this study. Section 3 provides a detailed description of
the proposed system, elucidating the implemented processing flow. This section includes
detailed input data, the feature extraction technique employed, the criteria for selecting
appropriate components, and the implementation of machine learning models. Section 4
presents the metrics utilized in this manuscript, accompanied by a justification for their
choice. Section 5 examines the results obtained from the proposed system when employing
two databases. Furthermore, this section discusses the outcomes, offering insights and in-
terpretations of the findings. Section 6 concludes the paper, summarizing the contributions,
implications of the proposed strategy, and potential future work.

2. Background

This section presents the related works in the literature and introduces the theoretical
principles, such as the feature extraction technique and the architecture of the ML model.
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2.1. Related Works

In the literature, there are a variety of strategies that perform load recognition. In Qaisar
and Alsharif [14], the authors use active power. Active power performs work in an electrical
system and refers to the energy consumed by the appliance to operate. However, the study
uses different procedures to classify each device category. The paper uses devices from the
Appliance Consumption Signature-Fribourg 2 (ACS-F2) database and the accuracy metric
to evaluate the performance of the SVM and kNN models at the devices’ classification stage.
In Cabral et al. [7], the authors exclusively use the active power profile of the household
appliances in the REDD and REFIT datasets. In this reference, the k-NN, Decision Tree
(DT), Random Forest (RF), and SVM models can perform load recognition with a balance
between short training time and high performance for the accuracy metrics, weighted
average F1 score, and Kappa index.

Nonetheless, approaches do not necessarily only exploit the active power of a house-
hold appliance. The study reported by Mian Qaisar and Alsharif [8] uses active and reactive
power. Reactive power in an alternating current system does not perform effective work,
being stored and returned to the electrical system due to the presence of reactive elements,
such as capacitors and inductors. In this case, the authors also apply accuracy to evaluate
the performance of the ANN and k-NN models. In Matindife et al. [11], the researchers use
a private dataset involving active power, current, and power factor. Here, by employing the
Gramian Angular Difference Field (GADF) for feature extraction; the researchers convert
the data into images. In the sequence, the CNN recognizes the appliances and the authors
test the robustness of their proposal using the recall, precision, and accuracy metrics.

On the other hand, alternative studies utilize different types of data, as demonstrated
in Borin et al. [19], which employs instant current measurements. The study applies Vector
Projection Classification (VPC) in pattern recognition of loads. In this reference, the authors
assess the performance of the proposed approach through the percentage of identified
devices. Some methods utilize a combination of these other variables, such as voltage and
current, for instance. In Zhiren et al. [16], the study uses a private dataset. The authors
evaluate the proposed solution through accuracy metric, where the models tested are ELM,
Adaboost-ELM, and SVM. In Faustine and Pereira [10], the scientists employ the Plug Load
Appliance Identification Dataset (PLAID) dataset and the F1 example-based (F1-eb) and
F1 macro-average (F1-macro) metrics in their analysis. The methodology proposed in this
reference focuses on the Fryze power theory, which decomposes the current characteristics
into components. As a result, the current becomes an image-like representation and a CNN
recognizes the loads.

Unlike the utilization of voltage and current profiles, certain studies consider alter-
native attributes. Heo et al. [13] use Amplitude–Phase–Frequency (APF). The researchers
employ accuracy and the F1-Score as metrics to evaluate the overall performance of the
proposed system and the following databases: Building-Level fully labeled Electricity
Disaggregation (BLUED), PLAID, and a private database. As reported in the study, the use
of HT-LSTM improves the recognition of devices with differences in the transient time and
transient form of the load signal. Furthermore, the proposed scheme includes an event
detection stage. Event detection is not always present in the strategies published in the
literature but it is a tool that allows the system to identify when the appliance has turned
on and off. The references Cabral et al. [7], Anderson et al. [20], Norford and Leeb [21],
and Le and Kim [22] contain event detection strategies. It is relevant to mention that event
detection is not the focus of our proposed work. Nevertheless, we use Wavelet transform
to detect the ON/OFF status of the appliances according to references Lemes et al. [6] and
Cabral et al. [7]. The selection of the Wavelet transform is justified due to its ability to detect
appliance activity simply through the analysis of the level 1 detail coefficient. According to
Lemes et al. [6], level 1 already contains enough information to detect ON/OFF activity.
Hence, detecting the ON/OFF activity of the appliance can be performed without needing
to decompose the signal into higher levels.
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Another significant factor is the volume of data involved in the proposed approaches;
more attributes to consider mean a more computationally complex and invasive system.
In Huang et al. [12], the authors consider the steady-state power, the amplitude of the
fundamental wave of the transient current, the transient voltage, and the harmonics of the
transient current. In this case, the work adopts the REDD dataset and F1-Score in the tests.
The methodology combines LSTM layers with Back Propagation (BP) layers, resulting in
the following architecture: the Long Short-Time Memory Back Propagation (LSTM-BP)
network. The method described by Soe and Belleudy [15] uses characteristics from the
active power of the equipment present in the Appliance Consumption Signature-Fribourg 1
(ACS-F1). Such features are the maximum power, average power, standard deviation,
number of signal processing, operating states, and activity number of the appliances.
The article evaluates the performance of the SVM, k-NN, CART, LDA, Logistic Regression
(LR), and Naive Bayes (NB) models in terms of accuracy. It is worth emphasizing that as the
diversity of electrical signals and parameters demanded from home appliances increases,
the load recognition method becomes more intrusive and computationally expensive.
For this reason, creating a strategy that has an optimal balance between high performance,
reliability, and short training time based on a single type of electrical signal represents a
key challenge in the load recognition field.

Finally, it is essential to mention some shortcomings in the methods proposed in the
literature. Few studies use only one type of electrical signal in their approaches. The greater
the number of electrical signals involved, the more invasive and computationally costly
the method becomes. For example, the works of Mian Qaisar and Alsharif [8], Qaisar
and Alsharif [14], and Zhiren et al. [16] use many parameters excessively. On the other
hand, the majority of existing studies do not include a stage for detecting the ON/OFF
status of the equipment, for example, the works of Mian Qaisar and Alsharif [8], Soe
and Belleudy [15], and Zhiren et al. [16]. This condition limits the practical use of these
methods. Most studies in the literature do not consider applying procedures to optimize
their approaches, such as the hyperparameter search, for example, Faustine and Pereira [10],
Qaisar and Alsharif [14], and Soe and Belleudy [15]. Adopting this procedure supports the
definition of classifier structural parameters and can provide additional performance gains.
Other papers are not concerned with evaluating the reliability of the system.

2.2. Feature Extraction

Feature extraction concerns the process of transforming relevant characteristics from
raw data to create more compact and informative representations. The extracted features
describe distinctive properties of the data and practitioners widely apply this approach
across several areas, such as image processing, according to Nixon and Aguado [23] and
Chowdhary and Acharjya [24], signal processing, in line with Gupta et al. [25] and Turhan-
Sayan [26], and ML according to Musleh et al. [27] and Kumar and Martin [28]. One of the
advantages of some feature extraction techniques is the reduction in data dimensionality,
thereby decreasing computational complexity.

Several techniques exist for feature extraction. The approach choice depends on
the nature of the data, the task concerned, and the computational cost involved. Some
studies, according to Veeramsetty et al. [29] and Laakom et al. [30], employ autoencoders
for compact data representations. However, this kind of architecture can make methods
computationally expensive. Alternative investigations use computational techniques that
are less resource-intensive, such as in Reddy et al. [31] with LDA, Fang et al. [32] with
Independent Component Analysis (ICA), and Bharadiya [33] and Kabir et al. [34] with PCA.

Currently, more modern methods employ NCA to eliminate redundant information
to reduce computational cost, according to Ma et al. [35]. NCA is a technique focusing on
learning a distance metric in the feature space, optimizing the similarity between points
without necessarily decreasing the dimensionality of the data. As per Goldberger et al. [36],
the NCA technique is based on k-NN and stands out for optimizing a distance metric
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to enhance the quality of features, especially in classification tasks where the distinction
between classes is crucial.

According to Singh-Miller et al. [37], the NCA algorithm uses the training set as the
input, i.e., {x1, x2, · · ·, xQ} with xi ∈ RQ, and yi with the set of labels {y1, y2, · · ·, yQ}. The
algorithm needs to learn a projection matrix A of dimension q×Q, which it uses to project
the training vectors xi into a low-dimensional representation of dimension q. To obtain
low-dimensional projection, NCA requires learning a quadratic distance metric γ, that
optimize the performance of k-NN. The distance γ between two points, xi and xj, is

γij = γ(xi, xj) = ∥ A(xi − xj) ∥2, (1)

where ∥ · ∥ is the Frobenius norm and A is a linear transformation matrix. In the NCA
technique, each point i chooses another point j as its neighbor from among k points
with a probability Pij and assumes the class label of the selected point. According to
Goldberger et al. [36], through γij, Pij, and the optimization of the objective function f (A),

NCA calculates a vector representation in a low-dimensional space (x(q)i ). The vector in
low-dimensionality can be represented by

x(q)i = Axi, (2)

It is possible to produce a matrix in low-dimensional space, depending on the im-
plementation. This scenario is subject to the input data and the number of components
required for the application. Detailed information regarding the NCA algorithm is available
at Goldberger et al. [36].

2.3. Extreme Learning Machine (ELM)

The ELM presents a visionary structure in the ML field, standing out for its com-
putational efficiency and conceptual simplicity. In contrast to many conventional neural
networks, where all parameters need adjustment during training, ELMs adopt a unique
strategy by randomly fixing the weights of the hidden layer and focusing solely on learning
the weights of the output layer. This methodology enables a short training time. Further-
more, the simplified architecture of ELMs facilitates implementation, making them an
appealing choice for applications requiring computational efficiency and robust perfor-
mance in supervised learning tasks.

As per the formal description of ELM in accordance with Huang et al. [38], for dif-
ferent samples (xi, ti), where xi = [xi1, xi2, · · ·, xin]

T ∈ Rn and ti = [ti1, ti2, · · ·, tim]
T ∈ Rm,

the output of an ELM is

L

∑
i=1

βig
(
⟨wi , xj⟩+ bi

)
= tj, j = 1, 2, 3, · · ·, N, (3)

in which wi = [wi1, wi2, · · ·, win]
T is the input weight vector connecting the ith hidden

neuron, βi = [βi1, βi2, · · ·, βim]
T is the output weight vector connecting the ith hidden

neuron, bi is the bias, L is the number of hidden neurons, g(·) is the activation function,
and ⟨· , ·⟩ is the inner product. Nevertheless, the Equation (3) can be written in the matrix
form as

Hβ = T (4)

H is the output matrix of the hidden layer of the neural network and can be expressed
as follows:

H =

 g(⟨w1 , x1⟩+ b1) · · · g(⟨wL , x1⟩+ bL)
...

. . .
...

g(⟨w1 , xN⟩+ b1) · · · g(⟨wL , xN⟩+ bL)

, (5)
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where

β =

 βT
1
...

βT
L

 and T =

 tT
1
...

tT
N

 (6)

However, we can solve the system described in (4) through the Moore–Penrose pseudo-
inverse of the H, depicted as H†, where H† =

[(
HTH

)−1HT
]
. Consequently, we can

determine the output weights by

β̂ = H†T =

[(
HTH

)−1
HT

]
T (7)

Figure 1 illustrates the standard ELM, one of the ML models of the proposed system.
Later in the manuscript, our approach includes modifications to the standard ELM to
achieve enhanced results.

w

Output

Input
Weights

Output
Weights

Input

Hidden
Layer

Input
Layer

Output
Layer

Figure 1. ELM-standard model (adapted from Zhao et al. [39]).

3. Proposed System

Figure 2 provides an overview of the proposed system for load recognition, where the
collection and transmission of data are carried out through smart outlets and the controller,
respectively. Both the smart outlets and the controller are illustrated in the blue color. In
the second panel, the collected data are highlighted in blue, while the preliminary data
processing blocks are represented in light gray. In the sequel, we have the feature extraction
stage utilizing the NCA technique, represented in red. Subsequently, in dark gray, in the last
part of the flowchart, Figure 2 depicts the stage responsible for the ML model optimization,
aiming for the enhanced performance of the classifiers. At the end, depicted in light blue,
the system presents the type of appliance in operation.

Figure 2a depicts the HEMS system consisting of the controller and smart outlets. The
controller enables the processing of data either locally or its transmission to a cloud server.
Moreover, it can execute pre-trained algorithms and send consumption alerts to the end
user. The solution is minimally invasive. In practice, users only need to provide internet
access to the controller and pair it with the smart outlets.
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Detail Coefficient
(Level 1)

Collected Data
(Active Power)

Appliance Operation
(ON/OFF)

Converting Active
Power to Image

Re-arrangement
of the pixels

NCACEVNumber of
Components

GS with K-CVSet of Model
Hyperparameters

Re-apply NCA

Chosen Model Type of ApplianceOptimized Model

Controller

Smart Outlet

Controller

Smart Outlet

Detection of ON/OFF operation

Feature Extraction via NCA

Model Optimization

(a)

(b)

(c)

(d)

Figure 2. Comprehensive visualization of the Load Recognition System. This figure outlines the
four stages of the process, starting with (a) the collection of active power through HEMS. The next
phase (b) involves the detection of appliances’ ON/OFF status and preliminary data handling. In the
sequel, (c) feature extraction is conducted using the NCA technique. The process culminates with
(d) the optimization of ML models for improved classifier performance and the identification of the
operational appliance type.

According to Figure 2b, the system features an ON/OFF operational state detection
stage via Discrete Wavelet Transform (DWT) to determine when the appliance is in opera-
tion. An appliance registers as operating when it exhibits non-zero active power values,
even after employing a prior filtering of potential noise. To determine whether an appli-
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ance is in operation as demonstrated in Lemes et al. [6], we only need the level-1 detail
coefficients obtained by decomposing the active power using DWT with the Daubechies
4 mother wavelet. Subsequently, the system transforms the segments with the detected
activities into images, as described in Cabral et al. [7]. In this procedure, the proposed
strategy converts the curve representing the electrical activity of the appliance into black
pixels and the background into white pixels, where the system has the flexibility to adjust
the pixel resolution based on computational cost requirements. Therefore, each generated
image contains a cycle of appliance activity. Following this, the system rearranges the
image rows into a column vector of size I. Afterward, the method generates a set of vectors
containing N images and places this set into a matrix S, with dimensions I × N.

Figure 2c illustrates the processing chain for feature extraction via NCA. In our case,
we apply NCA to the pixel matrix S, transforming the data from S, with high dimen-
sionality, into the matrix S(q)

(NCA)
, with low dimensionality (q). Once we have the learned

transformations applied to the data, we can estimate the variance of the transformed data
for each dimension or component. Thus, it is feasible to assess the fraction of variance con-
tained in each dimension and calculate the Cumulative Explained Variance (CEV) as more
dimensions or components are incorporated. Then, we can choose the optimal number of
components using CEV. The different components are defined based on the CEV, as per
Algorithm 1. To detail this stage, Algorithm 1 specifies all the procedures of feature extrac-
tion through NCA. In particular, Algorithm 1 encompasses the sequence of procedures
necessary to calculate the CEV, determine the number of components through CEV, use the
NCA technique with the optimized number of elements, and obtain the transformed data
via NCA.

Figure 2d represents the processing chain dedicated to optimizing the ML model.
During this phase, the system feeds the ML models with the transformed data. For
the ELM model, the processing chain conducts a hyperparameter search through GS
and K-CV, employing the candidate set for the number of neurons and the number of
folds. Algorithm 2 details the instructions for the ELM model optimization process. It
is relevant to mention that our system can employ the optimization process in ELM or
RELM. Nonetheless, there is a difference between the ELM and RELM models. Such a
particularity is the regularization coefficient. This element is a parameter used in ML
techniques, such as ridge regression, to control the model’s fit to the data. The function
of the regularization coefficient is to impose a penalty on the magnitude of the model
coefficients, preventing them from reaching excessively high values. Such a strategy
minimizes the risk of overfitting by preventing the model from overly adjusting to the data.

The regularization coefficient is a mechanism that aids in achieving an appropriate
balance between bias and variance. An elevated regularization coefficient leads to an
increase in the bias and a decrease in the variance. In contrast, a small regularization
coefficient allows for greater flexibility in model fitting to the data, promoting an increase
in variance. Such a coefficient acts as a regulator, influencing the synthesis of a simpler or
a more complex model. Therefore, appropriately adjusting the regularization coefficient
results in a more balanced trade-off between bias and variance.

For this reason, the regularization coefficient inclusion prevents the model from
becoming excessively specific to the training data, making it more robust to new datasets
unseen during training. This effect enhances the capability of the model generalization.
Thus, a model with a suitable regularization coefficient tends to preserve the relevance
of identified patterns, even in different contexts from the training data. Therefore, it is
necessary to carefully seek the appropriate value for the regularization coefficient, ensuring
that the model effectively enhances its generalization capability.
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Algorithm 1 Feature extraction using neighborhood component analysis with component
selection based on cumulative explained variance

Input: Image dataset generated (S), initial number of components (ϕ), threshold (ψ)
Output: training set S(q)

(tr,NCA)
e testing set S(q)

(ts,NCA)

1: first method:
Split the S database and derive the S(tr) training data and the S(ts) test data.

2: second method:
Train the NCA with S(tr), using ϕ initial components. After training, obtain the trans-

formed dataset S(ϕ)
(tr,NCA)

3: third method:
Estimate the covariance matrix C(NCA), according to Lemes et al. [5], for the trans-

formed data S(ϕ)
(tr,NCA)

4: fourth method:
Calculate the eigenvalues ei through C(NCA) = E · diag(e1, e2, · · ·, eϕ) · E−1, where
E is the eigenvectors matrix e diag(e1, e2, · · ·, eϕ) is the diagonal matrix containing
the eigenvalues

5: fifth method:
Order the eigenvalues in descending sequence: e1 ≥ e2 ≥ e3 ≥ · · · ≥ eϕ

6: sixth method:
Compute the proportion of variance explained by each eigenvalue ρi =

ei

∑
ϕ
j=1 ej

7: seventh method:
Obtain the CEV for the i-th component: CEVi = ∑i

j=1 ρj
8: eighth method:

Create the q variable to receive the optimized number of components and initialize
q = 0
Determine the optimized number of components

if CEVi ≥ ψ
q← number of i-th component,

end if
9: ninth method:

Re-train NCA with S(tr), this time utilizing only q components. After to the training
process, apply NCA to generate the transformed datasets for both the training set,
denoted as S(q)

(tr,NCA)
, and the test set, denoted as S(q)

(ts,NCA)

return S(q)
(tr,NCA)

e S(q)
(ts,NCA)

Obtaining the most suitable regularization coefficient for the RELM model through
trial and error can be a considerable challenge. Once again, this objective becomes feasible
through hyperparameter search strategies, such as GS and K-CV. Structurally, adding a
regularization coefficient to the ELM architecture to obtain the RELM model involves
modifying the pseudo-inverse of H, as per Equation (8). This approach is an elegant
strategy that ensures excellent results.

β̂λ = H†T =

[(
HTH + λI

)−1
HT

]
T (8)

Nevertheless, in RELM optimization, it is necessary to include candidates set for the
regularization coefficient. In this phase, the system considers the set of candidates for the
number of neurons, the set of candidates for the regularization coefficient, and the number
of folds during the hyperparameter search. In this case, Algorithm 3 describes the RELM
model optimization process in detail.
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Algorithm 2 Optimizing extreme learning machine through hyperparameter tuning with
grid search and K-fold cross-validation for enhanced performance

Input: Candidates for the number of neurons (η1, η2, · · ·, ηn), S(q)
(tr,NCA)

, S(q)
(ts,NCA)

, number
of folds (K)

Output: Optimized ELM
1: first method:

Load the candidates for the hyperparameters: candidates for the number of neurons
(η1, η2, · · ·, ηn)

2: second method:
Employ GS with K-CV

Divide S(q)
(tr,NCA)

in K folds
Train the model for each fold
Compute accuracy
Mean accuracy
Attributes the average accuracy to the present set of hyperparameters
Choose the hyperparameter set with the highest average accuracy achieved, i.e,
η(optimal)

3: third method:
Train the model using η(optimal)

4: fourth method:
Testing the optimized model with S(q)

(ts,NCA)

return Optimized ELM

Algorithm 3 Optimizing regularized extreme learning machine through hyperparameter
tuning with grid search and K-fold cross-validation for improved performance

Input: Candidates for the number of neurons (η1, η2, · · ·, ηn), candidates for the regulariza-
tion coefficient (λ1, λ2, · · ·, λn), S(q)

(tr,NCA)
, S(q)

(ts,NCA), number of folds (K)
Output: Optimized RELM

1: first method:
Load the candidates for the hyperparameters: candidates for the number of neurons
(η1, η2, · · ·, ηn) and candidates for the regularization coefficient (λ1, λ2, · · ·, λn)

2: second method:
Employ GS with K-CV

Divide S(q)
(tr,NCA)

in K folds
Train the model for each fold
Compute accuracy
Mean accuracy
Attributes the average accuracy to the present set of hyperparameters
Choose the hyperparameter set with the highest average accuracy achieved, i.e,
λ(optimal) and η(optimal)

3: third method:
Train the model using λ(optimal) and η(optimal)

4: fourth method:
Testing the optimized model with S(q)

(ts,NCA)

return Optimized RELM

4. Performance Evaluation Metrics

To evaluate the performance of the proposed system, this work uses the metrics of
accuracy, F1, and κ, according to Cabral et al. [7]. These metrics rely on measures of
true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN).



Sensors 2024, 24, 2274 12 of 20

The accuracy, defined in (9), is responsible for measuring the number of instances
correctly classified in the test set and presents the overall performance of the models.

Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Depending on the nature of the devices, each appliance can produce a different
number of events. It is possible to consider this effect in the F1-Score metric to provide
a fair performance analysis. However, it is necessary to consider the size of the set of
instances of a class (d) and the size of the dataset (D), as per Alswaidan and Menai [40] and
Guo et al. [41]. To achieve it, this study employs the weighted average F1-score, denoted as
F1, according to (10)

F1 =
1
D ∑ d× F1-Score

=
1
D ∑ d×

[
2× TP

2× TP + 1× (FN + FP)

] (10)

This work applies the Kappa index to verify the agreement of the proposed strategy.
As per Matindife et al. [11], Kappa operates within the interval of [−1, 1]. A value of −1
signifies an absence of agreement, 0 represents agreement occurring by chance, and 1
indicates perfect agreement. This manuscript defines Kappa index, denoted as κ, by (11)

κ =
2× (TP× TN− FN× FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(11)

Each metric offers a unique perspective on the performance of ML models, ensuring a
holistic assessment. Accuracy is essential as it provides an overall success rate of the model.
F1 was selected to address a potential imbalance among classes in used datasets. This metric
offers a more nuanced view of the model in scenarios when the class distribution is imbal-
anced. The κ evaluates the agreement between the predicted and observed classifications,
providing insights into the model’s performance regarding reliability. By employing these
three metrics together, we aim to present a comprehensive evaluation of the performance
of our model, capturing its effectiveness in classification and its robustness in different
evaluation parameters. This multifaceted approach allows us to validate the model’s utility
in diverse scenarios, ensuring its reliability and applicability.

5. Results and Discussions

This study assesses the proposed solution using two databases, REDD from Kolter and
Johnson [42] and REFIT from Murray et al. [43]. These databases encompass two house-
holds characterized by distinct measurement frequencies, types of equipment, and equip-
ment number. The deliberate selection of these databases ensures a comprehensive evalua-
tion of the method generalization. The initial procedure is to homogenize the resolution
at 32× 32 pixels for both databases. The system generates 4609 images from the REDD
database and 2723 images from the REFIT database. Procedures involving training in
the feature extraction and in the model optimization consider a data partition of 80% for
training and 20% for testing in both databases, respectively. The proposed system applies
feature extraction via NCA. Related work involving PCA indicates that the REFIT database
requires more components than REDD. Concerning this, the proposed solution adopts
ϕ = 300 for REFIT and ϕ = 100 for REDD. It is necessary to mention that these ϕ values
are just initial values; our system endogenously determines the most appropriate number
of components via CEV. For this task, we use a threshold of ψ = 0.99 for both REFIT and
REDD. The threshold of ψ = 0.99 was selected based on previous studies that indicate
the effective extraction of relevant components. For example, Cabral et al. [7] employ
this value for the threshold to ensure that only components with significant contributions
to the data variance are retained. In the sequence, the system initiates the optimization
process for ML models. For both datasets, the hyperparameter tuning procedures use
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K = 10 folds. According to Kuhn et al. [44], opting for K=10 is advocated because it can
generate test error rate estimates unaffected by undue bias or excessive variance. Moreover,
we also selected 10 to balance performance reliability and computational efficiency. In
this search, the number of neurons (η1, η2, · · ·, ηn) ranged from 100 to 1000, with a step
size of 100, for the ELM and RELM models, respectively. The step size 100 was chosen to
foster the model convergence without significantly compromising computational time. In
addition, for the RELM model, we need to include the candidates for the regularization
coefficient (λ1, λ2, · · ·, λn) in the hyperparameter search. Thus, the set of the values for
the regularization coefficient candidates ranged from 0.0001 to 0.1, with the search step
increasing 10 times from one value to the next in the mentioned sequence.

5.1. Scenario Using the REFIT Dataset

For the first analysis scenario, this study utilizes the REFIT dataset. REFIT comprises
active power measurements from 20 residences, recorded at a frequency of 1/8 Hz. For the
REFIT scenario, we consider appliances of household 1. This household includes freez-
ers, washer-dryers, washing machines, dishwashers, computers, televisions, and electric
heaters. For this dataset, the system generated 4609 images representing the activities of
the operational household appliances.

In this scenario, the system generates the results of Table 1 using the REFIT database
from Murray et al. [43]. To preserve the layout of the manuscript, we show just some of
the 300 components in Table 1. As highlighted in Table 1, using a threshold of ψ = 0.99 for
the CEV, it is necessary to employ q = 228 components. Here, we use the GS and K-CV for
a hyperparameter search of ELM and RELM. In this manner, for both models, the search
specified the value of η(optimal) = 400 for the number of neurons, respectively. Furthermore,
the hyperparameter search determined λ(optimal) = 0.01 for the RELM architecture.

Table 1. Evolution of the CEV according to the increment in the number of components (Comp.) for
the REFIT dataset.

Comp. CEV Comp. CEV Comp. CEV Comp. CEV Comp. CEV

1 0.0862 53 0.8421 105 0.9330 157 0.9682 209 0.9858
5 0.2761 57 0.8539 109 0.9368 161 0.9700 213 0.9867
9 0.3983 61 0.8643 113 0.9404 165 0.9717 217 0.9876

13 0.4907 65 0.8736 117 0.9438 169 0.9733 221 0.9885
17 0.5669 69 0.8820 121 0.9469 173 0.9748 225 0.9894
21 0.6275 73 0.8896 125 0.9499 177 0.9763 227 0.9898
25 0.6792 77 0.8966 129 0.9527 181 0.9777 228 0.9900
29 0.7202 81 0.9031 133 0.9553 185 0.9790 229 0.9902
33 0.7505 85 0.9091 137 0.9578 189 0.9802 233 0.9910
37 0.7751 89 0.9147 141 0.9601 193 0.9814 237 0.9917
41 0.7961 93 0.9198 145 0.9623 197 0.9826 241 0.9924
45 0.8135 97 0.9245 149 0.9644 201 0.9837 245 0.9931
49 0.8287 101 0.9290 153 0.9664 205 0.9847 249 0.9938

Upon checking the comparison in Table 2, it is evident that a slight performance differ-
ence exists among the ELM and RELM models concerning the accuracy metric. However,
the RELM architecture exhibited the highest value, 97.24%, for accuracy. This advantage
persists for the RELM model in the F1 metric, with a value of 97.14%. Regarding the agree-
ment between the predicted and expected values, the RELM model achieves the highest
value of κ, 0.8300.

Table 3 compares the training times of the ELM and RELM models. In this scenario,
the ELM classifier has the longest training time, at 0.191 s, followed by the RELM at 0.082 s.
These results highlight the RELM model as having the shortest training time.

It is important to note that the obtained results suggest that the RELM architecture
outperforms the previous model, ELM. We can extend this analysis further by comparing
the second-best model in the literature for the same task, SVM in Cabral et al. [7], which
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achieves 96.88% accuracy, 96.61% to F1, and 0.8375 to κ. In contrast, the RELM classifier
surpasses these metrics with values of 97.24% accuracy, 97.14% to F1, and 0.8300 to κ.
Additionally, when examining the training time among the mentioned models, SVM has a
longer training time in seconds, 0.469, compared to RELM, which only requires 0.123 of
a second.

Table 2. Performance of the classifiers for the REFIT Scenario.

Classifier Accuracy F1 κ
ELM 96.88% 96.59% 0.7910

RELM 97.24% 97.14% 0.8300

Table 3. Training time in seconds for the REFIT Scenario.

RELM ELM

0.082 0.191

5.2. Scenario Using the REDD Dataset

REDD contains the active power readings of six homes at a frequency of 1/3 Hz.
We use measurements from residence 1 for the REDD scenario. Within this household,
a range of appliances is present, including an oven, refrigerator, dishwasher, kitchen oven,
lighting, washer-dryer, microwave, bathroom Ground Fault Interrupters (GFI) outlet, heat
pump, stoven, and an unidentified device. In this case, the system generates 2723 images
illustrating the activities of household appliances.

In this scenario, the method produces the results displayed in Table 4, employing
the REDD database from Kolter and Johnson [42]. As indicated by Table 4, to meet the
threshold ψ = 0.99 imposed by the CEV, it is necessary to utilize 25 components, i.e., q = 25,
for the REDD dataset. As mentioned earlier, GS and K-CV determine the most suitable
hyperparameters for the models. For the ELM architecture, the hyperparameter search spec-
ified η(optimal) = 100. In this scenario, the search found η(optimal) = 400 and λ(optimal) = 0.1
for the RELM architecture.

Table 4. Evolution of the CEV according to the increment in the number of components (Comp.) for
the REDD dataset.

Comp. CEV Comp. CEV Comp. CEV Comp. CEV Comp. CEV

1 0.8992 7 0.9631 13 0.9788 19 0.9860 25 0.9904
2 0.9223 8 0.9669 14 0.9803 20 0.9868 26 0.9909
3 0.9387 9 0.9704 15 0.9817 21 0.9876 27 0.9915
4 0.9474 10 0.9732 16 0.9829 22 0.9884 28 0.9920
5 0.9533 11 0.9754 17 0.9841 23 0.9891 29 0.9924
6 0.9586 12 0.9771 18 0.9851 24 0.9897 30 0.9929

Table 5 presents a direct model performance comparison. The results reveal a signifi-
cant difference in terms of accuracy when we compare the ELM and RELM models, this
advantage is approximately 2.7% for RELM. Concerning F1, the difference between the
ELM and RELM models is even more noteworthy. Here, the RELM architecture presents an
advantage of 2.78% for the F1 metric. Ultimately, the RELM classifier achieves the highest
agreement between predicted and expected values, with κ = 0.9388.

Table 6 provides a training time comparison of the employed ML models. In this
scenario, the training time for the RELM is 0.123 of a second, followed by the ELM,
with 0.045 of a second. Although, in this scenario, the ELM has the shortest training
time, this difference is indeed minimal.

In conclusion, the results suggest that the RELM model is the preferred choice for load
recognition in this dataset. When compared again to the second-best model in the literature,
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SVM, the superiority of RELM is evident across all metrics. SVM achieves 96.31%, 96.36%,
and 0.9381 for accuracy, F1, and κ, respectively, while RELM reaches 96.53% for accuracy,
96.48% for F1, and 0.9388 for κ. Furthermore, RELM has the shortest training time. While
SVM requires 0.167 s for training, RELM only needs 0.082 s.

Table 5. Performance of the classifiers for a REDD Scenario.

Classifier Accuracy F1 κ
ELM 93.82% 93.70% 0.8913

RELM 96.53% 96.48% 0.9388

Table 6. Training time in seconds for REDD Scenario.

ELM RELM

0.045 0.123

5.3. State-of-the-Art Methods Comparison

Table 7 compares the proposed system with 11 state-of-the-art methods for load
recognition. In this manner, Table 7 demonstrates that all the approaches may exhibit
common structural characteristics, such as feature extraction procedures and earning
models. However, solely the proposed system and the works of Cabral et al. [7] and
Heo et al. [13] include event detection stages. Only the proposed system and the reference
Cabral et al. [7] contain procedures for optimizing ML models.

Feature extraction procedures are vital structures for load recognition systems. How-
ever, the more characteristics we need to extract, the more computationally expensive
the system becomes. The feature extraction procedures employed in the works of Qaisar
and Alsharif [14], Zhiren et al. [16], Mian Qaisar and Alsharif [8], Soe and Belleudy [15],
Faustine and Pereira [10], and Heo et al. [13] extract more than two types of characteristics
from the signals, i.e., these methods need more information about the electrical signals
to work. In this sense, the methods of Cabral et al. [7], Huang et al. [12], and our system
use techniques to decrease the computational complexity. In the case of Cabral et al. [7]
and Huang et al. [12], they use the PCA and in our case, we use the NCA technique.
But comparing our system with the reference Cabral et al. [7], we require a smaller volume
of data due to the utilization of a reduced number of components through NCA. While
Cabral et al. [7] employ 269 components for REFIT and 35 for REDD, we require only 228
for REFIT and 25 for REDD.

The works of Faustine and Pereira [10], Matindife et al. [11], and De Baets et al. [9]
use a more computationally complex architecture as a learning model, the CNN. However,
as the last column of Table 7 shows, using more complex models does not guarantee a
superior result. In this sense, the work of Matindife et al. [11] achieves 83.33% accuracy,
while our method obtained 97.24% accuracy with RELM. Furthermore, only our study
and the reference Cabral et al. [7] apply GS with K-CV to improve the performance of ML
models. Nevertheless, the novelties in our work provide superior performance compared
to Cabral et al. [7]. While reference Cabral et al. [7], the second-highest performing, shows
96.88% accuracy, using SVM for the REFIT dataset, we achieve 97.24% accuracy using
RELM for the same dataset. It is relevant to point out that there is no consensus on the
most suitable dataset for analyzing the methods. But in terms of metrics, most papers use
accuracy as the principal evaluation metric, followed by F1-Score or a variation thereof, such
as F1 in Cabral et al. [7]. Once again, our method shows the highest value for both metrics,
97.24% for accuracy and 97.14% for F1, while the reference Cabral et al. [7] shows 96.88%
for accuracy and 96.61% for F1. Our method also has the highest values for the κ metric,
demonstrating that our system has the highest rate of agreement for the results reached.
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Table 7. Comparison of state-of-the-art approaches.

Load Recognition
Strategies

Event Detection
Stage

Feature Extraction
Stage Learning Model Model

Optimization Metrics Best Result Model for the
Best Result

Dataset for the
Best Result

Our System DWT NCA ELM and RELM GS with K-CV Accuracy, F1, and κ 97.24% of
Accuracy RELM REFIT

Ref. [7] DWT PCA DT, k-NN, RF,
and SVM GS with K-CV Accuracy, F1, and κ 96.88% of

Accuracy SVM REFIT

Ref. [14] None Extraction of electrical
operating patterns k-NN and SVM None Accuracy 95.40% of

Accuracy SVM ACS-F2

Ref. [16] None Extraction of electrical
quantity

ELM,
AdaBoost-ELM,

and SVM
None Accuracy 94.80% of

Accuracy AdaBoost-ELM Private

Ref. [8] None
Extraction of energy

consumption patterns
from appliances

ANN and k-NN None Accuracy 94.40% of
Accuracy ANN ACS-F2

Ref. [15] None Extraction of electrical
operating patterns

CART, k-NN,
LDA, LR, NB,

and SVM
None Accuracy 94.05% of

Accuracy k-NN ACS-F1

Ref. [10] None Extraction of
high-frequency features CNN None F1-eb and F1-macro 94.00% of

F1-macro CNN PLAID

Ref. [13] RMS Threshold APF HT-LSTM None Accuracy and
F1-Score

90.04% of
Accuracy HT-LSTM PLAID

Ref. [19] None Stockwell transform VPC None Identification
percentage

90.00% of
Accuracy VPC Private

Ref. [11] None GADF CNN None Accuracy, precision,
recall, F1-Score, and κ

83.33% of
Accuracy CNN Private

Ref. [9] None VI trajectories CNN None F1-macro, precision,
and recall

77.60% of
F1-macro CNN PLAID

Ref. [12] None PCA LSTM-BP None F1-Score 45.49% of F1-Score LSTM-BP REDD



Sensors 2024, 24, 2274 17 of 20

By examining Table 7, it is worth mentioning that the accuracy reported in studies
can be affected by the metrics and datasets used. For this reason, reliable studies present
more than one metric for performance analysis and use more than one database. Studies
that focus only on accuracy are limited in terms of method reliability. Therefore, additional
performance metrics, such as F1 and κ, are essential. Moreover, the dataset can influence
the performance results. Studies that use more than one database tend to present a more
robust analysis of the model’s performance.

6. Conclusions

This manuscript presents significant improvements in the area of load recognition.
This work is the first to use NCA for enhanced feature extraction and RELM to classify
household appliances. Furthermore, our study is also a pioneer in verifying NCA-ELM
and NCA-RELM pairs in load recognition. When employing RELM, our analysis unveils
an exceptionally short training time of less than 1 s for both databases, REFIT and REDD.
Specifically, during the examination of training time, we attained a training duration of
0.082 s with RELM. This duration is shorter than that achieved with the SVM architecture
in Cabral et al. [7], which was the state of the art up to the present, with a time of 0.167 s.
By analyzing the accuracy metrics, F1 and κ, the superiority of RELM is evident. When
compared to the state-of-the-art, RELM outperforms SVM in all the metrics. Whereas the
SVM shows values of 96.88%, 96.61%, and 0.8375 for accuracy, F1, and κ in the REFIT
database, RELM achieves values of 97.24%, 97.14%, and 0.8300 for accuracy, F1, and κ in
the same database. The superiority of RELM extends to the REDD dataset, where SVM
shows 96.31% accuracy, 96.36% F1, and 0.9381 κ, whereas RELM reaches 96.53%, 96.48%,
and 0.9388, respectively, for the same metrics. The proposed system demonstrates that the
joint use of NCA and RELM is a viable and more robust alternative for load recognition,
making the NCA-RELM pair a reliable and promising implementation.

The main drivers of the differences between the proposed method and competitors
can be attributed to the innovative use of NCA with the RELM model. Feature extraction
through NCA provides superior class separability and the application of the ELM yields
higher reliability in identifying household appliances. This double focus is the main
guide behind the improved performance of our system compared to existing approaches
and paves the way for new possibilities for load recognition in HEMS systems. In this
context, we suggest verifying additional datasets to evaluate their real-time implications
for future research.
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Abbreviations
The following abbreviations are used in this manuscript:

ACS-F1 Appliance Consumption Signature-Fribourg 1
ACS-F2 Appliance Consumption Signature-Fribourg 2
APF Amplitude-Phase-Frequency
ANN Artificial Neural Networks
BLUED Building-Level fully labeled Electricity Disaggregation
CART Classification and Regression Trees
CEV Cumulative Explained Variance
CNN Convolutional Neural Network
DWT Discrete Wavelet Transform
DT Decision Tree
ELM Extreme Learning Machine
GADF Gramian Angular Difference Field
GFI Ground Fault Interrupter
GS Grid Search
HEMS Home Energy Management System
HT-LSTM Hilbert Transform Long Short-Term Memory
K-CV K-fold Cross-Validation
k-NN k-Nearest Neighbors
LDA Linear Discriminant Analysis
LR Logistic Regression
LLR Log Likelihood Ratio
LSTM Long Short-Time Memory
LSTM-BP Long Short-Time Memory Back Propagation
MIT Massachusetts Institute of Technology
ML Machine Learning
NB Naive Baye
NCA Neighborhood Components Analysis
PCA Principal Component Analysis
PLAID Plug Load Appliance Identification Dataset
RELM Regularized Extreme Learning Machine
RF Random Forest
REDD Reference Energy Disaggregation Dataset

REFIT
Personalised Retrofit Decision Support Tools For UK Homes Using Smart Home
Technology

RMS Root Mean Square
SVM Support Vector Machines
VPC Vector Projection Classification
WHITED Worldwide Household and Industry Transient Energy Dataset
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