
Citation: Bai, J.; Zhu, S.; Ji, H.

Blockchain Based Decentralized and

Proactive Caching Strategy in Mobile

Edge Computing Environment.

Sensors 2024, 24, 2279. https://

doi.org/10.3390/s24072279

Academic Editor: Hyoungshick Kim

Received: 28 February 2024

Revised: 1 April 2024

Accepted: 1 April 2024

Published: 3 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Blockchain Based Decentralized and Proactive Caching Strategy
in Mobile Edge Computing Environment
Jingpan Bai, Silei Zhu and Houling Ji *

School of Computer Science, Yangtze University, Jingzhou 434023, China; jingpan89@yangtzeu.edu.cn (J.B.);
2023710683@yangtzeu.edu.cn (S.Z.)
* Correspondence: jhouling@yangtzeu.edu.cn

Abstract: In the mobile edge computing (MEC) environment, the edge caching can provide the timely
data response service for the intelligent scenarios. However, due to the limited storage capacity of
edge nodes and the malicious node behavior, the question of how to select the cached contents and
realize the decentralized security data caching faces challenges. In this paper, a blockchain-based
decentralized and proactive caching strategy is proposed in an MEC environment to address this
problem. The novelty is that the blockchain was adopted in an MEC environment with a proactive
caching strategy based on node utility, and the corresponding optimization problem was built.
The blockchain was adopted to build a secure and reliable service environment. The employed
methodology is that the optimal caching strategy was achieved based on the linear relaxation
technology and the interior point method. Additionally, in a content caching system, there is a trade-
off between cache space and node utility, and the caching strategy was proposed to solve this problem.
There was also a trade-off between the consensus process delay of blockchain and the caching latency
of content. An offline consensus authentication method was adopted to reduce the influence of the
consensus process delay on the content caching. The key finding was that the proposed algorithm
can reduce latency and can ensure the security data caching in an IoT environment. Finally, the
simulation experiment showed that the proposed algorithm can achieve up to 49.32%, 43.11%, and
34.85% improvements on the cache hit rate, the average content response latency, and the average
system utility, respectively, compared to the random content caching algorithm, and it achieved up to
9.67%, 8.11%, and 5.95% increases, successively, compared to the greedy content caching algorithm.

Keywords: caching; decentralization; mobile edge computing; blockchain; smart contract

1. Introduction

Recently, mobile edge computing (MEC) has created a remarkable achievement for the
cellular communication industry and has simplified humans’ lifestyle [1]. With the near user
resources of computation and storage, MEC can provide a low-delay service for resource-
constrained user terminals (UTs) on the internet of things (IoT) [2]. However, with the
increase of the number of UTs and emerging smart applications, wireless communication
networks face a serious challenge. The limited bandwidth and backhaul link become the
bottleneck of network performance improvement. Thus, the question of how to reduce the
traffic load of the communication network and data access delay becomes an urgent issue.

Edge caching is a very promising technology. It caches the requested data to nodes
near UTs in advance to reduce the data delivery delay and the service cost. In the MEC
environment, edge caching can provide a timely data response service for intelligent
scenarios, such as intelligent transportation [3], intelligent manufacturing [4], intelligent
security [5], smart grid, etc., so that the data access delay is effectively reduced. In this
case, the data, which are frequently accessed or can be used repeatedly, can be downloaded
to edge nodes. However, due to the limited storage capacity of edge nodes, the edge
nodes cannot cache all data requested by UTs in advance. Thus, the question of how

Sensors 2024, 24, 2279. https://doi.org/10.3390/s24072279 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072279
https://doi.org/10.3390/s24072279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24072279
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072279?type=check_update&version=2

Sensors 2024, 24, 2279 2 of 25

to reasonably select the cached data becomes a challenge. In addition, due to the self-
deployment of edge nodes and the multiple data providers (DPs) coexisting, the traditional
centralization transaction and auditing body limit the development of IoT. In the multiple
DPs scenario, it is possible that there are malicious nodes that distort the cache data and
broadcast the malicious contents. Thus, the question of how to realize the decentralized
security data caching is also a challenge. Meanwhile, the existed caching strategies lack
the incentive mechanism to encourage nodes to participate in the data caching. Therefore,
with the advantages of decentralization, security, traceability, and automate management
of blockchain (BC) and considering the content popularity, the content access delay, and
the incentive mechanism, a node utility-based decentralized and proactive caching strategy
was proposed in a mobile edge computing environment.

As shown in Figure 1, in the node utility-based decentralized and proactive caching
strategy, the DPs release the smart contract for the requested contents. Then, by considering
the content popularity, the content access delay, and the incentive mechanism, the node
utility-based decentralized and proactive caching model was built, and the corresponding
optimization problem was proposed. Furthermore, the linear relaxation technology and
the interior point method were adopted to achieve the optimal caching strategy. Finally,
the DPs release the smart contract to cache the selected contents and take the content
caching and delivery as the transactions for storing into BC, so that the content requesting
is traceable.

Sensors 2024, 24, x FOR PEER REVIEW 2 of 25

the data, which are frequently accessed or can be used repeatedly, can be downloaded to

edge nodes. However, due to the limited storage capacity of edge nodes, the edge nodes

cannot cache all data requested by UTs in advance. Thus, the question of how to reasona-

bly select the cached data becomes a challenge. In addition, due to the self-deployment of

edge nodes and the multiple data providers (DPs) coexisting, the traditional centralization

transaction and auditing body limit the development of IoT. In the multiple DPs scenario,

it is possible that there are malicious nodes that distort the cache data and broadcast the

malicious contents. Thus, the question of how to realize the decentralized security data

caching is also a challenge. Meanwhile, the existed caching strategies lack the incentive

mechanism to encourage nodes to participate in the data caching. Therefore, with the ad-

vantages of decentralization, security, traceability, and automate management of block-

chain (BC) and considering the content popularity, the content access delay, and the in-

centive mechanism, a node utility-based decentralized and proactive caching strategy was

proposed in a mobile edge computing environment.

As shown in Figure 1, in the node utility-based decentralized and proactive caching

strategy, the DPs release the smart contract for the requested contents. Then, by consider-

ing the content popularity, the content access delay, and the incentive mechanism, the

node utility-based decentralized and proactive caching model was built, and the corre-

sponding optimization problem was proposed. Furthermore, the linear relaxation tech-

nology and the interior point method were adopted to achieve the optimal caching strat-

egy. Finally, the DPs release the smart contract to cache the selected contents and take the

content caching and delivery as the transactions for storing into BC, so that the content

requesting is traceable.

Figure 1. The content caching in mobile edge computing.

There is a trade-off between the cache space and the node utility. As the cache space

capacity increases, edge nodes can cache more content. Thus, the node utility will rise.

However, due to the limited cache space of edge nodes, the required contents must be

selectively cached. Thus, there is a trade-off between the cache-space and the node utility.

A proactive caching strategy was proposed to address the problem. Accordingly, the cor-

responding optimization problem was built. Furthermore, the linear relaxation technol-

ogy and the interior point method were adopted to achieve the optimal caching strategy.

Figure 1. The content caching in mobile edge computing.

There is a trade-off between the cache space and the node utility. As the cache space
capacity increases, edge nodes can cache more content. Thus, the node utility will rise.
However, due to the limited cache space of edge nodes, the required contents must be
selectively cached. Thus, there is a trade-off between the cache-space and the node utility.
A proactive caching strategy was proposed to address the problem. Accordingly, the corre-
sponding optimization problem was built. Furthermore, the linear relaxation technology
and the interior point method were adopted to achieve the optimal caching strategy.

Additionally, there is a trade-off between the consensus process delay of the blockchain
and the latency of content caching. The caching delay of content includes the consensus
process delay of the blockchain and the content transmission delay from the cloud to
edge nodes. The consensus process delay of the blockchain impacts the caching delay of

Sensors 2024, 24, 2279 3 of 25

nodes, and it is not suitable for the delay-sensitive IoT environment; thus, we adopted
an offline way to reduce the impact of block generating on the content caching, i.e., after
user terminals purchase the cache space, the data providers cache the contents in the cache
space. Then, the blockchain consensus process is carried out. Certain security is sacrificed
during the consensus process to achieve lower latency.

The main contributions and novelty are summarized as follows.

• The decentralized data caching system based on blockchain was proposed to trace
back to the service and avoid the malicious behavior.

• The node utility-based decentralized and proactive caching optimization problem was
built, the linear relaxation technology, and interior point method were adopted to
achieve the optimal caching strategy.

• The simulation experiment environment was built. The results showed that the
proposed algorithm can achieve better performance on the cache hit rate, the aver-
age content response delay, and the average system utility than that of benchmark
algorithms.

The rest of this paper is organized as follows. Section 2 introduces the related works.
Section 3 describes a decentralized data caching system based on blockchain, and Section 4
builds the proposed node utility-based decentralized and proactive caching optimization
problem. In Section 5, the node utility-based decentralized and proactive caching algorithm
is designed. Section 6 conducts the extensive experiments to verify the performance of the
proposed algorithm. Finally, the conclusion is described in Section 7.

2. Related Work

Data caching is a promising technology used to reduce content transaction delay and
cost. Currently, a large area of research exists on the data caching in academia and the
industry. However, the research on data caching, comparing it with BC, is still in the
beginning stage domestically and overseas. In this section, the related works are discussed.
Then, the limitations of existing works are summarized. The summary of references is
listed in Table 1.

Table 1. Organization of the existing research.

Ref. Environment Strengths Weaknesses

[6]
A BC-based caching system in

the edge and terminal
collaborative environment.

Assuring the validity of the content in
the system by using a content index

method.

Simulation results may not accurately
reflect the situation in the real world.

[7] Edge and terminal
collaboration.

Designing an ECS framework for
cache resource trading and digital

content sharing.

The decentralized framework has
limited scalability.

[8] Edge and terminal
collaboration.

Proposing a novel hierarchical
architecture of blockchain, which is
more suitable for the high-mobility

IoV network.

Simulation results may not accurately
reflect performance improvements in

the real world.

[9]
Cloud-edge-terminal

collaboration in the mobile
cyber-physical system.

Proposing a novel blockchain-based
trustworthy edge caching scheme for

mobile users.

The cooperative behaviors of edge
nodes need to be addressed.

[10]
Edge and terminal collaboration

in a hierarchical wireless
network.

Proposing a decentralized framework
of proactive caching based on

blockchains.

The caching system does not consider
the scalability with multiple cache

helpers.

[11] Cloud-edge-end collaborative.
Built the decentralized IoV by
combining deep reinforcement

learning and the permission BC.

The proposed integration of deep
reinforcement learning and
blockchain has complexity.

[12] Cloud-edge-end collaboration
in edge-enabled UAV networks.

Proposing a neural BC-based
ultrareliable caching.

There are potential challenges in
scalability and performance.

Sensors 2024, 24, 2279 4 of 25

Table 1. Cont.

Ref. Environment Strengths Weaknesses

[13] Cloud-edge-terminal
collaboration.

Combining edge computing and
blockchain to realize efficient

authentication and information
sharing among IoT platforms.

The proposed system faces the
challenge of scalability due to the

increase in the number of terminals.

[14] Cloud-edge-terminal
collaborative.

Studied a layered architecture of
fog-based IoT applications.

The proposed solutions need to be
further validated in a real

environment.

[15] Cloud-edge-terminals
collaborative.

Proposing a smart contract
framework to ensure security

distributed computing in a smart
grid.

The proposed scheme can be
enhanced further in terms of energy
consumption and parallel multi-task

scheduling.

[16] Cloud-edge-terminal
collaborative.

Proposing an overview of the issues,
challenges, and recommendations of
integrated BCT and IoT with DSM

and SC.

There is a need for more balanced
assessments of BCT benefits and

limitations.

[17] Cloud-edge-terminal
collaborative.

Using a case-based reasoning
approach to enhance data warehouse

performance.

Other AC features need to be
combined to make the framework

more autonomous.

In order to avoid the falsification of cached content and the malicious content broadcast-
ing, Liu et al. proposed the BC-based data caching system for the vehicle edge computing
network, in which a content index method, including the provider’s address and hash
value of the content, is adopted to ensure the effectiveness of the content [6]. Meanwhile,
the content index is stored into the blockchain to prevent tampering through the tamper
resistance and distributed architecture of the blockchain. In order to encourage more
ENs to share the storage resources and ensure the data reliability, Liu et al. designed an
edge caching service architecture for caching transactions and content sharing [7]. For the
mobility and low-latency requirement of Internet of Vehicles (IoV), Chai et al. proposed a
two-layer BC-assisted active caching strategy to avoid the case that the conventional public
blockchain systems suffer large consensus latency and cannot be well applied to IoV with
the high mobility of vehicles and low latency requirement [8]. Xu et al. designed a new
BC-based credible edge caching scheme, in which the transactions between ENs and UTs
are supervised by a BC system with a decentralized method [9].

With the advantages of BC, Wang et al. proposed a decentralized active caching
method for the hierarchical wireless network, in which the smart contracts are built to form
the self-data caching market, and the self-content delivery is realized between incredible
nodes [10]. In order to realize intelligent and secure data caching, Dai et al. built the
decentralized IoV by combining deep reinforcement learning and the permission BC for
the peer-to-peer transactions [11]. Sharma et al. proposed a neural BC-based ultrareliable
caching for edge-enabled UAV networks, in which the BC is adopted to ensure the ultra-
reliability communication and to form a flat architecture, and the neural model fortifies
an efficient transport mechanism [12]. Guo et al. designed a decentralized and creditable
authenticator system based on the BC and MEC. Furthermore, based on this system,
a corresponding caching strategy was proposed to improve the cache hit rate [13]. M.
Burhan et al. examined the layered architecture of fog-based IoT networks alongside IoT
applications operating within the context of the fog computing paradigm [14]. Faheem
M et al. proposed a blockchain-based smart contract framework in Solana blockchain
for integrating and monitoring distributed energy resources (DERs) in the smart grid.
The framework, called advanced Solana blockchain (ASB), enables secure and resilient
real-time control and monitoring of DERs [15]. Malik H et al. reviewed the integration
of blockchain technology (BCT) and internet of things (IoT) in drug supply management
(DSM) and smart cities (SC), categorizing research articles and identifying motives for
their use. It offers recommendations for future research, highlighting opportunities for

Sensors 2024, 24, 2279 5 of 25

creating decentralized DSM and SC applications [16]. Raza B et al. proposed a cluster-based
autonomic performance prediction framework using a case-based reasoning approach to
enhance data warehouse performance [17].

In conclusion, fewer existing works have considered the relationship between the
limited cache capacity and strict delay requirements, as well as the resource sharing
willingness when designing caching strategies. The existed works mainly focus on the
content preference, node adjacency user association, and quality of experience. Although
the caching decision can be achieved based on those factors considered by the existing
works, more nodes participating in the resource sharing will improve the performance of
content caching. Thus, the incentive mechanism is very important for edge caching. In
this paper, node utility was considered to build the active data caching strategy with the
limitation of content delivery delay.

3. The Decentralized Data Caching System Based on Blockchain

In the edge intelligence scenario, the decentralized data caching system based on
blockchain (DDCSBC) consists of data providers (DPs), edge nodes (ENs), user terminals
(UTs), and the blockchain (BC) network, which is shown in Figure 2.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 25

[16]
Cloud-edge-terminal col-

laborative.

Proposing an overview of the issues,

challenges, and recommendations of in-

tegrated BCT and IoT with DSM and SC.

There is a need for more balanced as-

sessments of BCT benefits and limita-

tions.

[17]
Cloud-edge-terminal col-

laborative.

Using a case-based reasoning approach

to enhance data warehouse performance.

Other AC features need to be com-

bined to make the framework more au-

tonomous.

In conclusion, fewer existing works have considered the relationship between the

limited cache capacity and strict delay requirements, as well as the resource sharing

willingness when designing caching strategies. The existed works mainly focus on the

content preference, node adjacency user association, and quality of experience. Although

the caching decision can be achieved based on those factors considered by the existing

works, more nodes participating in the resource sharing will improve the performance of

content caching. Thus, the incentive mechanism is very important for edge caching. In this

paper, node utility was considered to build the active data caching strategy with the lim-

itation of content delivery delay.

3. The Decentralized Data Caching System Based on Blockchain

In the edge intelligence scenario, the decentralized data caching system based on

blockchain (DDCSBC) consists of data providers (DPs), edge nodes (ENs), user terminals

(UTs), and the blockchain (BC) network, which is shown in Figure 2.

EN

Smart
Contract

DP1 DP2

Smart
Contract

DP3

Data

delivery

Proactive
caching

Caching
Caching

Caching

Figure 2. The decentralized data caching system based on blockchain.

The DPs provide the data for the UTs requiring data. The data include the videos,

audio, text, figures, neural network model, etc. Each DP denotes the independent entity,

such as NetFlix, or the federation between the independent entity and the telecom pro-

vider, such as Orange, Akamai [18], etc. Each user represents the UT who buys or con-

sumes the contents or services from DPs. ENs consist of the edge devices with distributed

deployment, which provide the data delivery service for UTs. The BC network is taken as

the core entity of management to provide the decentralized safety data management ser-

vice for data caching. The BC network consists of the P2P network of ENs and is used to

conduct transactions, verify blocks, and append the new block into the blockchain.

Figure 2. The decentralized data caching system based on blockchain.

The DPs provide the data for the UTs requiring data. The data include the videos,
audio, text, figures, neural network model, etc. Each DP denotes the independent entity,
such as NetFlix, or the federation between the independent entity and the telecom provider,
such as Orange, Akamai [18], etc. Each user represents the UT who buys or consumes the
contents or services from DPs. ENs consist of the edge devices with distributed deployment,
which provide the data delivery service for UTs. The BC network is taken as the core entity
of management to provide the decentralized safety data management service for data
caching. The BC network consists of the P2P network of ENs and is used to conduct
transactions, verify blocks, and append the new block into the blockchain.

It is assumed that all of the entities who participated in the DDCSBC finished the
identity register of the BC network. The identity register of each DP or UT is finished by
the transactions between blockchain nodes. The subscription of data caching is conducted
between UTs and DPs based on the smart contract [19–21]. Before the data is cached, Each

Sensors 2024, 24, 2279 6 of 25

UT must submit its subscription to the DPs. The smart contract is used for content delivery.
Content delivery includes two stages, i.e., the content prefetching and the content delivery
execution. Each stage is conducted with the corresponding smart contract.

3.1. The Content Prefetching

In the content prefetching stage, DPs and ENs negotiate for the cached contents as
shown in Figure 3. The detailed process for the content prefetching is described as follows.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 25

It is assumed that all of the entities who participated in the DDCSBC finished the

identity register of the BC network. The identity register of each DP or UT is finished by

the transactions between blockchain nodes. The subscription of data caching is conducted

between UTs and DPs based on the smart contract [19–21]. Before the data is cached, Each

UT must submit its subscription to the DPs. The smart contract is used for content deliv-

ery. Content delivery includes two stages, i.e., the content prefetching and the content

delivery execution. Each stage is conducted with the corresponding smart contract.

3.1. The Content Prefetching

In the content prefetching stage, DPs and ENs negotiate for the cached contents as

shown in Figure 3. The detailed process for the content prefetching is described as follows.

DPs ENs BC

The smart contract deployment{Releases a

caching order}

Caching order

responding

Prefetching task register

Contents deliverying

Requesting to return the deposits

Returning the deposits

Computing the

expected income

Submitting deposits

Sending caching

response

Interactive proof

Response

monitoring

Figure 3. The content prefetching process.

• The DP k releases a caching order for each content q F , in which the caching or-

der is released by the corresponding smart contract and is used to make a price ,n ko

for the content delivery.

• EN m will determine whether to cache the content q by computing the expected

income. If EN m wants to cache content q , it will call cache providing the function

to respond DP k . Meanwhile, EN m sends the deposits to the corresponding smart

contract.

• The smart contract will send a response to DP k for the EN’s response. In this paper,

it is assumed that one DP can choose multiple ENs for data caching.

• The DP k identifies the selected EN m by calling the register function of the smart

contract. Then, DP k transmits the copies of content q to EN m by the third-

party methods.

• In order to achieve the deposits, the EN m must provide the interactive proof [22]

of content q for DP k , so that the cached contents can be retrieved.

• After the interactive proof is verified, the DP k will trigger the smart contract to

return the deposits to EN m .

When the content prefetching stage is finished, the smart contracts for content

prefetching will be destroyed so that the unfinished transactions do not exist. Meanwhile,

a group of new smart contracts will be deployed.

3.2. The Content Delivery Execution

Figure 3. The content prefetching process.

• The DP k releases a caching order for each content q ∈ F, in which the caching order is
released by the corresponding smart contract and is used to make a price on,k for the
content delivery.

• EN m will determine whether to cache the content q by computing the expected
income. If EN m wants to cache content q, it will call cache providing the function
to respond DP k. Meanwhile, EN m sends the deposits to the corresponding smart
contract.

• The smart contract will send a response to DP k for the EN’s response. In this paper, it
is assumed that one DP can choose multiple ENs for data caching.

• The DP k identifies the selected EN m by calling the register function of the smart
contract. Then, DP k transmits the copies of content q to EN m by the third-party
methods.

• In order to achieve the deposits, the EN m must provide the interactive proof [22] of
content q for DP k, so that the cached contents can be retrieved.

• After the interactive proof is verified, the DP k will trigger the smart contract to return
the deposits to EN m.

When the content prefetching stage is finished, the smart contracts for content prefetch-
ing will be destroyed so that the unfinished transactions do not exist. Meanwhile, a group
of new smart contracts will be deployed.

3.2. The Content Delivery Execution

In the content delivery execution stage, each EN send the cached contents to UTs by
the smart contract of content delivery. The smart contract of content delivery is shown in
Figure 4. The detailed process for the content delivery execution is described as follows.

Sensors 2024, 24, 2279 7 of 25

Sensors 2024, 24, x FOR PEER REVIEW 7 of 25

In the content delivery execution stage, each EN send the cached contents to UTs by

the smart contract of content delivery. The smart contract of content delivery is shown in

Figure 4. The detailed process for the content delivery execution is described as follows.

The smart contract deployment{Releases a

caching order}

Caching order

responding

Content requesting

Response

monitoring

Sending caching response

Waiting for proof
Content delivering

Content delivery register

Submitting deposits

Interactive proof

Requesting to return the deposits

Returning the deposits

DPs ENs BC/Smart contract UTs

Figure 4. The sequence diagram of the smart contract.

• The DP k releases a delivery order for each content q F by the corresponding

smart contract. The smart contract is regarded as the escrow account so that each DP

k pays for the delivery order until the corresponding content delivery is finished.

• The EN m responds to the content delivery order by calling the content delivery

function. Meanwhile, it sends the deposits to the smart contract of content delivery.

• The smart contract of content delivery triggers one event to inform DP k about the

response of EN m . In this paper, it is assumed that one DP can choose multiple ENs

for content delivery.

• The DP k allocates the content delivery tasks to the ENs who respond to DP k

and registers the content delivery task for each corresponding EN m by the smart

contract of content delivery. In addition, the deposits ,k qo of DP k for the delivery

of content q are also held by the corresponding smart contract until the correspond-

ing UTs provide the interactive proof of content q for DP k . In order to prevent

ENs and UTs from cheating the DPs for rewards without the content delivery, the

smart contract of content delivery demands that UTs provide the interactive proof

within a special delay for certificating the content delivery. Otherwise, the smart con-

tract of content delivery will roll back, and the DP k will receive the deposits as the

discipline of EN m .

• After the interactive proof of content q is verified successfully, DP k will return

the deposits to EN m by the smart contract of content delivery.

When the content delivery execution stage is finished, the smart contract of content

delivery will be updated, and the unfinished transactions will be destroyed.

3.3. The Description of Smart Contract

The smart contract is actually an agreement, which is an automated contract system

based on blockchain technology and runs on the top of blockchain. Visually speaking, the

smart contract digitalizes the contract item to be executed in daily life. The smart contract

ensures certain security of the system. The reason is that if an event triggers an item in the

contract, the smart contract will automatically execute the agreement between the in-

volved parties. The smart contract enables decentralized automation by enforcing and

validating the terms of the multi-party agreement, which promotes the efficiency of the

system [23].

Figure 4. The sequence diagram of the smart contract.

• The DP k releases a delivery order for each content q ∈ F by the corresponding smart
contract. The smart contract is regarded as the escrow account so that each DP k pays
for the delivery order until the corresponding content delivery is finished.

• The EN m responds to the content delivery order by calling the content delivery
function. Meanwhile, it sends the deposits to the smart contract of content delivery.

• The smart contract of content delivery triggers one event to inform DP k about the
response of EN m. In this paper, it is assumed that one DP can choose multiple ENs
for content delivery.

• The DP k allocates the content delivery tasks to the ENs who respond to DP k and
registers the content delivery task for each corresponding EN m by the smart contract
of content delivery. In addition, the deposits ok,q of DP k for the delivery of content
q are also held by the corresponding smart contract until the corresponding UTs
provide the interactive proof of content q for DP k. In order to prevent ENs and UTs
from cheating the DPs for rewards without the content delivery, the smart contract
of content delivery demands that UTs provide the interactive proof within a special
delay for certificating the content delivery. Otherwise, the smart contract of content
delivery will roll back, and the DP k will receive the deposits as the discipline of EN m.

• After the interactive proof of content q is verified successfully, DP k will return the
deposits to EN m by the smart contract of content delivery.

When the content delivery execution stage is finished, the smart contract of content
delivery will be updated, and the unfinished transactions will be destroyed.

3.3. The Description of Smart Contract

The smart contract is actually an agreement, which is an automated contract system
based on blockchain technology and runs on the top of blockchain. Visually speaking, the
smart contract digitalizes the contract item to be executed in daily life. The smart contract
ensures certain security of the system. The reason is that if an event triggers an item in the
contract, the smart contract will automatically execute the agreement between the involved
parties. The smart contract enables decentralized automation by enforcing and validating
the terms of the multi-party agreement, which promotes the efficiency of the system [23].

Thus, smart contracts do not require a third party to monitor the execution of the
contract. If the environment for the contract execution can be guaranteed to be trustworthy,
the contract will be executed automatically. In addition, smart contracts are codes on
the top of the blockchain, which make it so the corresponding transaction records cannot
be tampered with when the contract is signed. Smart contracts also require both parties

Sensors 2024, 24, 2279 8 of 25

to provide a certain cost to prevent malicious trading, ensuring the normal execution of
transactions. The service provider will only provide the service when the user pays a
deposit from their account to the contract. If one party maliciously breaches the contract,
then the defaulting party will be punished for asset losses. Therefore, smart contracts
can effectively prevent malicious transactions. The specific working flowchart of smart
contracts is depicted in Figure 5.

Sensors 2024, 24, x FOR PEER REVIEW 8 of 25

Thus, smart contracts do not require a third party to monitor the execution of the

contract. If the environment for the contract execution can be guaranteed to be trustwor-

thy, the contract will be executed automatically. In addition, smart contracts are codes on

the top of the blockchain, which make it so the corresponding transaction records cannot

be tampered with when the contract is signed. Smart contracts also require both parties to

provide a certain cost to prevent malicious trading, ensuring the normal execution of

transactions. The service provider will only provide the service when the user pays a de-

posit from their account to the contract. If one party maliciously breaches the contract,

then the defaulting party will be punished for asset losses. Therefore, smart contracts can

effectively prevent malicious transactions. The specific working flowchart of smart con-

tracts is depicted in Figure 5.

Figure 5. The workflow of smart contracts [24].

3.4. The Analysis of the System Security

In this section, we discuss the security of the system. Then, we discuss the security,

credibility, traceability, integration, and integrity of the system to analyze the security,

respectively.

• The security of the system

In the blockchain network, entities need to register or authenticate their identities

before joining the blockchain network, and they interact with information in the block-

chain network in an anonymous manner. For example, the transaction requester uses the

public key as a pseudonym, thus guaranteeing the anonymity of the real identity. The

transaction information in the blockchain is signed, and only the node with the correct

private key can access the transaction. If a malicious node wants to authenticate a trans-

action, it must forge the private keys of other nodes associated with the transaction. How-

ever, the malicious node only has the public key information of other nodes, and there is

no feasible way to obtain the corresponding private key from the public key; thus, the

malicious node cannot implement the forging of the private key.

In the proposed algorithm, content caching and space provision can be authenticated

and recorded in the blockchain as transaction data to ensure their security.

• The credibility of the system

In the process of cache content request and cache space provision, if the relevant

transaction requires the participation of a trusted third party, the security of the system

largely depends on the security of the third party. If the security of the third party cannot

be guaranteed, the contents of the system will be exposed to greater risks.

Figure 5. The workflow of smart contracts [24].

3.4. The Analysis of the System Security

In this section, we discuss the security of the system. Then, we discuss the security,
credibility, traceability, integration, and integrity of the system to analyze the security,
respectively.

• The security of the system

In the blockchain network, entities need to register or authenticate their identities
before joining the blockchain network, and they interact with information in the blockchain
network in an anonymous manner. For example, the transaction requester uses the public
key as a pseudonym, thus guaranteeing the anonymity of the real identity. The transaction
information in the blockchain is signed, and only the node with the correct private key can
access the transaction. If a malicious node wants to authenticate a transaction, it must forge
the private keys of other nodes associated with the transaction. However, the malicious
node only has the public key information of other nodes, and there is no feasible way to
obtain the corresponding private key from the public key; thus, the malicious node cannot
implement the forging of the private key.

In the proposed algorithm, content caching and space provision can be authenticated
and recorded in the blockchain as transaction data to ensure their security.

• The credibility of the system

In the process of cache content request and cache space provision, if the relevant
transaction requires the participation of a trusted third party, the security of the system
largely depends on the security of the third party. If the security of the third party cannot
be guaranteed, the contents of the system will be exposed to greater risks.

In the proposed algorithm, the blockchain establishes trust between physical nodes
through smart contracts, avoiding the participation of third-party entities to achieve mutual
trust node interaction, and at the same time, it also improves the robustness and scalability
of the system.

Sensors 2024, 24, 2279 9 of 25

• The traceability of the system

In the proposed algorithm, all broadcast transaction information is permanently
recorded by the whole node of the blockchain and is time-stamped. At the same time, these
transactions cannot be modified by a single node. Since the blockchain is a distributed
ledger, transactions are updated synchronously and can be easily obtained from any full
node. When malicious behavior occurs, any node can easily verify and track previous
records by accessing the full node. The timestamp in the blockchain guarantees the integrity
of the transaction and prevents the transaction information from being forged or tampered
with. The smart contract runs on the top of the blockchain, which is a self-executing
contract with terms of the agreement between involved parties. The smart contract allows
for decentralized automation by enforcing and verifying the conditions of the multiparty
agreement. By using smart contract technology to support the distributed services, the
system can be more effective and efficient without any intermediaries.

• The integration of the system

In a blockchain system, the consensus process requires a lot of caching content re-
sources and is characterized by high latency. Thus, the combination of blockchain with the
layered architecture of mobile edge computing has led to a significant rise in latency in the
content delivery process. To solve this problem, this paper recorded the caching process
of contents in an offline way, which provides resources first and then records them to the
blockchain to reduce the impact of the delay generated by blocks on the caching delay of
contents. In the above way, the impact of the high latency characteristics of the blockchain
on the content caching process is reduced, allowing the blockchain and the hierarchical
architecture of mobile edge computing to achieve better integration.

• The integrity of the system

Each transaction is transmitted to all nodes in the blockchain network through broad-
casting. Unauthenticated transactions are temporarily stored in the transaction pool of
all nodes. When the transaction volume reaches a certain threshold or the transaction
waiting time exceeds a certain threshold, the outgoing node will package the transactions
in the transaction pool and generate new blocks. After the new block passes the candidate
node authentication, it will be broadcasted across the entire network. All nodes will add
new blocks to their own blockchain, while light nodes will add new block headers to their
own blockchain, allowing all nodes to fully record resource requests, provision, and other
related data.

4. The Node Utility-Based Decentralized and Proactive Caching Strategy

The node utility-based decentralized and proactive caching (NUDPC) strategy is
described in Figure 6. Firstly, the ENs inquire about the access times of contents in recent
days by the BC, and they compute the content popularity. Then, the data transmission
rate between the cloud data center (CDC) and ENs, between ENs and UTs, is computed,
successively, so that the content delivery delay is achieved. Moreover, the content delivery
delay and the node utility are considered to build the caching optimization problem. Finally,
the linear relaxation technology, the interior point method, and the randomized rounding
technology are adopted to achieve the optimal strategy of data caching. The interaction
between nodes is conducted with the smart contract in the DDCSBC so that the security of
data processing is guaranteed. For convenience, the major notations used in this article are
summarized in the Abbreviation.

Sensors 2024, 24, 2279 10 of 25
Sensors 2024, 24, x FOR PEER REVIEW 10 of 25

Figure 6. The overview of the NUDPC strategy.

As shown in Figure 6, the set of ENs is denoted by  1,2,...,BS M= . The available

cache storage size is mC . The set of DPs is represented by  1,2,...,DP K= . Let

 1,2,...,m mU N= be the set of UTs served by -m th EN. Each UT communicates with the

EN by the wireless link, and the ENs communicate with the CDC by the optical fiber. In

this paper, the content caching strategy for a single slot was studied. In the single slot, the

location of the nodes is unchanged. The set of contents is denoted by  1,2,...,F Q= , and

the size of -thq content is qD . It is assumed that the content popularity follows as the

Zipf distributed function. Then, the popularity of the -thq content is represented by the

following:

1

1
, 0 1

1
q Q

q
p










=

=  


, (1)

where  denotes the rank of content requesting times, and  is a positive constant. The

larger  is, the larger the reuse rate is. Moreover, the most popular content accounts for

the majority of download requests [25].

4.1. The Communication Model

Let ,k mR be the data transmission rate between DP k and EN m , and ,m nR de-

notes the data transmission rate between EN m and UT n (mn U). Then, ,m nR is de-

noted by the following:

2

, ,

, , 2

,

| |
log 1 , ,

m n m n

m n m n m

m n

P G
R W m BS n U



 
= +      

 
, (2)

where ,m nW is the bandwidth, which is allocated to UT n by EN m , and ,m nP is the

transmission power of EN m . Meanwhile,
2

,| |m nG denotes the channel gain between EN

m and UT n , and
2

,m n is the Gaussian white noise.

4.2. The Content Transmission Delay Model

When the UTs request the contents, the corresponding EN transmits the contents to

these UTs if the requested contents are cached into the EN. Otherwise, the contents are

transmitted to these UTs from DPs. In the single slot, each DP releases the smart contract

of content prefetching, and each EN selects the cached contents according to its utility. Let

Figure 6. The overview of the NUDPC strategy.

As shown in Figure 6, the set of ENs is denoted by BS = {1, 2, . . . , M}. The available
cache storage size is Cm. The set of DPs is represented by DP = {1, 2, . . . , K}. Let Um =
{1, 2, . . . , Nm} be the set of UTs served by m-th EN. Each UT communicates with the EN by
the wireless link, and the ENs communicate with the CDC by the optical fiber. In this paper,
the content caching strategy for a single slot was studied. In the single slot, the location of
the nodes is unchanged. The set of contents is denoted by F = {1, 2, . . . , Q}, and the size of
q-th content is Dq. It is assumed that the content popularity follows as the Zipf distributed
function. Then, the popularity of the q-th content is represented by the following:

pq =
1/qη

∑Q
α=1 1/αη

, 0 < η < 1, (1)

where α denotes the rank of content requesting times, and η is a positive constant. The
larger η is, the larger the reuse rate is. Moreover, the most popular content accounts for the
majority of download requests [25].

4.1. The Communication Model

Let Rk,m be the data transmission rate between DP k and EN m, and Rm,n denotes the
data transmission rate between EN m and UT n (n ∈ Um). Then, Rm,n is denoted by the
following:

Rm,n = Wm,n log

(
1 +

Pm,n|Gm,n|2

σ2
m,n

)
, ∀m ∈ BS, ∀n ∈ Um, (2)

where Wm,n is the bandwidth, which is allocated to UT n by EN m, and Pm,n is the transmis-
sion power of EN m. Meanwhile, |Gm,n|2 denotes the channel gain between EN m and UT
n, and σ2

m,n is the Gaussian white noise.

4.2. The Content Transmission Delay Model

When the UTs request the contents, the corresponding EN transmits the contents to
these UTs if the requested contents are cached into the EN. Otherwise, the contents are
transmitted to these UTs from DPs. In the single slot, each DP releases the smart contract of
content prefetching, and each EN selects the cached contents according to its utility. Let
xm,q be the decision variable of content caching. xm,q = 1 if EN m decides to cache the q-th
content. Otherwise, xm,q = 0.

Sensors 2024, 24, 2279 11 of 25

Thus, if EN m has cached the q-th content, then the content transmission delay for
content q from EN m to UT n is denoted by the following:

tq
m,n =

Dq

Rm,n
(3)

where Dq denotes the size of content q.
If EN m has not cached the q-th content, then the content transmission delay for content

q from DP k to UT n is represented by the following:

tq
k,n =

Dq

Rk,m
+

Dq

Rm,n
, (4)

Then, the content transmission delay of content q achieved by UT n is as follows:

tq
n =

(
1− xm,q

)
min
k∈DP

tq
k,n + xm,qtq

m,n. (5)

4.3. The Content Preference Model

Usually, the different UTs have different content preferences due to the different
preference or charging. Thus, let Θn =

{
θn,1, . . . , θn,q, . . . , θn,Q

}
be the different preference

of UT n, where θn,q follows as the Zipf distributed function:

θn,q =
1/ρ

γ
n,q

∑Q
δn,q=1 1/δ

γ
n,q

, q ∈ F, n ∈ Um, (6)

where ρ
γ
n,q denotes the preference rank of content q for UT n, and γ is a positive constant. γ

denotes the preference distribution of UTs in the content [26].

4.4. The Node Utility Model

In the actual application scenario, node utility consists of edge caching utility, content
transmission utility, and delay utility. The detailed description of node utility is shown
as follows.

Due to the limited storage capacity of ENs, the caching service provided by ENs is not
free. The DPs should pay for the caching service of ENs. In addition, content caching will
consume the energy of ENs, and the energy consumption is related to the cached content
size. Thus, each EN should decide the caching price. The edge caching utility denotes the
profit achieved by ENs with the caching storage renting, which can be represented by the
following:

pro f 1
m =

Q

∑
q=1

(
gcache − gcost

)
· xm,q · pq · Dq, (7)

where gcache is the price of unit caching storage space, and gcost denotes the maintenance
cost of unit caching storage space. Moreover, ∑Q

q=1 xm,q · pq · Dq represents the storage size

used by the cached contents, and ∑Q
q=1 xm,q · pq · Dq ≤ Cm.

If the ENs cache the contents required by UTs, then the contents will be delivered to
the UTs. In this case, there is no transmission delay between DPs and ENs, and the backlink
bandwidth is consumed, and the content transmission costs are reduced. Thus, the content
transmission utility is defined as follows:

pro f 2
m = gbackhaul ·

Q

∑
q=1

xm,q · pq · Dq, (8)

where gbackhaul denotes the profit per unit backlink bandwidth saved by UTs.

Sensors 2024, 24, 2279 12 of 25

In the edge intelligence environment, the reward-punishment mechanism (RPM) of
content delivery was designed to reduce the content transmission delay and improve the
quality of service (QoS). Specially, if the required contents are achieved by the UTs before
deadline time, then the ENs will obtain the corresponding reward. Obviously, the less
content transmission delay, the bigger the reward. If the content transmission time is more
than the deadline time, then the ENs will be punished according to the length of overtime.
If the deadline time of UT n for content requirement is t0

n, then the delay utility of EN m is
defined by the following:

pro f 3
m =

Nm

∑
n=1

Q

∑
q=1

gtime · θn,q · ∆tq
n, (9)

where ∆tq
n = t0

n − tq
n denotes the length of advanced time that EN m transmits the content q

to UT n. gtime is the reward per unit advanced time for EN m.
Thus, the node utility is shown as follows:

pro fm = pro f 1
m + pro f 2

m + pro f 3
m. (10)

The aim of the NUDPC strategy is to maximize the system utility with the limit of
content transmission delay. Thus, the optimization problem of the NUDPC is as follows:

P1 : max
M

∑
m=1

pro fm, (11)

s.t.
∑Q

q=1 xm,q pqDq ≤ Cm, ∀m ∈ BS, (12)

xm,q ∈ {0, 1}, ∀m ∈ BS, ∀q ∈ F, (13)

where the constraint (12) ensures that the size of the cached contents cannot be more
than the storage space of each EN, and the constraint (13) defines the decision variables.
Obviously, the optimization problem of the NUDPC is the 0–1 integer linear programming
(ILP) problem, which belongs to the NP-hard problem [27].

5. The Node Utility-Based Decentralized and Proactive Caching Algorithm

In order to achieve the optimal solution of problem P1, the discrete variables are
relaxed to [0, 1], i.e., optimization problem P1 is converted to the optimization problem P2
as follows:

P2 : max
M

∑
m=1

pro fm, (14)

s.t.

(12),

xm,q ∈ {0, 1}, ∀m ∈ BS, ∀q ∈ F. (15)

Obviously, the optimization problem P2 is the linear programming (LP) problem,
which can be solved with the interior point method. Firstly, the optimization problem P2
is converted into the unconstrained optimization problem. Then, the optimal solution is
obtained based on Newton’s method.

The optimization problem P2 is converted to the standard linear programming prob-
lem as follows:

P3 : min f0(x) = −
M

∑
m=1

pro fm, (16)

s.t.

Sensors 2024, 24, 2279 13 of 25

(12), (15).

Then, the penalty function is defined by the following:

min f1(x, λ) = f0(x) + λφ(x), (17)

where λ is the penalty factor, and φ(x) is the barrier function whose form is shown as
follows:

φ(x) = −
M

∑
m=1

log

(
Cm −

Q

∑
q=1

xm,q pqDq

)
−

M

∑
m=1

log xm,q −
M

∑
m=1

log
(
1− xm,q

)
. (18)

Furthermore, the newton iterative equation is shown as follows:

x(k+1)
m,q = x(k)m,q − H−1

(
x(k)m,q, λ

)
· ∇ f1

(
x(k)m,q, λ

)
, n ≥ 0, (19)

where k is the iteration time.
Thus, the pseudo code of the interior point method is described in Algorithm 1.

Firstly, the initial values of the parameters are given. Then, the penalty function is built,
and the optimal solution of optimization problem P2 is achieved (Algorithm 1 Line 2~3).
Furthermore, Algorithm 1 stops if the stop condition is satisfied (Algorithm 1 Line 4~5).
Otherwise, Algorithm 1 continually works (Algorithm 1 Line 6~8). Finally, the optimal
solution x∗ is achieved (Algorithm 1 Line 11).

Algorithm 1: The interior point algorithm for optimization problem P2

Input: The initial value of penalty factor λ(0). The threshold of accuracy ε. The parameter C. The
initial solution of optimization problem P2 x(0). The maximal iteration times jmax. The initial
iteration variable j.
Output: The optimal solution of optimization problem P2 x∗.
While j ≤ jmax.

Building the penalty function based on Equation (17).
x∗(j + 1)← x∗(j) \\ Updating the optimal solution by Equation (19)
If ∥x∗(j + 1)− x∗(j)∥ ≤ ε

Break.
Else

λ(k+1) ← Cλ(k), C > 0 .
j← j + 1 .

End If
End While
return x∗

The node utility-based decentralized and proactive caching algorithm, which is de-
scribed in Algorithm 2, includes three stages. In the first stage, the discrete variables
of optimization problem P1 are relaxed, and the new optimization problem is achieved
(Algorithm 2 Line 1). In the second stage, the optimal solution of the new optimization
problem is obtained by the inter-point method (Algorithm 2 Line 2).

In the third stage, the optimal solution is restored by the randomized rounding method
(Algorithm 2 Line 3~7), and the content caching strategy and the system utility are achieved
(Algorithm 2 Line 8~9). The randomized rounding method [28] is described as follows:

P[x = 1] = x∗, (20)

where P[x = 1] denotes the probability of the variable x being 1, and x∗ is the optimal
solution of optimization problem P2.

Sensors 2024, 24, 2279 14 of 25

The time complexity of Algorithm 2 consists of the time complexity of Algorithm 1
and the time complexity of the randomized rounding method. The time complexity of
Algorithm 1 is O

(
(MQ)3.5

)
[29], where M is the number of ENs, and Q is the number of

contents. The time complexity of the randomized rounding method is O(MQ). Thus, the
time complexity of Algorithm 2 is O

(
(MQ)3.5

)
.

Algorithm 2: The node utility-based decentralized and proactive caching algorithm

Input: The number of ENs M. The storage space Cm of EN m. The number of UTs Nm of EN m.
The deadline time of UT n for content requirement is t0

n. The content set F. The set of content size
D.
Output: The content caching strategy x∗ and the system utility f (x∗).
1: The optimization problem P1 is converted to the optimization problem P2 by relaxing the
discrete variables in the optimization problem P1.

2: The optimal solution x∗ =
{

x̃∗m,q

}
is achieved by solving the optimization P2 based on

Algorithm 1.
3: For each m ∈ BS do
4: For each q ∈ F do
5: P

[
xm,q = 1

]
← x̃∗m,q .

6: End For
7: End For

8: f (x∗)←
M
∑

m=1
pro fm

(
x̃∗m,q

)
.

9: return x∗, f (x∗)

6. Simulation Experiments
6.1. Experimental Environment

As shown in Figure 7, the experiment environment for the DDCSBC includes three Ali
cloud servers, three Lenovo servers, multiple telephones, and lap computers. The Ali cloud
servers are taken as the DPs and the company renting Ali Cloud servers for the experiment
is Alibaba Cloud Company in Hangzhou, China. The Lenovo servers are regarded as the
ENs and are distributed in different areas to form the decentralized Ens and the company
is Lenovo Group in Beijing, China.. Meanwhile, these Ens are also the mining nodes for the
BC system. The telephones and the lap computers are the UTs for sending content requests.
The company of UTs including Huawei P20, Xiaomi 8, ThinkPad E450, HP OMEN are
Huawei Group in Shenzhen, China, Xiaomi Group in Beijing, China, Lenovo Group in
Beijing, China, HP Group in Palo Alto, CA, USA, respectively. The node configuration
information on hardware is shown in Table 2. The node configuration information on the
software is shown in Table 3.

Table 2. The configuration information on hardware.

Node Name CPU/Memory/Disk Manufacturer/City/Country

Ali cloud Intel Core E7-4820/4 GB/500 GB Intel Group/Santa Clara, CA/USA
EN 1(Lenovo server) Intel Core i5-4590 CPU/4 GB/2 TB Intel Group/Santa Clara, CA/USA
EN 2(Lenovo server) Intel Core i5-2450 MCPU/8 GB/1 TB Intel Group/Santa Clara, CA/USA
EN 3(Lenovo server) Intel Core Duo E2160 CPU/4 GB/2 TB Intel Group/Santa Clara, CA/USA

Huawei P20 Hisilicon Kirin 970/6.00 GB/128 GB Huawei Group/ Shenzhen/China
Xiaomi 8 Qualcomm SDM845/6.00 GB/128 GB Qualcomm/San Diego, CA/USA

ThinkPad E450 Intel Core i5-4300U (4 cores with
1.7 GHZ)/8 GB/500 GB Intel Group/Santa Clara, CA/USA

HP OMEN Intel i5-7300 HQ (4 cores with
2.5 GHz)/8 GB/1 TB Intel Group/Santa Clara, CA/USA

Sensors 2024, 24, 2279 15 of 25

Sensors 2024, 24, x FOR PEER REVIEW 15 of 25

configuration information on hardware is shown in Table 2. The node configuration infor-

mation on the software is shown in Table 3.

Area 2

Huawei P20 HP OMEN Xiaomi 8

ES1 ES2 ES3

USRP-

N210

USRP-

N210

WAN

Ali cloud

Ethereum

1.9.23-stable

Node1

Node2
Node3

Ethereum

1.9.23-stable

Ethereum

1.9.23-stable

Ethereum

1.9.23-stable

Area 1 Area 3
USRP-

N210

Huawei P20 Huawei P20Xiaomi 8
ThinkPad

E450
HP OMEN

ThinkPad

E450

Figure 7. The experimental environment.

Table 2. The configuration information on hardware.

Node Name CPU/Memory/Disk Manufacturer/City/Country

Ali cloud Intel Core E7-4820/4 GB/500 GB
Intel Group/Santa Clara,

CA/USA

EN 1(Lenovo

server)
Intel Core i5-4590 CPU/4 GB/2 TB

Intel Group/Santa Clara,

CA/USA

EN 2(Lenovo

server)
Intel Core i5-2450 MCPU/8 GB/1 TB

Intel Group/Santa Clara,

CA/USA

EN 3(Lenovo

server)
Intel Core Duo E2160 CPU/4 GB/2 TB

Intel Group/Santa Clara,

CA/USA

Huawei P20 Hisilicon Kirin 970/6.00 GB/128 GB
Huawei Group/ Shen-

zhen/China

Xiaomi 8 Qualcomm SDM845/6.00 GB/128 GB
Qualcomm/San Diego,

CA/USA

ThinkPad E450
Intel Core i5-4300U (4 cores with 1.7

GHZ)/8 GB/500 GB

Intel Group/Santa Clara,

CA/USA

HP OMEN
Intel i5-7300 HQ (4 cores with 2.5

GHz)/8 GB/1 TB

Intel Group/Santa Clara,

CA/USA

Table 3. The configuration information on the software.

Software Name Version Function

Cloud management tool OpenStack-Train
Building and managing the

cloud resources

Linux operating system Ubuntu 16.04
The operating system on

cloud servers or ENs

Docker Docker 1.2.16
Building the containers on

ENs

K8s Kubernetes 1.12.8 Managing the edge resources

Figure 7. The experimental environment.

Table 3. The configuration information on the software.

Software Name Version Function

Cloud management
tool OpenStack-Train Building and managing the

cloud resources
Linux operating

system Ubuntu 16.04 The operating system on cloud
servers or ENs

Docker Docker 1.2.16 Building the containers on ENs
K8s Kubernetes 1.12.8 Managing the edge resources

BC system Ethereum 1.9.23-stable Building the BC system and the
full nodes

Wallet Metamask-chrome-10.0.2 Managing the account and
creasing the light nodes

IPFS go-ipfs 0.9.0 Storing the source data

6.2. Test Dataset

In order to verify the performance of the proposed algorithm, the MovieLens dataset [30]
was taken as the test dataset. The MovieLens dataset is an open-source dataset and was
published by the GroupLens team in the University of Minnesota System. This dataset
includes the user ID, movie ID, comments on movies, timestamp for comments, etc. This
dataset consists of 27,753,444 comments of 283,228 users on 58,098 movies from 9 January
1995 to 26 September 2018. In the experiments, the comments were taken as the history data
of content requests. Specifically, the dataset generated from 1 January 2010 to 17 October
2016 was selected. For each user, the comments for one day were taken as the content
requests for one minute to form the time series data of content requests [31].

6.3. Benchmark Algorithms

In order to verify the performance of the proposed algorithm, the random content
caching (RCC) [32] and the greedy content caching (GCC) [32] were taken as the benchmark
algorithms. In the RCC algorithm, the contents were randomly selected for caching. The
RCC algorithm is the traditional caching algorithm and is usually taken as the benchmark
algorithm. In the GCC algorithm, the contents with the most popularity are cached. The
GCC algorithm is a common caching algorithm. Thus, it is reasonable to take the RCC
algorithm and the GCC algorithm as the benchmark algorithms.

Sensors 2024, 24, 2279 16 of 25

6.4. Metrics

The experiments included the cache hit rate (CHR), average content response delay
(ACRD), and average system utility (ASU). The CHR is the ratio of the number of requested
contents cached on ENs to the number of cached contents on ENs. The ACRD is the
average time quantum from the acquirement of content requesting instructions on ENs to
the acquirement of requested contents on UTs. The ASU is the ratio of the system utility to
the number of UTs.

6.5. Experimental Results

In the experiments, each EN sends the requests of accessing the transaction history
data to the BC system. If the address and signature of this EN are successfully verified,
then the BC system will send the history data list to the EN. This EN computes the content
requesting times and predicts the content popularity, respectively. Then, the node utility can
be achieved based on the content popularity and the size of the contents. Furthermore, the
cached contents are selected by Algorithm 2. Finally, this EN caches the selected contents
in advance. The special value of the experiment parameters was set as follows.

The number of contents was set to 1000. The content size followed the uniform
distribution with [10, 50] MB. The maximum tolerated delay of each request followed the
uniform distribution with [5, 10] s. The cache space of each EN followed the uniform
distribution with [5, 50] GB. The bandwidth between the cloud and ENs was 100 Mbps,
and the bandwidth between ENs and UTs was set to 20 MHz. In addition, it was assumed
that gcache = gbackhaul = gtime = 1, and gcost = 0.5. According to [11] and the values of Zipf
parameter in [13], the parameters used in the simulation are listed in Table 4.

Table 4. The values of the parameters.

Parameters Value

Zipf parameter [0, 1]
The number of contents 1000
The size of each content [5, 50] MB

The maximal content delivery delay [5, 10]s
The caching space of each EN [5, 50] GB

The number of UTs [5, 25]

Furthermore, in order to verify the performance of the proposed algorithm, the in-
fluence of the Zipf parameter, the number of contents, the cache space, and the number
of UTs on the metrics were discussed, successively. In each group of experiments, the
experiment was conducted repeatedly 20 times, and the average value was taken as the
experiment result.

6.5.1. The Influence of the Zipf Parameter on the Metrics

In order to verify the influence of the Zipf parameter on the metrics, the Zipf parameter
was set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. In addition, the number
of UTs was set to 20, and the cache space of each EN was set to 20 GB.

Figure 8 shows the influence of the Zipf parameter on the metrics. Each group of
experiments was repeated 20 times under the same conditions, and the average value was
used as the final experimental result. The results demonstrate that the proposed algorithm
can obtain a higher performance in terms of CHR, ACRD, and ASU.

Sensors 2024, 24, 2279 17 of 25

Sensors 2024, 24, x FOR PEER REVIEW 17 of 25

Table 4. The values of the parameters.

Parameters Value

Zipf parameter [0, 1]

The number of contents 1000

The size of each content [5, 50] MB

The maximal content delivery delay [5, 10]s

The caching space of each EN [5, 50] GB

The number of UTs [5, 25]

Furthermore, in order to verify the performance of the proposed algorithm, the in-

fluence of the Zipf parameter, the number of contents, the cache space, and the number of

UTs on the metrics were discussed, successively. In each group of experiments, the exper-

iment was conducted repeatedly 20 times, and the average value was taken as the experi-

ment result.

6.5.1. The Influence of the Zipf Parameter on the Metrics

In order to verify the influence of the Zipf parameter on the metrics, the Zipf param-

eter was set to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1, respectively. In addition, the

number of UTs was set to 20, and the cache space of each EN was set to 20 GB.

Figure 8 shows the influence of the Zipf parameter on the metrics. Each group of

experiments was repeated 20 times under the same conditions, and the average value was

used as the final experimental result. The results demonstrate that the proposed algorithm

can obtain a higher performance in terms of CHR, ACRD, and ASU.

(a)

(b)

(c)

Figure 8. The influence of the Zipf parameter on the metrics: (a) the influence of the Zipf parameter

on CHR; (b) the influence of the Zipf parameter on ACRD; (c) the influence of the Zipf parameter

on ASU.

0
10
20
30
40
50
60
70
80
90

100

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

C
H

R
 (

%
)

Zipf parameter

RCC GCC Proposed

Figure 8. The influence of the Zipf parameter on the metrics: (a) the influence of the Zipf parameter
on CHR; (b) the influence of the Zipf parameter on ACRD; (c) the influence of the Zipf parameter
on ASU.

Figure 8 demonstrates that the content popularity was more concentratedly distributed
as the Zipf parameter became large. This further led to an increase in CHR and ASU and
a decrease in ACRD. From Figure 8a, we know that the value of CHR became larger
with the increase of the Zipf parameter. This is because the content popularity was more
concentratedly distributed as the Zipf parameter became larger, Then, the replicas of the
popular content in the cache space of ENs can satisfy more requests. In this case, the CHR
is improved. From Figure 8b,c, the ACRD of ENs reduced, and the ASU of ENs kept
increasing when the parameter of the Zipf distribution rose. Since the proposed algorithm
concurrently considers the content popularity and the size of contents for the cache decision,
the ENs can satisfy more requests of UTs. In this case, the ACRD was reduced. In addition,
the content of the UT request was cached on the EN in advance so that the UT could obtain
the required content from the EN without generating the content transmission delay from
the cloud to the EN, thereby improving the content transmission utility.

In the RCC algorithm, content popularity was not considered when selecting cache
contents. In the GCC algorithm, when the cache contents were selected, the content
popularity was considered, but the influence of the size of the contents on the storage
space of ENs was neglected. In the proposed algorithm, the content popularity and the
size of the contents were considered concurrently to select the cached contents, which
promote that ENs can satisfy more requests from UTs. In addition, the incentive methods
in the proposed algorithm were adopted, and the content response delay and the node
utility were balanced. Thus, the proposed algorithm can achieve better performance on the
metrics than the benchmark algorithms.

The cost caused by the Zipf parameter will increase with the decreased value of the
Zipf parameter. This is because the content will be more dispersed as the value of the Zipf

Sensors 2024, 24, 2279 18 of 25

parameter decreases, which cannot satisfy the demands of most user terminals. Thus, the
CHR decreases. Accordingly, the cost grows during the content caching process.

For example, when the Zipf parameter was set to 0.6, the proposed algorithm achieved
285.09% and 4.35% increases in CHR compared to the RCC algorithm and the GCC algo-
rithm, respectively. The ACRD of the proposed algorithm was reduced up to 63.32% and
17.24% compared to that of the RCC algorithm and the GCC algorithm, successively, and
the proposed algorithm achieved 69.95% and 11.04% improvements in ASU compared to
the RCC algorithm and the GCC algorithm, respectively.

6.5.2. The Influence of Contents on Metrics

In order to verify the influence of the number of contents on metrics, the Zipf parameter
was set to 0.6, the number of UTs was set to 20, the cache size of ENs was set to 10G, and
the size of contents was set to 50 MB. The experiment was divided into 10 groups, with
the content quantity for each group set to 100, 200, 300, 400, 500, 600, 700, 800, 900, and
1000, respectively. Figure 9 shows the influence of the number of contents on metrics. Each
group of experiments was repeated 20 times under the same conditions, and the average
value was used as the final experimental result.

Sensors 2024, 24, x FOR PEER REVIEW 19 of 25

the content delivery delay increases. Figure 9b shows that when the number of contents

was 200, the ACRD of the three caching algorithms was almost the same, at a low level.

However, when the number of contents exceeded 200, the ACRD increased with the in-

crease of the number of contents. The reason was that, with the increase of the number of

contents, the edge caching space was limited; thus, more and more contents cannot be

cached at the edge. When there are UT requests, more contents need to be obtained from

clouds, which increases the content delivery delay. Under the same number of contents,

the proposed algorithm had the shortest ACRD.

Figure 9c depicts how the value of ASU increased and finally stabilized as the number

of contents grew. This is because, as the number of contents increased, more cache space

was required, and the ENs could achieve more utility by renting out cache space. In addi-

tion, as more contents can be cached locally in the ENs, the utility obtained by the ENs

due to reduced return traffic will increase. However, as the number of contents increases,

only a portion of them can be cached in the ENs due to the limited cache space, resulting

in a decrease in CHR and an increase in content delivery delay. Therefore, the utility ob-

tained by the ENs for delivering contents to UTs in advance will decrease.

(a)

(b)

(c)

Figure 9. The influence of the number of contents on the metrics: (a) the influence of the number of

con-tents on CHR; (b) the influence of the number of contents on ACRD; (c) the influence of the

number of contents on ASU.

When the number of contents increases, the local cache can only meet the demands

of some terminals. Some contents cannot be cached in ENs, which own the limited edge

cache space; thus, more contents need to be obtained from clouds. Compared to the RCC

algorithm and the GCC algorithm, the proposed algorithm considers both the content

popularity and the user access delay when caching contents, thus having better perfor-

mance.

0

2

4

6

8

10

12

100 200 300 400 500 600 700 800 900 1000

A
C

R
D
（

s）

The number of contents

RCC GCC Proposed

Figure 9. The influence of the number of contents on the metrics: (a) the influence of the number
of con-tents on CHR; (b) the influence of the number of contents on ACRD; (c) the influence of the
number of contents on ASU.

The number of contents determines whether more content is cached on the edge nodes.
With the increase in the number of contents, the CHR decreased and ASU and ACRD rose.
Figure 9a shows the change of CHR with different sizes of content quantity. Within a single
time slot, the CHR was close to 1 before the content quantity reached 200. After 200, the
CHR decreased with the increase of content quantity in the content library. This is because
when the number of contents is small, all contents can be cached to the local ENs, which can

Sensors 2024, 24, 2279 19 of 25

meet almost all terminal requests. While the number of contents increases, some contents
cannot be cached to ENs, which own the limited edge cache space, and the local cache can
only meet the demands of some terminals. This will lead to a decrease in CHR.

At the same time, when contents are cached on the local ENs, the content delivery
delay becomes the transmission delay from the ENs to the UTs and the content delivery
delay is small. The requested contents by UTs need to be obtained from the cloud. Thus,
the content delivery delay increases. Figure 9b shows that when the number of contents
was 200, the ACRD of the three caching algorithms was almost the same, at a low level.
However, when the number of contents exceeded 200, the ACRD increased with the increase
of the number of contents. The reason was that, with the increase of the number of contents,
the edge caching space was limited; thus, more and more contents cannot be cached at the
edge. When there are UT requests, more contents need to be obtained from clouds, which
increases the content delivery delay. Under the same number of contents, the proposed
algorithm had the shortest ACRD.

Figure 9c depicts how the value of ASU increased and finally stabilized as the number
of contents grew. This is because, as the number of contents increased, more cache space
was required, and the ENs could achieve more utility by renting out cache space. In
addition, as more contents can be cached locally in the ENs, the utility obtained by the ENs
due to reduced return traffic will increase. However, as the number of contents increases,
only a portion of them can be cached in the ENs due to the limited cache space, resulting in
a decrease in CHR and an increase in content delivery delay. Therefore, the utility obtained
by the ENs for delivering contents to UTs in advance will decrease.

When the number of contents increases, the local cache can only meet the demands
of some terminals. Some contents cannot be cached in ENs, which own the limited edge
cache space; thus, more contents need to be obtained from clouds. Compared to the RCC
algorithm and the GCC algorithm, the proposed algorithm considers both the content pop-
ularity and the user access delay when caching contents, thus having better performance.

The cost caused by the number of contents will increase with the rising number of
contents. The reason is that the contents need to be cached less when the number of contents
grows, which will result in the decrease of CHR. Accordingly, the cost increases during the
content caching process.

For example, when the number of contents was 500, the CHR of the proposed algo-
rithm was 49.23% higher than that of the RCC algorithm and 9.67% higher than that of the
GCC algorithm, the ACRD of the proposed algorithm was 43.11% higher than that of the
RCC algorithm and 8.11% higher than that of the GCC algorithm, and the ASU of proposed
algorithm improved by up to 34.85% and 5.95% compared to that of the RCC algorithm
and the GCC algorithm, respectively.

6.5.3. The Influence of the Cache Space on Metrics

In order to verify the influence of the cache space on metrics, the Zipf parameter
was set to 0.6, the number of contents was set to 1000, and the content size was between
10 MB and 50 MB in the experiment. The number of UTs was set to 20. Keeping other
control parameters constant, the cache size of each EN was set to be equal, and the cache
capacity was gradually adjusted from 5 GB to 50 GB. Figure 10 shows the influence of the
cache space on metrics. The experiment was divided into 10 groups, and each group was
conducted 20 times, with the average value used as the final experimental result.

Sensors 2024, 24, 2279 20 of 25

Sensors 2024, 24, x FOR PEER REVIEW 21 of 25

be considered, and appropriate cache space should be selected to balance the cache benefit

and deployment cost.

On the one hand, the GCC algorithm and the proposed algorithm both consider the

popularity of contents and cache popular contents to meet the demands of more UTs. On

the other hand, the figures show that the proposed algorithm and the RCC algorithm

saved more cache space and saved cache costs when the cache capacity was small. In ad-

dition, the proposed algorithm also considers the influence of content size, which can

cache more contents in limited space, thus making it slightly superior to the GCC algo-

rithm in terms of CHR and ACRD. Additionally, the proposed algorithm not only consid-

ers the utility obtained from renting cache space and saving backhaul traffic, but also con-

siders the mechanism of rewarding for delivering content in advance; thus, the proposed

algorithm was able to obtain larger node utility.

When the cache space was 20 GB, the CHR of the algorithm in this paper was 134.15%

and 7.87% higher than that of the RCC algorithm and the GCC algorithm, respectively,

the ACRD of the proposed algorithm was reduced up to 56.32% compared to the RCC

algorithm and up to 19.32% compared to the GCC algorithm, and the ASU of the proposed

algorithm was improved by up to 50.85% and 7.23% compared to that of the RCC algo-

rithm and the GCC algorithm, respectively.

(a)

(b)

(c)

Figure 10. The influence of the cache space on the metrics: (a) the influence of the cache space on

CHR; (b) the influence of the cache space on ACRD; (c) the influence of the cache space on ASU.

6.5.4. The Influence of the Number of UTs on Metrics

In order to verify the influence of the number of UTs on metrics, the method of con-

trolling variables was used to keep other parameters constant and vary the number of

smart terminals from 2 to 20. In this experiment, the Zipf parameter was set to 0.6, the

number of contents was set to 1000, and the content size was between 10 and 50 MB. The

cache capacity of the ENs was set to 10G. Figure 11 describes the influence of the number

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50

C
H

R
 (

%
)

The cache space (GB)

RCC NCC Proposed

0

5

10

15

5 10 15 20 25 30 35 40 45 50

A
C

R
D

 (
s)

The cache space (GB)

RCC GCC Proposed

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50

A
S

U

The cache space (GB)

RCC GCC Proposed

Figure 10. The influence of the cache space on the metrics: (a) the influence of the cache space on
CHR; (b) the influence of the cache space on ACRD; (c) the influence of the cache space on ASU.

The size of the cache space influenced the cache capability of the edge nodes. The
larger cache space resulted in the increase of CHR and ASU and the decrease of ACRD.
Figure 10a shows that the value of CHR became large with the increase of cache space. This
is because the number of cached contents increased as the cache space of ENs grew, and as
the probability that the user requests can be served by ENs increased, the CHR of ENs also
increased. Obviously, the CHR of the RCC algorithm increased linearly with the increase in
cache space, while the CHR of the GCC algorithm and the proposed algorithm showed
more obvious advantages when the cache capacity was insufficient, and their CHR was
higher than that of the RCC algorithm. However, with the increase in cache capacity, the
CHR of all strategies tended to be to 1. In theory, when the cache capacity is large enough,
all contents in the content library can be cached to the ENs so that all user requests can be
satisfied, and the CHR of all algorithms tends to be similar.

Figure 10b shows a decline of ACRD with the increase of cache space. For the same
cache space, the proposed algorithm had the lowest ACRD. However, when the cache
space increased to 50 GB, the ACRD of all algorithms tended to be the same. When the
edge cache capacity is large enough, all contents in the content library can be cached to the
ENs. In this way, users can download content directly from the local cache without having
to retrieve it from the cloud, and the content delivery delay becomes the data transmission
delay from the edge node to the intelligent terminal. If the number of user requests remains
the same, then the data transmission delay is basically stable.

Figure 10c depicts the rise of ASU with the increase of cache space. The ASU includes
the revenue obtained from renting cache space from each EN, the benefit obtained from
reducing backhaul traffic, and the reward obtained from delivering content in advance in
this paper. The reason for the change trend is that the larger the cache capacity of ENs,
the more content they can cache, and the greater the utility that they can obtain by renting
cache space. On the other hand, the more content is cached at the edge, the lower the
average delivery delay of the content, and the more rewards can be obtained by delivering

Sensors 2024, 24, 2279 21 of 25

content in advance. In addition, the more content is cached at the edge, the more backhaul
traffic is reduced, and the higher utility obtained from reducing backhaul traffic. The ASU
of the proposed algorithm was better than that of the benchmark algorithms.

It is worth mentioning that the edge cache space cannot be deployed very large in
reality. This is because physical cache devices require high deployment costs, which are
much higher than the maintenance costs of cache space within a single time slot. Therefore,
when deploying cache space size, both the cache benefit and deployment cost should be
considered, and appropriate cache space should be selected to balance the cache benefit
and deployment cost.

On the one hand, the GCC algorithm and the proposed algorithm both consider the
popularity of contents and cache popular contents to meet the demands of more UTs. On
the other hand, the figures show that the proposed algorithm and the RCC algorithm
saved more cache space and saved cache costs when the cache capacity was small. In
addition, the proposed algorithm also considers the influence of content size, which can
cache more contents in limited space, thus making it slightly superior to the GCC algorithm
in terms of CHR and ACRD. Additionally, the proposed algorithm not only considers the
utility obtained from renting cache space and saving backhaul traffic, but also considers the
mechanism of rewarding for delivering content in advance; thus, the proposed algorithm
was able to obtain larger node utility.

When the cache space was 20 GB, the CHR of the algorithm in this paper was 134.15%
and 7.87% higher than that of the RCC algorithm and the GCC algorithm, respectively,
the ACRD of the proposed algorithm was reduced up to 56.32% compared to the RCC
algorithm and up to 19.32% compared to the GCC algorithm, and the ASU of the proposed
algorithm was improved by up to 50.85% and 7.23% compared to that of the RCC algorithm
and the GCC algorithm, respectively.

6.5.4. The Influence of the Number of UTs on Metrics

In order to verify the influence of the number of UTs on metrics, the method of
controlling variables was used to keep other parameters constant and vary the number
of smart terminals from 2 to 20. In this experiment, the Zipf parameter was set to 0.6,
the number of contents was set to 1000, and the content size was between 10 and 50 MB.
The cache capacity of the ENs was set to 10G. Figure 11 describes the influence of the
number of UTs on metrics. The experiment was divided into 10 groups, and each group
was conducted 20 times, with the average value taken as the final experimental result.

The number of user terminals affected the diversity of contents, which impacted the
distribution of content popularity. When the number of user terminals grew, CHR and ASU
decreased while ACRD showed an increasing trend. Figure 11a describes the decline of
CHR of the proposed algorithm and the RCC algorithm with the increase of the number of
UTs. This is because, as the number of UTs increased, the number and variety of contents
requested by UTs also increased, while the cache capacity of ENs was limited and could
only cache a certain number of contents. Therefore, as the UT request volume increased,
more contents could not be obtained from the edge cache, resulting in a decrease in CHR.
The CHR of the RCC algorithm remained at a low level, and its change curve fluctuated
within a small range as the number of UTs increased. Due to the limitation of the cache
capacity of ENs, the CHR of the proposed algorithm was slightly higher than that of the
GCC algorithm.

Sensors 2024, 24, 2279 22 of 25Sensors 2024, 24, x FOR PEER REVIEW 23 of 25

(a)

(b)

(c)

Figure 11. The influence of the number of UTs on the metrics: (a) the influence of the number of UTs

on CHR; (b) the influence of the number of UTs on ACRD; (c) the influence of UTs on ASU.

7. Conclusions

In this paper, the joint optimization strategy of air-ground cooperation caching and

content delivery was proposed to reduce the delay of content delivery. Firstly, the content

popularity was predicted by the LSTM network based on the time series data of content

popularity. Then, the joint optimization problem of air-ground cooperation caching and

content delivery based on popularity prediction were built to minimize the total content

delivery delay by considering UAV trajectory planning, UAV transmission power alloca-

tion, the downlink bandwidth allocation of UAVs and the base station, content caching,

and user association. Finally, the block coordinate descent method was adopted to decom-

pose the optimization problem, and the random rounding technique was adopted to re-

store slack variables to achieve the joint optimization strategy of air-ground cooperation

caching and content delivery. The simulation results show that the performance of the

proposed algorithm was better than that of benchmark algorithm on average delivery de-

lay, average data transmission energy, and average cache hit rate. In future works, the

prototype system of the air-ground cooperation will be built, and the performance of JOA-

AGCCCD-PP will be verified in real environments.

Author Contributions: Formal analysis, J.B. and H.J.; investigation, H.J.; writing—original draft

preparation, J.B. and S.Z.; writing—review and editing, J.B. and S.Z.; supervision, J.B. and H.J.; pro-

ject administration, J.B. and H.J.; funding acquisition, J.B. and H.J. All authors have read and agreed

to the published version of the manuscript.

Funding: This work was supported by the Natural Science Fund of Hubei Province, China (No.

2023AFB082).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the

study.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

C
H

R
 (

%
)

The number of UTs

RCC GCC Proposed

0

2

4

6

8

10

12

2 4 6 8 10 12 14 16 18 20

A
C

R
D

 (
s)

The nubmer of UTs

RCC GCC Proposed

50

150

250

350

2 4 6 8 10 12 14 16 18 20

A
S

U

The number of UTs

RCC GCC Proposed

Figure 11. The influence of the number of UTs on the metrics: (a) the influence of the number of UTs
on CHR; (b) the influence of the number of UTs on ACRD; (c) the influence of UTs on ASU.

Figure 11b depicts the change of ACRD with the increasing number of UTs. As the
number of UTs increased, the ACRD of the GCC algorithm and the proposed algorithm
increased, while the RCC algorithm fluctuated less but had the highest delay. With the
limited cache capacity of ENs, the proposed algorithm tended to cache popular content
to meet the needs of most UTs. Thus, as the terminals became more and more dense, the
delay of the GCC algorithm became closer to that of the proposed algorithm.

Figure 11c shows the decrease of ASU with the increasing number of UTs. The reason
is that, as the number of UTs increased, the cost of backhaul traffic for obtaining contents
increased due to the decrease in CHR. In addition, the decrease in the reward obtained by
ENs for delivering contents in advance to users before the request deadline was due to
the increase in average content delivery delay of users. Therefore, the cache utility of ENs
decreased. The RCC algorithm had the smallest cache utility, and its ASU level fluctuated
slightly as the number of UTs increased. The ASU of the GCC algorithm became closer to
that of the proposed algorithm as the number of UTs became more intense, and the ASU of
the proposed algorithm was slightly higher than that of the GCC algorithm.

The RCC algorithm did not consider the content popularity when caching and ran-
domly cached content, which could only satisfy the needs of a small number of UTs, while
the GCC algorithm and the proposed algorithm tended to cache the more popular content
to meet the needs of most UTs, which saved backhaul traffic to some extent and obtained
more cache utility. The proposed algorithm also considered the size of the content, adopted
incentive measures, and considered the reward for delivering content in advance. Thus,
the proposed algorithm can achieve higher performance.

The cost caused by the number of UTs increased with the rising number of UTs. This
is because the larger the number of UTs, the more diverse the requested content, and the

Sensors 2024, 24, 2279 23 of 25

more dispersed the contents. Thus, the CHR decreases. Accordingly, the cost grows during
the process of content caching process.

When the number of UTs was 10, the CHR of the proposed algorithm improved up
to 238.39% and 9.56% compared to that of the RCC algorithm and the GCC algorithm,
respectively, the ACRD of the proposed algorithm was reduced up to 52.97% and 15.32%
compared to that of the RCC algorithm and the GCC algorithm, respectively, and the ASU
of the proposed algorithm improved by up to 184.92% and 13.33% compared to that of the
RCC algorithm and the GCC algorithm, successively.

In order to verify the performance of the proposed algorithm, the RCC algorithm and
the GCC algorithm were taken as the benchmark algorithms. The CHR, the ACRD, and the
ASU were taken as the metrics. In the experiments, the influence of the Zipf parameter, the
number of contents, the cache space, and the number of UTs on the metrics was discussed,
successively. The experimental results show that the proposed algorithm can achieve a
better performance regarding the metrics compared to the benchmark algorithms.

7. Conclusions

In this paper, the joint optimization strategy of air-ground cooperation caching and
content delivery was proposed to reduce the delay of content delivery. Firstly, the content
popularity was predicted by the LSTM network based on the time series data of content
popularity. Then, the joint optimization problem of air-ground cooperation caching and
content delivery based on popularity prediction were built to minimize the total content
delivery delay by considering UAV trajectory planning, UAV transmission power allocation,
the downlink bandwidth allocation of UAVs and the base station, content caching, and
user association. Finally, the block coordinate descent method was adopted to decompose
the optimization problem, and the random rounding technique was adopted to restore
slack variables to achieve the joint optimization strategy of air-ground cooperation caching
and content delivery. The simulation results show that the performance of the proposed
algorithm was better than that of benchmark algorithm on average delivery delay, average
data transmission energy, and average cache hit rate. In future works, the prototype system
of the air-ground cooperation will be built, and the performance of JOA-AGCCCD-PP will
be verified in real environments.

Author Contributions: Formal analysis, J.B. and H.J.; investigation, H.J.; writing—original draft
preparation, J.B. and S.Z.; writing—review and editing, J.B. and S.Z.; supervision, J.B. and H.J.; project
administration, J.B. and H.J.; funding acquisition, J.B. and H.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Natural Science Fund of Hubei Province, China (No.
2023AFB082).

Informed Consent Statement: Not applicable.

Data Availability Statement: http://files.grouplens.org/datasets/movielens/ml-latest.zip (accessed
on 18 June 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

DP The set of DPs
F The set of contents
Um The set of UTs served by m-th EN
Cm The available cache storage size
Dq The size of q-th content
xm,q The decision variable of content caching
pq The popularity of q-th content
pro fm The node utility

http://files.grouplens.org/datasets/movielens/ml-latest.zip

Sensors 2024, 24, 2279 24 of 25

pro f 1
m The edge caching utility

pro f 2
m The content transmission utility

n The n-th UT
m The m-th EN

References
1. Tefera, G.; She, K.; Shelke, M.; Ahmed, A. Decentralized adaptive resource-aware computation offloading & caching for

multi-access edge computing networks. Sustain. Comput. Inform. Syst. 2021, 30, 100555.
2. Rocha, A.S.; Pinheiro, B.A.; Borges, V.C.M. Secure D2D caching framework inspired on trust management and blockchain for

Mobile Edge Caching. Pervasive Mob. Comput. 2021, 77, 101481. [CrossRef]
3. Ye, X.; Li, M.; Si, P.; Yang, R.; Wang, Z.; Zhang, Y. Collaborative and intelligent resource optimization for computing and caching

in IoV with blockchain and MEC using a3c approach. IEEE Trans. Veh. Technol. 2023, 72, 1449–1463. [CrossRef]
4. Zhen, Y.; Chen, W.; Zheng, L.; Li, X.; Mu, D. Multiagent cooperative caching policy in industrial internet of things. IEEE Internet

Things J. 2022, 9, 16770–16779. [CrossRef]
5. Zhou, X.; Liu, Z.; Guo, M.; Zhao, J.; Wang, J. SACC: A size adaptive content caching algorithm in fog/edge computing using deep

reinforcement learning. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1810–1820. [CrossRef]
6. Liu, J.; Zhang, X. Blockchain-empowered content cache system for vehicle edge computing networks. In Proceedings of the

International Conference on Blockchain and Trustworthy Systems, Guangzhou, China, 23 December 2019.
7. Liu, J.; Guo, S.; Shi, Y.; Feng, L.; Wang, C. Decentralized caching framework toward edge network based on blockchain. IEEE

Internet Things J. 2020, 7, 9158–9174. [CrossRef]
8. Chai, H.; Leng, S.; Zeng, M.; Liang, H. A hierarchical blockchain aided proactive caching scheme for internet of vehicles. In

Proceedings of the IEEE International Conference on Communication, Shanghai, China, 20–24 May 2019.
9. Xu, Q.; Su, Z.; Yang, Q. Blockchain-based trustworthy edge caching scheme for mobile cyber-physical system. IEEE Internet

Things J. 2019, 7, 1098–1110. [CrossRef]
10. Wang, W.; Niyato, D.; Wang, P.; Leshem, A. Decentralized caching for content delivery based on blockchain: A game theoretic

perspective. In Proceedings of the 2018 IEEE International Conference on Communications, Kansas City, MO, USA, 20–24 May
2018.

11. Dai, Y.; Xu, D.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep reinforcement learning and permissioned blockchain for content caching
in vehicular edge computing and networks. IEEE Trans. Veh. Technol. 2020, 69, 4312–4324. [CrossRef]

12. Sharma, V.; You, I.; Jayakody, D.N.K.; Reina, D.G.; Choo, K.-K.R. Neural-blockchain-based ultrareliable caching for edge-enabled
UAV networks. IEEE Trans. Ind. Inform. 2019, 15, 5723–5736. [CrossRef]

13. Guo, S.; Hu, X.; Guo, S.; Qiu, X.; Qi, F. Blockchain meets edge computing: A distributed and trusted authentication system. IEEE
Trans. Ind. Inform. 2019, 16, 1972–1983. [CrossRef]

14. Burhan, M.; Alam, H.; Arsalan, A.; Rehman, R.A.; Anwar, M.; Faheem, M.; Ashraf, M.W. A Comprehensive Survey on the
Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions.
IEEE Access 2023, 11, 73303–73329. [CrossRef]

15. Faheem, M.; Kuusniemi, H.; Eltahawy, B.; Bhutta, M.S.; Raza, B. A lightweight smart contracts framework for blockchain-based
secure communication in smart grid applications. IET Gener. Transm. Distrib. 2024, 18, 625–638. [CrossRef]

16. Malik, H.; Anees, T.; Faheem, M.; Chaudhry, M.U.; Ali, A.; Asghar, M.N. Blockchain and Internet of Things in smart cities and
drug supply management: Open issues, opportunities, and future directions. Internet Things 2023, 23, 100860. [CrossRef]

17. Raza, B.; Aslam, A.; Sher, A.; Malik, A.K.; Faheem, M. Autonomic performance prediction framework for data warehouse queries
using lazy learning approach. Appl. Soft Comput. 2020, 91, 106216. [CrossRef]

18. Visualizing Akamai. Available online: https://www.akamai.com/uk/en/solutions/-intelligent-platform/visualizing-[7] (ac-
cessed on 23 May 2023).

19. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.
20. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of the

2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India,
10–12 July 2018.

21. Macrinici, D.; Cartofeanu, C.; Gao, S. Smart contract applications within blockchain technology: A systematic mapping study.
Telematics Inform. 2018, 35, 2337–2354. [CrossRef]

22. Wu, X.; Dunne, R.; Yu, Z.; Shi, W. STREMS: A smart real-time solution toward enhancing EMS prehospital quality. In Proceedings
of the 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies,
Philadelphia, PA, USA, 17–19 July 2017.

23. Khan, S.N.; Loukil, F.; Ghedira-Guegan, C.; Benkhelifa, E.; Bani-Hani, A. Blockchain smart contracts: Applications, challenges,
and future trends. Peer Peer Netw. Appl. 2021, 14, 2901–2925. [CrossRef]

24. Wang, G.; Li, C.; Huang, Y.; Wang, X.; Luo, Y. Smart contract-based caching and data transaction optimization in mobile edge
computing. Knowl.-Based Syst. 2022, 252, 109344. [CrossRef]

25. Li, J.; Chen, H.; Chen, Y.; Lin, Z.; Vucetic, B.; Hanzo, L. Pricing and resource allocation via game theory for a small-cell video
caching system. IEEE J. Sel. Areas Commun. 2016, 34, 2115–2129. [CrossRef]

https://doi.org/10.1016/j.pmcj.2021.101481
https://doi.org/10.1109/TVT.2022.3210570
https://doi.org/10.1109/JIOT.2022.3164447
https://doi.org/10.1109/TETC.2021.3115793
https://doi.org/10.1109/JIOT.2020.3003700
https://doi.org/10.1109/JIOT.2019.2951007
https://doi.org/10.1109/TVT.2020.2973705
https://doi.org/10.1109/TII.2019.2922039
https://doi.org/10.1109/TII.2019.2938001
https://doi.org/10.1109/ACCESS.2023.3294479
https://doi.org/10.1049/gtd2.13103
https://doi.org/10.1016/j.iot.2023.100860
https://doi.org/10.1016/j.asoc.2020.106216
https://www.akamai.com/uk/en/solutions/-intelligent-platform/visualizing-[7]
https://doi.org/10.1016/j.tele.2018.10.004
https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1016/j.knosys.2022.109344
https://doi.org/10.1109/JSAC.2016.2577278

Sensors 2024, 24, 2279 25 of 25

26. Cha, M.; Kwak, H.; Rodriguez, P.; Ahn, Y.-Y.; Moon, S.B. I tube, you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In Proceedings of the 7th ACM SIGCOMM Internet Measurement Conference, San Diego, CA,
USA, 24–26 October 2007.

27. Pramanik, A.; Changdar, C.; Khan, A.; Chatterjee, S.; Pal, R.K.; Sahana, S.K. A 0–1 knapsack problem-based approach for solving
open-pit mining problem with type-2 fuzzy parameters. Innov. Syst. Softw. Eng. 2022, 1–14. [CrossRef]

28. Poularakis, K.; Llorca, J.; Tulino, A.M.; Taylor, I.; Tassiulas, L. Joint service placement and request routing in multi-cell mobile
edge computing networks. In Proceedings of the 2019 IEEE Conference on Computer Communications, Paris, France, 29 April—2
May 2019.

29. Wu, Z.; Fei, Z.; Yu, Y.; Han, Z. Toward optimal remote radio head activation, user association, and power allocation in C-RANs
using Benders decomposition and ADMM. IEEE Trans. Commun. 2019, 67, 5008–5023. [CrossRef]

30. GroupLens. The MovieLens 200M Dataset. [EB/OL]. [2019-12-03]. Available online: http://files.grouplens.org/datasets/
movielens/ml-latest.zip (accessed on 18 June 2023).

31. Jiang, Y.; Ma, M.; Bennis, M.; Zheng, F.-C.; You, X. User preference learning-based edge caching for fog radio access network.
IEEE Trans. Commun. 2019, 67, 1268–1283. [CrossRef]

32. Hao, Y.; Chen, M.; Hu, L.; Hossain, M.S.; Ghoneim, A. Energy efficient task caching and offloading for mobile edge computing.
IEEE Access 2018, 6, 11365–11373. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11334-022-00491-1
https://doi.org/10.1109/TCOMM.2019.2904268
http://files.grouplens.org/datasets/movielens/ml-latest.zip
http://files.grouplens.org/datasets/movielens/ml-latest.zip
https://doi.org/10.1109/TCOMM.2018.2880482
https://doi.org/10.1109/ACCESS.2018.2805798

	Introduction
	Related Work
	The Decentralized Data Caching System Based on Blockchain
	The Content Prefetching
	The Content Delivery Execution
	The Description of Smart Contract
	The Analysis of the System Security

	The Node Utility-Based Decentralized and Proactive Caching Strategy
	The Communication Model
	The Content Transmission Delay Model
	The Content Preference Model
	The Node Utility Model

	The Node Utility-Based Decentralized and Proactive Caching Algorithm
	Simulation Experiments
	Experimental Environment
	Test Dataset
	Benchmark Algorithms
	Metrics
	Experimental Results
	The Influence of the Zipf Parameter on the Metrics
	The Influence of Contents on Metrics
	The Influence of the Cache Space on Metrics
	The Influence of the Number of UTs on Metrics

	Conclusions
	References

