

  sensors-24-02550




sensors-24-02550







Sensors 2024, 24(8), 2550; doi:10.3390/s24082550




Article



Flextory: Flexible Software Factory of IoT Data Consumers



Rafael López-Gómez *, Laura Panizo and María-del-Mar Gallardo





ITIS Software, Andalucía Tech, Universidad de Málaga, 29071 Malaga, Spain









*



Correspondence: rafaellopez@uma.es







Citation: López-Gómez, R.; Panizo, L.; Gallardo, M.-d.-M. Flextory: Flexible Software Factory of IoT Data Consumers. Sensors 2024, 24, 2550. https://doi.org/10.3390/s24082550



Academic Editors: Allel Hadjali, Behnam Mobaraki and Jose Turmo



Received: 5 March 2024 / Revised: 30 March 2024 / Accepted: 13 April 2024 / Published: 16 April 2024



Abstract

:

The success of the Internet of Things (IoT) has driven the development, among others, of many different software architectures for producing, processing, and analyzing heterogeneous data. In many cases, IoT applications share common features, such as the use of a platform or middleware, also known as message broker, that collects and manages data traffic between endpoints. However, in general, data processing is very dependent on the case study (sensors that send temperature data, drones that send images, etc.). Thus, the applications responsible for receiving and processing data, which we call consumers, have to be built ad hoc, since some of their elements have to be specially configured to solve specific needs of the case study. This paper presents Flextory, a software factory tool to make it easier for IoT developers to automatically construct configurable consumer applications, which we call FLEX-consumers. Flextory guides developers through the process of generating Java consumers by selecting some desired features such as, for instance, the particular communication protocol to be used. This way, the developer only has to concentrate on designing the algorithm to process the data. In short, the use of Flextory will result in consumer applications with configurable behavior, namely FLEX-consumers, that can connect to a messaging server (for example RabbitMQ) and process the received messages.






Keywords:


Internet of Things; software factory; message broker












1. Introduction


The Internet of Things (IoT) can be defined as the interconnection of heterogeneous devices through the Internet. With the evolution of wireless networks, in particular the fifth generation of mobile networks (5G), IoT has become an enabling technology for a large set of applications from many different domains, such as smart cities, smart farming, Industry 4.0, and e-Health [1]. In IoT applications, at least three main actors can be identified: the source of data (the producers/publishers), such as sensors that produce information, the processors (the consumers) that analyze and transform data following some criteria, and the actuators that respond properly according to the information registered.



Despite the wide variety of IoT architectures, most of them rely on an intermediate platform (middleware), called message broker, that abstracts the data transmission between IoT peer devices. Brokers support reliable communication and, additionally, can hide the existence of devices connected at any given time. Thus, the communication endpoints (the producer and consumer nodes) are only self-aware. Thanks to this feature, it is possible to develop loosely coupled and scalable IoT applications. Traditionally, when a developer faces the task of constructing an IoT application for a given domain following this architecture, he/she has to select the intermediate platform that will connect the source and target entities, implement software modules that carry out this communication, and design the software component that processes the data produced by the data source.



Currently, there is a wide variety of general purpose brokers, such as RabbitMQ, Apache Kafka, and Mosquito. One of the main differences between them is the communication protocols used to connect the broker with the producer and consumer applications. In the IoT domain, brokers usually make use of the two well-known communication protocols AMQP [2] and MQTT [3] that take into account the limited resources of many IoT devices. It is worth mentioning that some broker systems support both communication protocols.



In this work, we have followed the ideas of Software Product Line Engineering (SPL) [4], a research area whose aim is to model families of software products that can be used to generate software adapted to the final user’s needs. The SPL community has addressed multiple problems of the IoT domain, such as the design of App Stores that support the deployment of customized applications [5] and the self-adaptation of applications running in heterogeneous IoT devices [6].



The term software factory is not new [7] and refers to the set of techniques and tools that automate and simplify software creation [8]. They have been traditionally used to develop industrial applications. Nowadays, they are part of the techniques of SPL Engineering and are broadly used to customize software products of different domains [9]. In particular, we have constructed the tool Flextory that allows the development of IoT consumer applications with several facilities. The tool is able to automatically construct the software components to read the data from the producer. In addition, Flextory allows the easy integration of any data processing algorithm in the IoT application. This characteristic is very interesting, since it means that the developer only has to focus on the design of the algorithm suitable for the application being implemented. The tasks related to the integration of the algorithm with the rest of the application’s software modules are already provided by the tool. To the best of our knowledge, in the literature, there are no tools similar to Flextory that generate consumer applications with flexible behavior in the IoT domain.



The objective of this paper is to describe Flextory in detail. Flextory generates consumer applications able to read and process data received from a message broker system. To avoid confusion due to names, we use the term FLEX-consumer for the consumer applications built with Flextory. As commented above, FLEX-consumers have a flexible behavior with many configurable options to ease their deployment. All FLEX-consumers have been developed in Java, which is well known for its portability. In addition, Java is also supported by some devices with low computing power [10].



Figure 1 depicts the interaction between the tool Flextory and FLEX-consumers and their users. As shown, two different users appear in the diagram. On the one hand, the Flextory user (called developer) makes use of Flextory to construct FLEX-consumers. The developer introduces some parameters needed to construct the desired FLEX-consumer, such as, for instance, the communication protocol to be used and the algorithm that will process data. On the other hand, the FLEX-consumer user configures the application in order to adapt its execution to the particular expected behavior. Usually, the FLEX-consumer configuration is related to how and when the data processing algorithm must be executed.



To demonstrate the utility of Flextory and FLEX-consumers in the development and deployment of IoT consumer applications, we present a non-trivial case study related to the learning technique of black-box systems [11]. Flextory is used to produce a FLEX-consumer that reads a sequence of observations and runs a learning algorithm that is able to produce models of the system. In particular, in the case study, the FLEX-consumer is used to learn models of the DASH protocols [12]. This example shows how Flextory facilitates the construction of complex IoT applications. As commented above, the developer only has to focus on the construction of Java classes that carry out the learning process. Finally, we have evaluated the tool with a user study in which a group of post-graduate students have performed a task with Flextory and have filled out a questionnaire.



The tool and the documentation is publicly available at https://gitlab.com/morse-uma/formal-methods/flextory/, accessed on 28 March 2024.



The rest of the paper is organized as follows. First, Section 2 introduces some of the most common IoT communication protocols and message brokers. Then, Section 3 summarizes related work. In Section 4, we describe in detail the design and implementation of Flextory and the generated FLEX-consumers. Section 5 and Section 6 present two case studies and the user study results, respectively. Finally, in Section 7 and Section 8, we discuss the strengths and weaknesses of our proposal and summarize conclusions and future work. Additionally, we provide supplementary material in Appendix A, expanding on Section 4 and Section 5 to provide more information on the development and application of Flextory.




2. Background


In this section, we first present and compare some of the most widely used IoT communication protocols. Then, we introduce the IoT architecture based on message brokers, which is the basis of the design of the tool Flextory. We recommend that the reader consult a state-of-the-art survey on IoT, such as [1], to gain a broader view of this technology.



2.1. IoT Communication Protocols


In general, communication protocols establish a set of rules so that different devices can communicate, as well as the format of the messages exchanged. In the case of the IoT domain, communication protocols have to deal with some specific features. Firstly, they must take into account the large number of devices that can be connected, the different tasks that they may perform, and the disparity in devices’ computation capability. In addition, the IoT architecture should be scalable and flexible; that is, adding or removing devices should not produce noticeable changes in the IoT solution. This requirement entails adopting low coupling between devices. Finally, the security of communications must also be ensured.



IoT protocols may be based on different communication patterns, Publish/Subscribe being one of the most widely used. In this communication pattern, there are two entities that interchange data via a middleware broker. On the one hand, the subscriber tells a broker the topic of the messages that it wants to receive. On the other hand, the publisher sends data about a certain topic to the broker. As shown in Figure 2, the message broker is in charge of distributing the messages to the subscribers subscribed to each topic.



We will now describe some IoT protocols based on the Publish/Subscribe pattern that work over the application layer of the OSI network model. Since AMQP and MQTT are, by far, the most widely used protocols, we have decided that developers can configure Flextory to allow the resulting FLEX-consumer to make use of one of these two protocols.



	
MQ Telemetry Transport [13,14] (MQTT) is an OASIS open standard that defines a Machine to Machine (M2M) communication protocol for IoT environments. MQTT typically works over TCP and transports binary data. MQTT is designed to be lightweight so that it can be used by devices with low computing capacity. In addition, message headers are small to accommodate low bandwidth networks. Finally, regarding security, different security mechanisms are available, such as encrypting connections using SSL/TLS and authentication.



	
Advanced Message Queuing Protocol [15] (AMQP) is also an OASIS open standard. AMQP is designed to support a wide variety of communication patterns. Messages are distributed between the endpoint devices by means of a flexible and complex mechanism based on exchanges, which are abstract entities declared by users to which messages are sent. Exchanges take a message and route it into queues. Users have to create queues if they do not exist and bind them to a specific exchange. The routing algorithm that distributes messages from exchanges to queues depends on the exchange type and the binding rules. There are many exchange types, but in this project, we have used the default exchange that is pre-declared by the broker. This exchange offers a Publish/Subscribe pattern with one special property that makes it very useful for applications: every queue that is created is automatically bound to the exchange with a “topic name” (routing key in AMQP nomenclature) that is the same as the queue name. For example, if a queue with the name “test” is declared, the message broker will bind it to the default exchange using “test” as the topic. AMQP provides authentication and encryption based on SASL and TLS.



	
Constrained Application Protocol [16] (CoAP) is a protocol for devices with limited resources that provides a REST model between application endpoints with messages in binary format. Targeting efficiency, CoAP runs over the UDP transport layer protocol to distribute messages in an asynchronous manner. Regarding security, it supports DTLS.



	
Extensible Messaging and Presence Protocol [17] (XMPP) is an IETF open standard that uses the Extensible Markup Language (XML) as the data format. XMPP was initially designed for instant messaging services but was later extended to cover different communication patterns, such as Request/Response, Asynchronous Messaging, Publish/Subscribe, event subscription (Observe) and delayed delivery. In terms of security, XMPP supports SASL and TLS. However, the support of end-to-end encryption is a work in progress.







2.2. Message Brokers


A message broker, or a messaging server, is a middleware between applications or devices, both senders and receivers, that exchange messages. In the IoT context, a message broker consists of a centralized notification service that is a main server with a fixed IP address known by all devices. As shown in Figure 3, the server is responsible for receiving messages from all sending devices (publishers) and distributing them to receivers (consumers). The connected devices are only aware of themselves. Consumers do not know the true origin of the data, and publishers do not know by who or how the data will be processed. This isolation is achieved thanks to the message broker management and provides scalability and low coupling.



Nowadays, a wide variety of message brokers are available, both self-hosted and cloud-hosted. In particular, we have tested the FLEX-consumers using RabbitMQ, since it is one of the message brokers that supports MQTT and AMQP. Table 1 shows a comparison between some of the most popular message brokers (despite the fact that all solutions can be deployed in a cloud service provider, we have only considered native cloud hosting). In addition to the type of business model followed, either proprietary or open source, some other differences can be highlighted. For example, the RabbitMQ model has commercial features to gain access to a virtualized version of the message broker and even cloud hosting and technical assistance. Regarding the protocols supported, the brokers accept AMQP and MQTT natively or via plugin, with the exception of Apache Kafka that uses a custom protocol. Finally, Microsoft’s and Amazon’s options also cover the integration and communication with other services provided by these companies.





3. Related Work


In the IoT domain, it is common to use the three-layered architecture that distinguishes between the roles of producers, message brokers, and consumers. One of the main challenges to be addressed when using this architecture is how to adapt it to changes in the data format and the processing algorithm. There exist many proposals that integrate all the components of this three-layered architecture into a custom solution. For example, JCL [23] is a middleware whose purpose is to integrate IoT with High Performance Computing (HPC). It also has an API in which different categories of devices can be programmed. Since JCL requires that its own components be installed in all the systems belonging to the IoT ecosystem, its use is limited to devices that are JCL compatible. Our proposal is focused on end devices that process data (consumers) and relies on the portability paradigm of the Java language. In contrast to JCL, FLEX-consumers are automatically generated.



D-LITe [24] is another all-in-one solution that uses a choreography approach. Programming is based on cooperation between nodes, each one performing a small part of the total application. To program a node, D-LITe uses finite state machines with an output alphabet, called Finite State Transducers (FSTs), to describe the logic of the application. When a user wants to describe the application, he/she does it using a specific format called SALT. Subsequently, the rules are transformed into a set of FSTs (one per node) that are sent through the network. Finally, each node’s rule analyzer is responsible for executing its FST. The use of D-LITe is limited both by the compatible devices and by programming options offered by the SALT format. As mentioned before, our proposal offers consumers with flexible behavior that can be changed in every execution. In addition, there are no programming restrictions because they are built using Java.



IoTSuite [25] also offers a tool suite that covers all the layers that constitute an IoT infrastructure. These tools automatize tasks in different phases of developing an IoT application. For example, programmers can write high-level textual specifications that can be analyzed and transformed into code by the compiler tool. There is also an execution system that incorporates a middleware to coordinate nodes. IoTSuite requires that it be compiled and installed on all devices that will be used, which limits its application.



The platform SYNAISTHISI [26] is another approach to support multiple communication protocols, such as MQTT and AMQP, by integrating different open-source frameworks including, among others, RabbitMQ. This work does not focus on how to support the development of IoT applications. In contrast, its objective is to support the interoperability of these different frameworks and provide a unified user-access control on IoT data and services. The platform is available as a set of dockerized containers; thus, it is easily deployable. Both tools, the SYNAISTHISI framework and Flextory, aim to support the fragmented IoT ecosystem from different approaches. Clearly, the SYNAISTHISI platform can help us to test FLEX-consumers generated by Flextory in different scenarios (protocols and brokers) and, alternatively, Flextory can easily produce FLEX-consumers with different communication protocols to test the interoperability of SYNAISTHISI.



There are also proposals that only focus on endpoint devices, either publishers or consumers. For instance, FRASAD [27] is a framework that facilitates the development of programs for sensor nodes (devices physically connected to sensors). FRASAD has been built following a software architecture centered on nodes and a programming model based on rules that allows applications to be described using a language specific to the sensor domain. The application code is generated from models built with the language through an automatic transformation process. FRASAD focuses on the publisher part, while our proposal centers on the consumer applications.



On the consumers side, Midas [28] is a framework to help researchers create and manage IoT applications with heterogeneous data sources. Midas has a module to process the data features of interest by means of the so-called analysis functions that make use of machine learning techniques. The main characteristic of Midas is its modularity, making it easy to incorporate new components in order to add new data streams or analysis functions. In addition, it is implemented as a distributed architecture to assure scalability. Compared with Midas, Flextory’s goal is different, since it is conceived as a meta-tool to create new configurable tools with respect to the structure of input data, the type of message brokers to be used, and the algorithms to process data, among other features.




4. Software Description


Figure 4 presents a general overview of Flextory and FLEX-consumers developed in this work. The top part of the figure shows Flextory’s input and output. Thus, the user of Flextory (a developer of IoT consumer applications) introduces parameters that Flextory needs to build a FLEX-consumer. The mandatory inputs are the type and structure of the data (in JSON format) that the FLEX-consumer will receive from the message broker, the algorithm for data processing, and the communication protocol (AMQP or MQTT) to be used to connect with the message broker. With this information, Flextory automatically generates a FLEX-consumer.



The lower part of Figure 4 shows how the resulting FLEX-consumer can be configured and executed. Among other functionalities, the FLEX-consumer can be configured by the user to connect to a specific message broker and to subscribe to different types of data topics (as described in Section 2.1). Furthermore, there are some other customizable parameters used to establish some execution conditions of the processing algorithm and to decide when the FLEX-consumer should stop its execution. We have tested the FLEX-consumers generated with Flextory using RabbitMQ as a message broker, but FLEX-consumers can connect to any other messaging server supporting AMQP or MQTT protocols.



The rest of the section describes the design of Flextory and the FLEX-consumers shown in Figure 4. We first present the design of Flextory, including its main functional and non-functional requirements and some implementation details. Then, we introduce the FLEX-consumer requirements related to their configuration.



4.1. Design and Implementation of Flextory


As commented before, Flextory automatically creates consumer applications with configurable behavior (the FLEX-consumers). On the one hand, Flextory must be able to generate FLEX-consumers adapted to different IoT domains. This implies that Flextory must allow both different formats for the data received by FLEX-consumers and also different processing algorithms to be applied to data. On the other hand, Flextory must construct FLEX-consumers able to change the message broker as well as the conditions to trigger the processing algorithm in each execution.



Table 2 contains the list of functional and non-functional requirements that have guided the construction of Flextory. These requirements have been selected to offer developers maximum flexibility when choosing how to build a FLEX-consumer. The most relevant requirements are FR-1 to FR-5. FR-1 establishes the need to provide the format of the data received by the FLEX-consumer. FR-2 to FR-4 describe the requirements related to the processing algorithm used by the consumer applications produced by Flextory. FR-5 is related to the communication protocols to be included in the FLEX-consumers.



Figure 5 shows the use case diagram that describes Flextory’s main capabilities. The main actor is the Flextory user interacting with Flextory to generate a FLEX-consumer. To this end, the user uploads the format of the messages to be processed, currently using a JSON schema. In addition, the user defines the processing algorithm. This requires uploading, at a minimum, the implementation of the Algorithm class. To ease the process, the user can download a template to be completed. Optionally, if needed, the user can upload external dependencies packaged in JAR format. Moreover, the user must select the communication protocol between the two that are currently available (AMQP and MQTT). Finally, Flextory uses the Java compiler to generate the FLEX-consumer, so it is essential that it be installed.



Figure 6 shows Flextory’s architecture. In Appendix A, we have included supplementary material, such as the class diagram. Flextory follows the classical Model/View/Controller design pattern. The View module includes the visual components used by the Graphical User Interface (GUI) to guide the user through the configuration and generation of the FLEX-consumer application. There are two main visual components: the MainFrame, which provides the skeleton of the Flextory GUI, along with different panels that remain visible during the creation of the FLEX-consumer in order to ease the interaction with the user. The Model module is in charge of generating the FLEX-consumer and is composed of two sub-components, the Consumer Templates and the Compiler. The former contains the code templates of different consumer components, such as the User Interaction module or different versions of the Connection Management module. The Compiler is in charge of integrating the templates with the data provided by the user in order to generate the FLEX-consumer executable. Finally, as usual, the Controller is the link between the View and the Model, reacting to user inputs and performing interactions on the Model. In addition, it can also react to Compiler events to properly update the View.



The current version of Flextory is a Java application with a Java Swing GUI, packed in an executable JAR file. To generate FLEX-consumers, Flextory guides users through a sequence of steps shown in the flow diagram in Figure 7. Although it is not explicit in the diagram, the user cannot advance to the next step if the selection made in the current step is wrong. We will use this diagram to present Flextory’s main implementation decisions.



In the first step, the user has to provide a JSON schema describing the format of the data distributed by the message broker. Then, the user uploads the processing algorithm to be used by the FLEX-consumer. The algorithm has to be coded in a special Java class called Algorithm that implements the Java Runnable interface, so that the user only has to implement the run method. To make this step easier, Flextory provides a downloadable template of the Algorithm class. In addition, if the Algorithm class has some dependencies, they have to be provided as JAR files. In the fourth step, the user selects the communication protocol supported by the broker (AMQP or MQTT). With all the necessary files, the Compiler module transforms the data description (JSON schema) into a set of Plain Old Java Objects (POJOs) classes that will be part of the FLEX-consumer, and will support the deserialization of the data received from the message broker. Finally, the FLEX-consumer is built as a Java application that integrates the POJOs classes and the Algorithm class with its dependencies and the templates.



To illustrate the use of Flextory, we show how to build a simple application that receives data from the well-known Iris dataset [29] and counts the number of flowers of each species. The dataset has samples of different iris species. Four traits (the length and width of the sepal and petal) are associated with each species. The Flextory user (the developer) has to provide the file with this JSON schema in the first step (see the specific format in Appendix A). Next, the user has to complete the Algorithm class to count the number of samples of each species, as show in Listing 1. This algorithm has no external dependencies, so the user, after providing this class, can jump directly to the fourth step and select the communication protocol to generate the FLEX-consumer binaries (this example and the generated FLEX-consumers are available in gitlab).





	Listing 1. Implementation of the Algorithm class of the Iris dataset example.



	[image: Sensors 24 02550 i001]







4.2. Design and Implementation of FLEX-Consumers


The main purpose of a consumer application is to connect to a message broker and process the messages received by applying a processing algorithm. The design of the FLEX-consumers takes into account the following aspects. On the one hand, FLEX-consumers have to use a standard protocol to communicate with a message broker, such as the AMQP and MQTT protocols introduced in Section 2. To simplify the design, we assume that a FLEX-consumer uses only one of these protocols. On the other hand, FLEX-consumers can be configured in a persistent or repetition mode, since the internal behavior of the algorithm is unknown, i.e., it can be designed to process all incoming data in a persistent manner or, on the contrary, to process data batch. In particular, given a processing algorithm, we could define different repetition conditions that establish when the algorithm has to iterate again: each time a new message arrives, when a fixed number of messages are received, or after a specific time has elapsed. In consequence, the design of FLEX-consumers allows the configuration of different execution modes for the same algorithm. Moreover, FLEX-consumers can be configured with different halting conditions that define when the FLEX-consumer must close connections and stop the execution. For instance, data processing could stop when a FLEX-consumer reaches a maximum number of messages received or when a given time without receiving messages has elapsed.



Considering the foregoing, we have identified the main functional (FR) and non-functional (NFR) requirements of FLEX-consumers, which are listed in Table 3. We now describe the most relevant ones. FR-1 to FR-4 define the necessary parameters to establish a connection with a message broker, such as the communication protocol and the topic to subscribe. FR-5 to FR-7 focus on the behavior of the processing algorithm. For example, there will be repetition conditions due to elapsed time or number of messages. FR-8 mentions the need to include options to define conditions of when a FLEX-consumer should close connections and end.



Figure 8 shows the use case diagram of a FLEX-consumer. The main actor is the FLEX-consumer user that launches the consumer in order to process data coming from the message broker. To this end, the user has to configure some mandatory parameters, such as the message broker IP address as well as the queue or topic depending on whether the FLEX-consumer uses AMQP or MQTT, and the trigger and halting conditions of the processing algorithm. Additionally, the user can configure connection credentials.



These requirements lead us to the FLEX-consumer architecture shown in Figure 9. A FLEX-consumer comprises three main components. The “User Interaction” module is responsible for interacting with the user through the command line terminal, mainly to read the configuration parameters and display the results of the processing algorithm, including the errors, if they occur. The “Connection Management” module is in charge of establishing and managing the communication with the message broker. Finally, the “Data Processing” module deals with the execution of the processing algorithm following the entered configuration. Since this algorithm, which is specific to each FLEX-consumer, can have different internal sub-modules, this module can be conceived as a wrapper that controls the algorithm’s execution and stop conditions.



Regarding implementation, FLEX-consumers are Java applications in JAR format that are invoked by users using a command line. When FLEX-consumers are executed, they receive arguments that define how they must behave. For example, there exist parameters to state different connection options, such as the IP address of the message brokers, their listening port, and the topic to subscribe. For instance, for the Iris example introduced in Section 4.1, the FLEX-consumer produced by Flextory can be run following different execution modes. All the invocations have the same structure: “java -jar <FLEX-consumer name> -ip <broker address> -t <topic name> <optional arguments>”. The optional arguments offer very different customization options. For example, with “-mr 300 -d”, the FLEX-consumer of Iris will count the number of flowers of each species every 300 received messages, deleting the current messages after they have been processed, i.e., it will only count the new data that have arrived in the last 300 messages. Another possibility is “-tr 4 -w 8”, which indicates “count the number of each Iris species every 4 min and stop the FLEX-consumer execution if there are no new messages after 8 min since the last one received”. Note that, in this case, the messages will not be deleted after being processed, meaning that all the received messages will be processed each time.



Finally, Figure 10 describes the lifecycle of a FLEX-consumer. In order to connect to the message broker (in the example RabbitMQ), the user provides the networking configuration (e.g., IP address and port of message broker, the topic name). In addition, the user can also define other configurable options such as the termination condition. Then, the FLEX-consumer establishes the connection with the broker and, depending on the configuration used, waits until a repetition or halt condition is triggered. FLEX-consumers can behave as long-lived connection applications, i.e., they can be configured without halting conditions, using the persistent option to maintain the execution of the processing algorithm indefinitely. It is worth mentioning that there are some constraints in the combination of some of these parameters. For instance, in the networking configuration, it is mandatory to have at least the IP address of the message broker and the topic (or queue in AMQP) to subscribe. In addition, it seems natural that the processing algorithm is executed at least once. Therefore, if no repetition parameters or the persistent option are specified, a halting condition must be specified. This way, the FLEX-consumer could execute the algorithm once and finish. Furthermore, if there is a repetition argument, there is no need to define a halting condition of the FLEX-consumer, although they can also be combined.





5. Illustrative Examples


In this section, we present two examples in which Flextory can help boost the development of a FLEX-consumer. Both examples arise from the needs of real research projects in which the authors currently participate. Flextory and all the material required to replicate these examples is published in a gitLab repository (https://gitlab.com/morse-uma/formal-methods/flextory/, accessed on 28 March 2024).



5.1. Learning from Observations


In the last few years, there has been rising interest in the so-called digital twins, that is, system models that can be enriched when new systems’ behaviors are observed. These models can be used to make decisions or predict failures. In order to construct a digital twin, a lot of information has to be collected and concurrently processed using a learning algorithm. The LearnFDT project aims to automatically generate formal digital twins, i.e., models of systems described with a formal language, using Automata Learning techniques. In this example, we use Flextory to generate a FLEX-consumer that constructs such formal digital twins.



In particular, the system to be learned is DASH [12], a protocol for adaptive video transmission. Thus, two entities are involved in DASH: a streaming video server and a client application. To learn the behavior of DASH, the FLEX-consumer application implements an algorithm based on Automata Learning techniques with passive learning [30]. The purpose of Automata Learning techniques is to build formal models that simulate the behavior of the systems under learning (SULs). The passive learning approach uses the observed behavior (execution traces) of the SUL to build the formal models.



Figure 11 shows a general overview of the case study. The objective is to generate a FLEX-consumer that is able to construct a digital twin of a DASH remote server. The setup for generating the digital twin consists of a publisher, a message broker, and the FLEX-consumer. The publisher sniffs traffic exchanged between the DASH server (available online [31]) and some clients during the execution of several video streaming sessions. Then, these traffic captures are packed in a message in JSON format and transmitted to the message broker. Since the publisher is beyond the scope of this work, we use a dummy publisher that reads the traces from a file and sends them to the broker. In this example, the message broker is a RabbitMQ instance that uses MQTT and has a topic “dash” where all DASH traces will be stored.



The FLEX-consumer receives network traces and executes the learning algorithm in order to incrementally produce a model of the DASH protocol. In this case study, we have the role of developers (the Flextory users) and also users of the FLEX-consumer. First, as developers, we provide Flextory with the JSON schema defining the traces format (see Appendix A for JSON schema definition). Then, we provide the Algorithm class that launches the learning algorithm and feeds it with incoming traces. The algorithm constructs a model of the system in an incremental manner, extending the learned model when new behaviors are read. The Algorithm class also deploys a web server that allows us to inspect the model under construction. We have integrated a learning automata algorithm, in which the system models are described as timed automata with one timer. The details of the learning algorithm are beyond the scope of this paper, but, in general, we can integrate any learning algorithm by injecting it as a dependency. Finally, we select MQTT as the communicating protocol in order to communicate with the RabbitMQ broker.



Once the FLEX-consumer is built, it is invoked with the following configuration: “java -jar Dash.jar -ip <ip address of the message broker> -pers -t dash”; that is, the FLEX-consumer is configured to establish a connection with the message broker, subscribe to the topic “dash”, and execute the processing algorithm in a persistent way. Then, the FLEX-consumer will start the connection and wait for new data. As mentioned before, the processing algorithm deploys a web server to check the progress of the Automata Learning algorithm. Figure 12 shows the timed automata learned during the FLEX-consumer execution (left) and the final automata produced after processing 92 traces.




5.2. Validating Data Format


The EPICENTRE project [32] proposes a 5G distributed experimentation platform. The platform, whose architecture is beyond the scope of this paper, includes a RabbitMQ broker with multiple queues. The first queue is used to inject the results of the experiments. These data are processed by a consumer application (called Validator in the project) that collects messages with a correct data format and injects them into a second queue in order to be processed by different analytics modules, which can also be considered as consumer applications. The broker communicates with all these entities using the MQTT protocol. In this project, most of these consumers (the Validator and the analytic modules) have been developed in Python. Anyhow, the programming language of the consumer is transparent to the broker message.



In this example, we use Flextory to generate a Java Validator so that it subscribes to the first queue and collects the correct messages. We have limited this example to the Validator, since it is the module developed by our research group. However, the rest of the other analytic modules used in the 5G-EPICENTRE project could also be generated using Flextory.



The development of the Validator follows the workflow of Flextory. In the first step, we upload the JSON schema and in the second step, we provide the Algorithm class. Both the definition of the JSON schema and the implementation of the Algorithm class are included in Appendix A. In this case, the Validator just logs in a file whether the messages are either correct or not. Since the Algorithm class does not include third-party libraries, we can directly move to the fourth step, in which we select the MQTT protocol. The last step is the compilation of the FLEX-consumer that finishes without reporting errors.



Finally, we have executed the generated FLEX-consumer to collect real data from the EPICENTRE platform. In particular, we configure the FLEX-consumer to check the format of each message when it is received and to stop (terminate execution) when 100 messages have been processed. The results have been quite satisfactory; the Validator created is similar to the original one, and the time required to produce it is minimal once the validation algorithm is coded in Java.





6. Evaluation: User Study


We have conducted a user study with ten participants recruited from post-graduate students with different knowledge levels in IoT technologies and communication protocols (see Figure 13). In the study, each participant is assigned an exercise that consists of (1) creating a FLEX-consumer using Flextory and (2) deploying and using it in a real environment. The FLEX-consumer has to process a sequence of messages coming from a message broker with information of different types of boats and use a machine learning algorithm to classify them. Finally, participants are requested to run the FLEX-consumer with different configurations. To reduce the time required to carry out the exercise, we have deployed a message broker that will interact with the resulting FLEX-consumer. Thus, the participants have to focus only on creating the consumer and using it. In order to successfully complete the implementation of the FLEX-consumer, they can follow the tutorial of Flextory (https://gitlab.com/morse-uma/formal-methods/flextory/, accessed on 28 March 2024). In case a participant is not familiar with some of the technology (e.g., specifying a JSON schema), we provide some backup material.



We have collected the users’ opinions and suggestions using an online questionnaire (https://forms.gle/DwBEA7mUw1jkw5Zv9, accessed on 28 March 2024). In general, users with a higher knowledge in IoT give a very positive feedback of Flextory, whereas users with less experience do not have a clear picture of the utility of Flextory and FLEX-consumers. The conclusions of the user study are summarized as follows:




	
All participants have been able to complete the practical task correctly. On average, the task was completed in less than 1 h. A total of 90% of participants think that Flextory is user-friendly and eases the task of implementing IoT consumers.



	
As a possible improvement, some participants have suggested easing the installation process of Flextory by automatically installing the Java Development Kit (JDK) if it is not present on the machine. We believe that manually installing the JDK is not a big deal and allows more flexibility to decide which distribution to use.



	
We explicitly asked about the most confusing step when using Flextory. As shown in Figure 14, there is not a consensus: 50% of the participants have not faced any issues using Flextory whereas 20% found some difficulties with the definition of the JSON schema.



	
With respect to FLEX-consumers, 100% of users believe that they are easy to configure and use. However, 30% of them are not sure if they are useful. We believe that this may be related to the case study proposed in the exercise that could not be relevant or attractive enough. One participant suggested to generate FLEX-consumers to collect network data and perform a characterization of its behavior.



	
Finally, we asked participants suggestions. Among others, they proposed to improve the documentation of Flextory and FLEX-consumers. In addition, they recommended to run Flextory as a web service in such a way that no installation is required. Finally, they suggested the integration of FLEX-consumers with other message brokers such as Kafka. Since Kafka uses its own communication protocol, we think that this proposal implies to design the templates for a new FLEX-consumer that implements the protocol.









7. Discussion


In this section, we discuss the pros and cons of Flextory and the FLEX-consumers. First, we would like to highlight that the target users of Flextory are developers without extensive background in IoT communication protocols who want to process data. In this case, Flextory is a valuable tool to produce, in five steps, a fully operational IoT consumer (FLEX-consumer) which is able to process data coming from a remote message broker. Since the IoT ecosystem is very diverse and changing, the FLEX-consumer execution mode can be re-configured without having to re-run Flextory. Thus, a consumer can be used in different scenarios. Clearly, this greatly simplifies the development cycle, and the results of the user study (see Section 6) indicate that, in general, potential users of Flextory are satisfied with it.



However, an expert user could find Flextory a bit limited. The main weakness of the generated FLEX-consumers is, presumably, that it can only receive data from one message broker and from one topic (or queue). For instance, in [33], the authors present an IoT Edge-Cloud hybrid architecture in which consumers have to dynamically connect to different message brokers according to different conditions. In order to adapt FLEX-consumers to new IoT architectures or even to a changing environment, we can adopt solutions from the SPL community, such as [5,6], that require different models (e.g., variability and goal models) to generate IoT applications. It should be noted that these models can be very dependent on the case study and therefore the Flextoryuser would need some knowledge of the case study and modeling techniques.



Another weak point could be the limited set of execution modes of the FLEX-consumers. Based on the literature, Flextory covers the most common execution modes, such as daemon mode and end processing after a time deadline. In addition, it is possible to set the frequency of execution of the processing algorithm according to the elapsed time or the number of messages received.



To finalize, the FLEX-consumers only support messages in JSON format. Although this format it is very flexible, thanks to the definition of the JSON schema, most message brokers support other formats. For example, RabbitMQ currently supports XML, Thrift, and MessagePack. Despite these limitations, Flextory could be useful for fast prototyping FLEX-consumers.



Concerning the IoT communication protocols integrated in FLEX-consumers, MQTT was a clear option for many reasons. In general, determining the most proper IoT communication protocol to use in a particular application is an important engineering problem, as many factors have to be considered. Since IoT devices have limited hardware features, a wide variety of IoT communication protocols have been developed to overcome distinct application problems while aiming for low latency, maximum throughput, and low energy consumption. Different studies [34,35] have compared the characteristics and capabilities of the most popular protocols, such as MQTT, HTTP, COAP, AMQP, and XMPP. There is usually a consensus about MQTT being the most suitable option for the majority of the IoT case studies. Even if it is not the option with the best performance, the strong points of the MQTT protocol are its lightweight design and the fact that a message can be sent to multiple subscribers with maximum performance, thanks the publisher/subscriber model. Moreover, MQTT is often preferred when a secure communication environment is needed. In the design phase of Flextory, our intention was to choose multiple communication protocols with features similar to MQTT’s. We selected AMQP because it can behave in a manner quite similar to MQTT, enabling the same features in both implementations. In further Flextory versions, we will study how to implement other protocols without changing the similar use of the FLEX-consumers.




8. Conclusions and Future Work


In this paper, we have presented Flextory, a software factory tool whose objective is to simplify the challenging and time-consuming task of implementing IoT data consumer applications. Although there exist some frameworks that ease the implementation process, they do not address the heterogeneous case studies of the IoT domain and, in many cases, developers are forced to build ad hoc applications. For this reason, we propose Flextory to guide a developer in the process of generating consumer applications that are characterized by connecting to a message broker and process received data. Thanks to Flextory developers do not have to worry about implementation details such as the communication logic with the message broker, the integration of the processing algorithm in the FLEX-consumer, or the management of the incoming data. In addition, Flextory produces configurable FLEX-consumer applications with a flexible behavior, in the sense that a FLEX-consumer user can define different conditions to trigger the processing algorithm or to finish the execution.



The current version of Flextory produces Java FLEX-consumers that support MQTT or AMQP communication protocols. This paper presents the requirements and architectures of both the software factory Flextory and the resulting FLEX-consumers.



To show the versatility of Flextory and the FLEX-consumers generated, we have presented a running example to describe the methodology (Section 4.1) and a more complex case study in Section 5. In addition to these examples, Flextory has also been used in other domains to show the wide variety of message formats and processing algorithms that can be included in the FLEX-consumers. In the field of computational phylogenetics, we have generated a FLEX-consumer that processes phylogenetic trees using the Sankoff [36,37] algorithm. Another case study is a FLEX-consumer that checks if data have been properly encoded using different cryptography algorithms. Finally, Flextory has been used to build a FLEX-consumer application that collects the result messages from different experiments and transforms them into a specific data format, which can be found at gitLab.



To assess the user’s opinion about Flextory, we have carried out a user study. The overall feedback is very positive, and the participants have made some suggestions that we plan to address.



As future work, we plan to extend Flextory in different ways to generate more flexible FLEX-consumers that can be used in different contexts. For instance, we have observed the importance of enabling subscription to multiple topics or queues. In addition, we would like to produce FLEX-consumers in Python, since it is a user-friendly language for non-software experts and has plenty of support to develop data analytics tools. Moreover, we would like to distribute Flextory as a web application or even as an Integrated Development Environment (IDE) plugin.



We also aim to check the compatibility of the current FLEX-consumers with other message brokers. Although AMQP and MQTT are standardized protocols, there are different versions, and some compatibility issues may occur depending on the version used in the FLEX-consumer application and the message broker.



In recent years, new IoT architectures have arisen from the evolution of wireless and mobile networks and require new features in the IoT applications. We plan to study in depth these new architectures in order to generate FLEX-consumers suitable for these dynamic scenarios.







Author Contributions


Implementation and Evaluation, R.L.-G.; Research, R.L.-G., L.P. and M.-d.-M.G.; Funding acquisition, L.P. and M.-d.-M.G.; Writing, R.L.-G., L.P. and M.-d.-M.G. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by the UNICO I+D Advanced 5G and 6G program (Spanish Ministry of Economy and Digital Transformation) grant number TSI-063000-2021-11 (5G+TACTILE) and the State Plan for Scientific, Technical and Innovation Research 2021-2023 (Spanish Ministry of Science, Innovation and Universities) grant number PID2022-142181OB-I00 (LearnFDT).




Data Availability Statement


Data is contained within the article.




Conflicts of Interest


The authors declare no conflicts of interest.





Appendix A


This appendix includes supplementary material to clarify the implementation of Flextory and the examples presented in Section 4.1 and Section 5.



Figure A1 shows the class diagram of the current implementation of Flextory, which is related to the components diagram shown in Figure 6. Classes with suffixes Panel and Frame are part of the View component. The ConsumerTemplates and Compiler classes are part of the Model component. The former class includes the code of a generic MQTT and AMQP client in String format. The AMQP client’s template code uses an external library provided by RabbitMQ [38], while the MQTT client relies on the Eclipse Paho library [39]. The Compiler class includes methods to generate and compile all the Java code of the FLEX-consumer and package the result in JAR format. For instance, to convert the JSON schema into serializable classes, Flextory uses the Jackson library (https://github.com/FasterXML/jackson, accessed on 28 March 2024). Finally, the Controller class includes all the events handlers in order to properly update the View and the Model.



Listings A1 and A2 show part of the code of the AMQP and MQTT FLEX-consumers. We would like to clarify that the main differences between them only concern the communication module. As mentioned above, the AMQP template (Listing A1) uses the RabbitMQ library that supports AMQP communications. In Figure A1, the method connect (lines 22–53) is in charge of establishing the connection with the broker to create a channel to receive the messages of a specific queue. In addition, we have to define a callback (deliverCallback lines 34–51) that will be executed when a new message arrives. Basically, depending on the configuration, this callback will launch the processing algorithm in a worker thread or will delete the queue, close the connection with the broker, and end the FLEX-consumer execution. The method end (lines 55–64) implements this functionality.





	Listing A1. Communication module of an AMQP FLEX-consumer.



	[image: Sensors 24 02550 i002]






In the MQTT client shown in Figure A1, we use the Eclipse Paho library. In this case, the connect method (lines 16–27) creates a session with the broker and subscribes to a specific topic. When a new message arrives, it is managed by the messageArrived method (lines 29–54). Observe that its implementation is similar to deliveryCallback of the AMQP template. Finally, the method end (lines 56–63) closes the session with the broker and ends the execution of the client.





[image: Sensors 24 02550 g0a1] 





Figure A1. Flextory class diagram. 






Figure A1. Flextory class diagram.



[image: Sensors 24 02550 g0a1]







	Listing A2. Communication module of an MQTT FLEX-consumer.



	[image: Sensors 24 02550 i003]






We continue with the definition of the JSON schema of the examples presented in Section 4.1 and Section 5. JavaScript Object Notation (JSON) is a lightweight data-interchange format commonly used for communication in the IoT domain. A JSON schema (https://json-schema.org/, accessed on 28 March 2024) provides a formal description of the expected format of JSON messages, including the data type of each field, any constraints on the data, and the relationships between different parts of the message. Using a JSON schema allows for validation of incoming and outgoing messages.



Listing A3 shows the JSON schemas used in the DASH example (left) and the Validator example (right). Both schemas include the fields title, type, properties, and additionalProperties. However, in each example, the messages include a different set of properties. For example, the DASH example includes information of the TCP header, such as the flags activated (flags) or the sequence number (seqN). In the Validator example, the properties include information of the experiments such as the experiment id or the scenario, among others.





	Listing A3. JSON schemas of the DASH example (left) and the Validator example (right).



	[image: Sensors 24 02550 i004]






To conclude, we present the implementation of the Algorithm class used in the Validator case study (Listing A4). The Algorithm class implements the Runnable interface so that the processing algorithm can be executed in a different thread. The processing algorithm is coded in the run method and can include references to external libraries. In the example, it only logs in a file that the messages are either correct or not. Observe that the run method processes messages from the class attribute data (line 14), which consist of a queue where the communication module stores all incoming messages.





	Listing A4. Implementation of the Algorithm class of the Validator consumer.



	[image: Sensors 24 02550 i005]








References


	



Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. [Google Scholar] [CrossRef]

	



Advanced Message Queuing Protocol. Available online: https://www.amqp.org/ (accessed on 28 March 2024).

	



MQTT: The Standard for IoT Messaging. Available online: https://mqtt.org/mqtt-specification/ (accessed on 28 March 2024).

	



Pohl, K.; Böckle, G.; Van Der Linden, F. Software Product Line Engineering: Foundations, Principles, and Techniques; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–467. [Google Scholar] [CrossRef]

	



Butting, A.; Kirchhof, J.C.; Kleiss, A.; Michael, J.; Orlov, R.; Rumpe, B. Model-Driven IoT App Stores: Deploying Customizable Software Products to Heterogeneous Devices. In Proceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (GPCE 2022), New York, NY, USA, 6–7 December 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 108–121. [Google Scholar] [CrossRef]

	



Ayala, I.; Amor, M.; Horcas, J.M.; Fuentes, L. A goal-driven software product line approach for evolving multi-agent systems in the Internet of Things. Knowl. Based Syst. 2019, 184, 104883. [Google Scholar] [CrossRef]

	



Cusumano, M.A. The Software Factory: A Historical Interpretation. IEEE Softw. 1989, 6, 23–30. [Google Scholar] [CrossRef]

	



Greenfield, J.; Short, K. Software factories: Assembling applications with patterns, models, frameworks and tools. In Proceedings of the Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’03), Anaheim, CA, USA, 26–30 October 2003; Association for Computing Machinery: New York, NY, USA, 2003; pp. 16–27. [Google Scholar] [CrossRef]

	



Benaddi, L.; Ouaddi, C.; Jakimi, A.; Ouchao, B. Towards A Software Factory for Developing the Chatbots in Smart Tourism Mobile Applications. Procedia Comput. Sci. 2024, 231, 275–280. [Google Scholar] [CrossRef]

	



Beneke, T. A Perfect Match: Java and the Internet of Things. 2014. Available online: https://www.oracle.com/technical-resources/articles/java/java-maker-iot.html (accessed on 28 March 2024).

	



Angluin, D. Learning regular sets from queries and counterexamples. Inf. Comput. 1987, 75, 87–106. [Google Scholar] [CrossRef]

	



International Organization for Standardization (ISO), I.E.C.I. Dynamic Adaptive Streaming over HTTP (DASH). Parts 1–9. Available online: https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html (accessed on 28 March 2024).

	



MQTT Version 3.1.1. Available online: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html (accessed on 28 March 2024).

	



MQTT Version 5.0. Available online: http://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html (accessed on 28 March 2024).

	



OASIS Advanced Message Queuing Protocol (AMQP). Available online: https://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html (accessed on 28 March 2024).

	



The Constrained Application Protocol (CoAP). Available online: https://datatracker.ietf.org/doc/html/rfc7252 (accessed on 28 March 2024).

	



Extensible Messaging and Presence Protocol (XMPP): Address Format. Available online: https://datatracker.ietf.org/doc/rfc7622/ (accessed on 28 March 2024).

	



RabbitMQ. Available online: https://www.rabbitmq.com/ (accessed on 28 March 2024).

	



Azure IoT Hub. Available online: https://azure.microsoft.com/products/iot-hub (accessed on 28 March 2024).

	



Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 28 March 2024).

	



Eclipse Mosquitto. Available online: https://mosquitto.org/ (accessed on 28 March 2024).

	



AWS IoT Core. Available online: https://aws.amazon.com/iot-core/ (accessed on 28 March 2024).

	



de Souza Cimino, L.; de Resende, J.E.E.; Silva, L.H.M.; Rocha, S.Q.S.; de Oliveira Correia, M.; Monteiro, G.S.; de Souza Fernandes, G.N.; da Silva Moreira, R.; de Silva, J.G.; Santos, M.I.B.; et al. A middleware solution for integrating and exploring IoT and HPC capabilities. Softw. Pract. Exp. 2019, 49, 584–616. [Google Scholar] [CrossRef]

	



Cherrier, S.; Ghamri-Doudane, Y.M.; Lohier, S.; Roussel, G. D-LITe: Distributed logic for internet of things sErvices. In Proceedings of the 2011 IEEE International Conferences on Internet of Things and Cyber, Physical and Social Computing, iThings/CPSCom 2011, Dalian, China, 19–22 October 2011; pp. 16–24. [Google Scholar] [CrossRef]

	



Chauhan, S.; Patel, P.; Sureka, A.; Delicato, F.C.; Chaudhary, S. Demonstration Abstract: IoTSuite—A Framework to Design, Implement, and Deploy IoT Applications. In Proceedings of the 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Vienna, Austria, 11–14 April 2016. [Google Scholar] [CrossRef]

	



Akasiadis, C.; Pitsilis, V.; Spyropoulos, C.D. A Multi-Protocol IoT Platform Based on Open-Source Frameworks. Sensors 2019, 19, 4217. [Google Scholar] [CrossRef] [PubMed]

	



Nguyen, X.T.; Tran, H.T.; Baraki, H.; Geihs, K. FRASAD: A framework for model-driven IoT Application Development. In Proceedings of the IEEE World Forum on Internet of Things, WF-IoT 2015, Reston, VA, USA, 12–14 December 2015; pp. 387–392. [Google Scholar] [CrossRef]

	



Henelius, A.; Torniainen, J. MIDAS: Open-source framework for distributed online analysis of data streams. SoftwareX 2018, 7, 156–161. [Google Scholar] [CrossRef]

	



Iris Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/iris (accessed on 28 March 2024).

	



Aichernig, B.K.; Muškardin, E.; Pferscher, A. Active vs. Passive: A Comparison of Automata Learning Paradigms for Network Protocols. Electron. Proc. Theor. Comput. Sci. 2022, 371, 1–19. [Google Scholar] [CrossRef]

	



DASH, HLS or PROGRESSIVE Stream Test. Available online: https://bitmovin.com/demos/stream-test?format=dash&manifest=https%3A%2F%2Fcdn.bitmovin.com%2Fcontent%2Fassets%2Fart-of-motion-dash-hls-progressive%2Fmpds%2Ff08e80da-bf1d-4e3d-8899-f0f6155f6efa.mpd (accessed on 28 March 2024).

	



Arampatzis, D.; Apostolakis, K.C.; Margetis, G.; Stephanidis, C.; Atxutegi, E.; Amor, M.; Di Pietro, N.; Henriques, J.; Cordeiro, L.; Carapinha, J.; et al. Unification architecture of cross-site 5G testbed resources for PPDR verticals. In Proceedings of the 2021 IEEE International Mediterranean Conference on Communications and Networking, MeditCom 2021, Athens, Greece, 7–10 September 2021; pp. 13–19. [Google Scholar] [CrossRef]

	



Pham, V.N.; Lee, G.W.; Nguyen, V.; Huh, E.N. Efficient Solution for Large-Scale IoT Applications with Proactive Edge-Cloud Publish/Subscribe Brokers Clustering. Sensors 2021, 21, 8232. [Google Scholar] [CrossRef] [PubMed]

	



Bayılmış, C.; Ebleme, M.A.; Çavuşoğlu, Ü.; Küçük, K.; Sevin, A. A survey on communication protocols and performance evaluations for Internet of Things. Digit. Commun. Netw. 2022, 8, 1094–1104. [Google Scholar] [CrossRef]

	



Wytrębowicz, J.; Cabaj, K.; Krawiec, J. Messaging Protocols for IoT Systems—A Pragmatic Comparison. Sensors 2021, 21, 6904. [Google Scholar] [CrossRef] [PubMed]

	



Sankoff, D. Minimal Mutation Trees of Sequences. SIAM J. Appl. Math. 1975, 28, 35–42. [Google Scholar] [CrossRef]

	



Sankoff, D.; Rousseau, P. Locating the vertices of a steiner tree in an arbitrary metric space. Math. Program. 1975, 9, 240–246. [Google Scholar] [CrossRef]

	



RabbitMQ Java Client Library. Available online: https://www.rabbitmq.com/java-client.html (accessed on 28 March 2024).

	



Eclipse Paho Java Client. Available online: https://github.com/eclipse/paho.mqtt.java (accessed on 28 March 2024).








[image: Sensors 24 02550 g001] 





Figure 1. Overview of Flextory and FLEX-consumer proposal. 






Figure 1. Overview of Flextory and FLEX-consumer proposal.



[image: Sensors 24 02550 g001]







[image: Sensors 24 02550 g002] 





Figure 2. Example of Publish/Subscribe communication pattern. 






Figure 2. Example of Publish/Subscribe communication pattern.



[image: Sensors 24 02550 g002]







[image: Sensors 24 02550 g003] 





Figure 3. Message broker architecture. 






Figure 3. Message broker architecture.



[image: Sensors 24 02550 g003]







[image: Sensors 24 02550 g004] 





Figure 4. General overview of the inputs and outputs of Flextory and FLEX-consumers. 






Figure 4. General overview of the inputs and outputs of Flextory and FLEX-consumers.



[image: Sensors 24 02550 g004]







[image: Sensors 24 02550 g005] 





Figure 5. Flextory use case diagram. 






Figure 5. Flextory use case diagram.



[image: Sensors 24 02550 g005]







[image: Sensors 24 02550 g006] 





Figure 6. Flextory components diagram implementing Model/View/Controller design pattern. 






Figure 6. Flextory components diagram implementing Model/View/Controller design pattern.



[image: Sensors 24 02550 g006]







[image: Sensors 24 02550 g007] 





Figure 7. Simplified activity diagram of Flextory. 






Figure 7. Simplified activity diagram of Flextory.



[image: Sensors 24 02550 g007]







[image: Sensors 24 02550 g008] 





Figure 8. FLEX-consumer use case diagram. 






Figure 8. FLEX-consumer use case diagram.



[image: Sensors 24 02550 g008]







[image: Sensors 24 02550 g009] 





Figure 9. FLEX-consumer components diagram. 






Figure 9. FLEX-consumer components diagram.



[image: Sensors 24 02550 g009]







[image: Sensors 24 02550 g010] 





Figure 10. Message exchange between the FLEX-consumer, its user, and the message broker. 






Figure 10. Message exchange between the FLEX-consumer, its user, and the message broker.



[image: Sensors 24 02550 g010]







[image: Sensors 24 02550 g011] 





Figure 11. Deployment of the DASH case study with a DASH server acting as the publisher, a RabbitMQ message broker, and a FLEX-consumer instance integrating a learning algorithm. 






Figure 11. Deployment of the DASH case study with a DASH server acting as the publisher, a RabbitMQ message broker, and a FLEX-consumer instance integrating a learning algorithm.



[image: Sensors 24 02550 g011]







[image: Sensors 24 02550 g012] 





Figure 12. Intermediate automaton (left) and final automaton after learning 92 traces (right). 






Figure 12. Intermediate automaton (left) and final automaton after learning 92 traces (right).



[image: Sensors 24 02550 g012]







[image: Sensors 24 02550 g013] 





Figure 13. Participants’ experience in IoT technologies (left) and IoT communication protocols (right). 






Figure 13. Participants’ experience in IoT technologies (left) and IoT communication protocols (right).



[image: Sensors 24 02550 g013]







[image: Sensors 24 02550 g014] 





Figure 14. Users’ opinions on Flextory’s most complex steps. 






Figure 14. Users’ opinions on Flextory’s most complex steps.



[image: Sensors 24 02550 g014]







 





Table 1. Features of different Message brokers.






Table 1. Features of different Message brokers.





	Name
	Business Model
	Hosting
	Native Protocols
	Additional Information





	RabbitMQ [18]
	Open Source
	Self-hosting
	AMQP
	Plugin support including MQTT extension



	Azure IoT Hub [19]
	Proprietary
	Cloud hosting
	HTTP, AMQP, and MQTT
	Integration with Azure services



	Apache Kafka [20]
	Open Source
	Self-hosting
	TCP-based protocol
	Supports AMQP and MQTT via plugin



	Eclipse Mosquitto [21]
	Open Source
	Self-hosting
	MQTT
	-



	AWS IoT Core [22]
	Proprietary
	Cloud hosting
	MQTT and HTTPS
	Integration with AWS and other Amazon services










 





Table 2. Functional and non-functional requirements of Flextory.






Table 2. Functional and non-functional requirements of Flextory.





	Id
	Description





	FR-1
	Developers have to specify the format of the data received by the FLEX-consumer.



	FR-2
	Flextory will have a way to enter the algorithm that the FLEX-consumer will execute to process the received data.



	FR-3
	Flextory should offer a template of the processing algorithm that users have to complete.



	FR-4
	Flextory will allow the user to add external dependencies of the FLEX-consumer’s processing algorithm in JAR format.



	FR-5
	Developers have to select either MQTT or AMQP as the consumer’s protocol, but not both.



	FR-6
	The name of the resulting FLEX-consumer has to be configured by the user.



	FR-7
	Flextory has to give warning messages to users when an error occurs.



	NFR-1
	Flextory must have an intuitive and easy-to-use GUI.



	NFR-2
	Flextory should be offered as a stand-alone application in JAR format.



	NFR-3
	Flextory should be compatible with several operating systems.



	NFR-4
	Flextory must be executable on systems that have the Java Development Kit (Java JDK).










 





Table 3. Functional and non-functional requirements of FLEX-consumers.






Table 3. Functional and non-functional requirements of FLEX-consumers.





	Id
	Description





	FR-1
	A FLEX-consumer has to connect to a message broker using AMQP or MQTT protocols.



	FR-2
	The IP address and port of the message broker has to be configurable.



	FR-3
	FLEX-consumers should be able to subscribe to a specific queue or topic depending on the protocol.



	FR-4
	The topic or the queue name to be subscribed has to be configurable.



	FR-5
	FLEX-consumers must include configurable trigger conditions to control the processing algorithm execution.



	FR-6
	A FLEX-consumer user can configure whether messages are discarded once processed or they continue to be processed in subsequent calls to the algorithm.



	FR-7
	There should be an option to decide if the processing algorithm can be executed one last time before closing the connection with the message broker.



	FR-8
	FLEX-consumers will offer options to configure when their execution stops.



	FR-9
	FLEX-consumers must include an option to invoke the processing algorithm at the beginning of the lifecycle.



	FR-10
	FLEX-consumers should include an error reporting system.



	FR-11
	FLEX-consumers should provide help or usage information to users.



	NFR-1
	FLEX-consumers must be executable on a system that has the Java Development Kit (Java JDK).



	NFR-2
	The FLEX-consumer’s user interface should be user friendly.
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file4.png
PIOA (1UBAZUONOY)PaWI0JIBdUONDE =, @)
|ouedsJerioges |ouedsJerioodles w (3)
|auedzdays |ouedzdais ® ()
< eiegua)dwo) ele@is|idwod » (@
Jouegedas . v M |auedynsay [puedynsal = (3 b
3 |sued/dals |suedzdals w ()
' M |auedydars |suedydeis = @) N||//
n6 . 0:w:mn__\awum |puedLdels =
v_wr_mn_wawum Jouedgodals ® ()
pIoA (jsuedr)jsuedabueyo = @) @ 1pueggdarg leuedgdens & @
pion (3un) deysabueys = @ SueHUIEN mb ® @
louedr  |auedieqesdels v O 1puedgdais lBuededais v @
jouedr  [ouedieqetzdars § (3 J3]jonu0y = ©
1°qeTr lpae1gders & @ ¢
legeqr |egetzdais ® @
leqeqr [2qeTuodl v @O
|eqer lpaETrdals ¥ @) ) Buys (Bus ‘Buins) doNvRb = @ I —
jouedr  lsuedieqezdais ® () Burng (Buns ‘Bums) L1OWRD = @ 1suEqd v.ww> (Bums)urew = @
lsuedr  |suedieqeiedals v @ soje|dwa ] Jswnsuo) L1®) Alo1xa|4 L1©)
jouedr  jsuedieqeodais ¥ @) pIOA ()uiedlosqies = @ PIOA (18Ud1SITU0NDY) J8]0.aU0DI8S = (@) uzacders| 1 3
Jauedr nuaw w () PIOA  (JBUS)SITUONDY) 18]|013U0DIBS = (@) Buing (Jwyioblyyoless = @
leqer leqe1gdals » puins 0 d 1106 =@ PIOA (Juredionqies = @
leqeTr |egeTLdais v O uonnar Uledeleidwaimoys s () 1eqeqr [eqeiongyledfidwe v () PIOA  (JBUSISITUONAY) JB]|01U0DI8S =, (@) —
lsuedr 6a ¥ @ uonngr uonngajeldwa [anes & () uonngr  uonngWLIoBywiyuod & (3 ploa ()yredlouTies = @
Jlouedr Wawod ¥ @ uonngr ] I LEO) l1eqeTr |eqeqwuyoblypeoidn v @) Buns (Jewsyosyoiess = @
Jojesedagr  |TIojededes w (3) Buing uedeleldway & (O Joyeledagr iojeledss w () « |4  PIOA (18U81SITUONDY) J9]|01U0DIBS =, (@) uonngr  uonngyiedewayosmoys s (3
1aqer joqeTzdais & leqenr |1ege1iouayiedfidwe v ) uonngr uonngwyilobiypeoidn » [©) ocmn_vnﬂw_ct:m_, uonngsierasniuop s 12qer [ageuyiedewayss w ()
leqer leqetedals ® Q) Jojesedesr lojesedas v () Buins uredwyiioBle = @ uonngdr uonngs.erasn s (3 Bus yledewsyss = Q@)
|ouedr  [auedieqeTideis v (O |2qeqr [ogealeidwa [aAes & (3) uonngr ureduwyyiobiymoys v () 1sqer |aqeTsierasn w () uonngr uonnguiedewsyoswiiyuod w (3)
louedr  [auedieqeydais w (3) Buins IAVSILVIdWILLD3IT3S = D Buins WHYILODTVINYIANOD = @ Buins SYVrasnLNOd = D egeqr |oge1iolgyledfidwe » [©)
SWelJUB = 5) Buins IAVSILVIdWNILNEIANOD = (D Buins WHLIHO9TVLO313S = @ Buins syvrasn = @ Jojesedasr lojeledss v (3)
[puededals = o |auedydais =@ [puR4SdR1S = (B uonngr  uonngyedeweydsioes 8 @ |
Bung VNIHOS10313S = (D
Ieued| dagsi Buns  HLVJVWIHOSWYIANOD = ()
|]auedsierios|as| |
Jauedzdals = (o |aued)nsal
ploA (1aud)sIuonoy) Ja]0.uodles = @) Bus ()owenddyeb =@
uonngr uonngnbw » ©) pIoA (J8ud)sIuonoy) Je|jolyuogies = @) pion (Jeusistiuonoy) sellouedies = @
1sger |19geTj0o0301d ® (D 10A Burs)sweN1o81I0oU}as pron (uonssrsiseTipoues = @ a7
p! (Butns)aweNy pes = @
by uonngr uonngdbwe w (3) ploIXaLl Jndunxe aweu s () v_M> ; thm_,mmoozw » @ proa (Jausisiuonoy) Jsjjouodies = @)
puegodsis | S dOWVYIWYIINOD = D jeger 1aqesiozBuILEY B (3) : c___uwvﬁ_._ - g 2O buns (uredsownsuodyoiess = @ eaIVIXOLP
Buins LLOWWYIINOD = @ joqeTr leqeTewel § (3) <1091q0>sr N LIO) pioA ()tpegiouzes = @ auedljolosr
lauedodals = () uonngr uoyINgaWENWILUOD & (3) Honnar uonngs.erieaues & @ Buns Uredlawnsuod e (3
Buns JNVYNNHIINOD = @) coumssenfeny. duRLSErIed - () HOUNER  UOHNBRBAISUNSUODI0S ¥ @ d
uonngr uonngyoleaspus s (3) Jojeledasr Jojeledss v () ISHECIICSS
JauedLda1s =G uonngr uonngs.leryosless s (3) UOHNGR UONINGUIBGIOWNSUODWILOD & (3) ;
Jojesedagr Jojesedss ® () uopngr  uonnguie *Q®
lsgelr |9gesleryoless & (O loger [pgetiolgyedhidwe = (O
<Bums>isrifeny sieryied = lpaer [20eTyIRdIsWNSU0D B ()
suedjjonasr sierfjolos v (1) Buing HLYdYIWNSNODLDF T3S = O
1saeIr dan s @ Buns HL1VdY4IWNSNOOWYHIANOD = D
Buns SYVIHOYVAS = () joueg/dels = o)
Buns SUYFTIONYO = (D
Bung SYVIMHOYVISANT = (O

|ouedsIerodes =« G

Bus ()weisAsbunessdoosyo
pioA ()auop
ploA (Buins)ssaooud
Buing ()punoibyoegujop
oo Bulns 1nsal
V1® |auedynsay |auedynsal
wo) eyep
JWNSU0d
19)1dwo) =)
,[ﬂagﬂz,rg
Bulins awenssed = (3
Buing wedaiedway = Q)
Bulns uiediawnsuod = (3)
Bulins uedewsayos = (3
<Buns>isiiAedy sieryied = (3)
buins j0o0301d ® ()
Buins yequuyiloble = (3)
Bulns aweNewayds = (3

ele@ioidwo) =)

pioa (Buiis)nsaymous = @

nsal o (@

SaY||040s © (@)

|auUBdYINS®Y = (5)

LC)

©)
©)
LJO)
LXO)
LYO)
@






media/file26.jpg





media/file8.jpg
i FLEX-Consumer
Linbccm——: |
FLEXTORY |
G ]
e :

enERaTES

i conutes and aunches

FLEX Consumer






media/file27.png
i Consumer ‘ RabbitMQ

User Parameters (IP address, queue/topic, ...) -
- Establish connection ~
Alternatives ) Loop (Until Consumer Message
end) <
[NO REPETITION]

Close connection

Algorithm(messages)

Algorithm output

————————————————— =

[REPETITION] Loop'{UntiI Consumer end) ) Message

If (Execute algorithmﬂ j Algorithm(messages)

Algorithm output

Close connection

f (Final execution) J Algorithm(messages)

Algorithm output






media/file34.jpg
Have you found any of the FLEXTORY steps confusing?
Toresponses

Step 1:Type the FLEX 2

Step 3:Save the aigorth . 10%)

Stop 4; Entr complted alor. 1 (10%
Step5: Choose extemas Jar| 110%)

Step : Selctcommunictn. 10w





media/file13.png
Publisher

Data

Data

Data

\ 4

MESSAGE
BROKER

Data

Data

» Consumer





media/file31.png
: ack
[110000, 135000]

fin_ack psh_ack
© [1000, £324000]

ack ack ' ack psh_ack
[0, 1000] [77000, 51864000 [122000, 150000] [1000, 36000]
A
0
ack peh ack
[1000, 31709000] [1000, 6568000]
6
0
Tt
[468000, 1080000]
]

svn_ack ' n
[0, 0] [0, 0]

[Connlnit]

A .
e svn_ack
[Connlnit] [30326000, 42370000]
2
[Connlnit]

ack ack
[102000, 109000] [106000, 178000]
D
L 0 e
3 psh_ack
[0,0] [0, 8824000]
4 fin_psh_ack
1] [1000, 1000]
ack ack
[0, 1000] [57000, 50486000]
5 ]
1]

ack
[1000, 42304000]

psh_ack
’ . [1000, $396000]

r=t_ack psh_ack
[468000, 1681000] [2000, 2000]

psh_ack
[1000, 83000]

ack
[122000, 210000]





media/file12.jpg
A\ MESSAGE Y

[Publisher Consumer|

§ ] BROKER \ )

\ 4 Data - Data @
- - N —

y X pata [ ) Data N

[Publisher! > .

| Consumer |

- b 4 Data
e . 4
™ [ \
Pubisher Consumer |
/

o .

A





media/file3.jpg
il ig!ill§ !
%.sigé '

Eizmi. I

..................

REILE

fil

sl! §

i

HitT

.......

‘lgll

i

1006

I %% | |
%ﬁiﬁj "

l!!lsll!!ll!!!!!!!l“

ol

......................

EE!l!EQQ]E"

il

I 2

i

eeeeeeee






media/file18.jpg
FLEXTORY)

Controller

View

MainFrame

Panel

Model

Compiler

£]

[[cersumer
Template






media/file9.png
FLEXTORY
User
(Developer)

—

—

Communication specifies
P, FLEX-Consumer
Algorithm
—

configurates and launches

GENERATES

FLEX-Consumer

User

\ 4

[Communlcatlon} [AlgorithmJ
protocol

FLEX-consumer






media/file14.jpg





media/file35.png
Have you found any of the FLEXTORY steps confusing?

10 responses

No 5 (50%)
Step 1: Type the FLEX-consum...
Step 2: Enter the JSON schema
Step 3: Save the algorithm tem...
Step 4: Enter completed algorit...
Step 5: Choose externals Jars

Step 6: Select communication...

Step 7: Save FLEX-consumer






media/file20.jpg
Upioad
O—{“’m’" zwmm Hmf‘mH mmmuanwamm]_.






media/file23.png
FLEX-Consumer
User

<<include>>

<<include>>
1

I Halting conditions

Execute
Processing
Algorithm

~
~

~

Message Broker

Message Broker

FLEX-Consumer

Connection
credentials

IP and port

\

. <<extend>>
<<include>> 9 end
N\
Ve

Configure

AMQP
version

parametes

<firlclude>> <<include>>

Processing
Algaorithm
trigger conditions

<<include>>
~

Receive
messages

<<include>>
|

Establish
connection

<<include>>

<<include>>

Enter
queue name






media/file5.png
1 public class ConsumerNameMQTT {
// Configuration attributes (same as AMQP)
3 // Connection attributes
private String brokerUrl, host, topic, username, password, clientld;
5 int port;
MqttClient client;
7 //Queue to store messages
private LinkedBlockingQueue<Schema> 1bq;

public ConsumerNameMQTT (String configuration []){

11 //Initialize attributes, queue and timers tasks
//Establish connection
13 connect () ;
}
15
private void connect () throws Exception{
17 client = new MqttClient(brokerUrl, clientId, null);
MgttConnectOptions connOpts = new MqttConnectOptions();
19 connOpts.setCleanSession(true) ;
connOpts.setAutomaticReconnect (true) ;
21 connOpts.setConnectionTimeout (0) ;
if ('username.equals("")) connOpts.setUserName (username) ;
23 if (!password.equals("")) connOpts.setPassword(password.toCharArray());
client.connect (connOpts) ;
25 client.setCallback (this) ;
client.subscribe (topic);
27 +
29 public void messageArrived(String topic, MgttMessage message) {
if (timerWaitTime !'= null) reset () ;
31 try { processMessage(new String(message.getPayload (), "UTF-8"));
if (maxMessages !'= 0) {
33 maxMessagescont ++;
if (maxMessages == maxMessagescont) {
35 timerEnd = new Timer () ;
TimerTask task_end = new TimerTask () {
37 @0verride
public void run() {
39 try { end () ;}
catch (Exception e) {e.printStackTrace(); }
41 +
}s
43 timerEnd.schedule (task_end, 0);
}
45 }
if (numMessages !'= 0) {
47 numMessagescont ++;
if (numMessages == numMessagescont) {
49 doWork () ;
numMessagescont = 0;
51 }
}
53 } catch (Exception e) { e.printStackTrace(); }
}
55
private void end() throws Exception {
57 client.disconnect () ;
client.close () ;
59 if (timerWaitTime !'= null) timerWaitTime.cancel () ;
if (timerTimeRep !'= null) timerTimeRep.cancel ();
61 if (finalexec) doWork();

System.exit (0) ;






media/file15.png
FLEXTORY
User
(Developer)

Data Description

— specifies
— FLEX-Consumer
Java
Algorithm
[ varT -]
&.;3 GENERATES
loT Communication Protocol
~—
establishes connection
— 3 produces and
configurates and launches FLEX- —_— sends data Publisher
FLEX-Consumer N distributes data
Message Broker
(RabbitMQ)

User

executes processing algorithm





media/file19.png
FLEXTORY)

MainFrame

View

Panel

Controller

Model

Compiler

=

L Consumer

Template






media/file28.jpg
RabbitMa

Message
Broker

DASH aces
uson)





media/file6.png
"title": "Dash tcp format",
"type":"object",
"properties":{

"timestamp":{"type":"string"},

"flags":{"type":"integer"},
"source":{"type":"integer"},
"target":{"type":"integer"},
"seqN":{"type":"integer"}

3

"additionalProperties":{
"type":"string"

+

+

"title": "Epicentre exp. data',

"type":"object",

"properties":{
"category":{"type":"string"},
"testbed_id":{"type":"integer"},

"scenario_id":{"type":"integer"},
"use_case_id":{"type":"integer"},
"experiment_id":{"type":"integer"},

"netapp_id":{"type":"string"},
"data":{
"type":"array",
"items":{
"type":"object",
"javaName":"Data",
"properties":{
"type":{"type":"string"},
"timestamp":{"type":"number"},
"origin":{"type":"string"},
"unit":{"type":"string"}

+
+,

"additionalProperties": false





media/file36.png





media/file32.jpg





nav.xhtml


  sensors-24-02550


  
    		
      sensors-24-02550
    


  




  





media/file11.png
Message
Broker

Publisher

\4

Publish data in topic test






media/file24.jpg
User Connection
User o Interaction (< Management
Module. Module.






media/file29.png
DASH
SERVER

Video Client

|

DASH traces
(JSON)

Y

RabbitMQ
Message
Broker

L

|

DASH traces
(JSON)






media/file1.png
1 public class Algorithm implements Runnable {
LinkedBlockingQueue<IrisSchema> data;

public Algorithm(LinkedBlockingQueue<IrisSchema> data){
5 this.data = data;

}
7
@0verride
9 public void run() {
float vir= 0, ver= 0, set= 0, other= 0;
11 for (IrisSchema flower : data) {
switch (flower.getSpecies()) {
13 case "setosa'": set++;
break;
15 case "versicolor": ver++;
break;
17 case "virginica'": vir++;
break;
19 default: other++;
}
21 }
/* Log % of each speciex/
23 +






media/file2.png
44

public class ConsumerNameAMQP {

// Configuration attributes
private Timer timerWaitTime, timerTimeRep, timerPersistent;

private int numMessages, numMessagescont , maxMessages, maxMessagescont;

private boolean finalexec;

// Connection attributes

private String host, queueName, username, password,consTag;
private 1int port;

private Connection connection;

private Channel channel;

//Queue to store messages

private LinkedBlockingQueue<Schema> 1bq;

public ConsumerNameAMQP (String configuration[]){
//Initialize attributes, queue and timers tasks
/..
//Establish connection
connect () ;

private void connect () throws Exception{
ConnectionFactory factory = new ConnectionFactory();
factory.setHost (host);
if (port !'= -1) factory.setPort(port);
if ('username.equals("")) factory.setUsername (username) ;
if (!'password.equals("")) factory.setPassword(password);

connection = factory.newConnection () ;
channel = connection.createChannel () ;

channel.queueDeclare (queueName, false, false, false, null);

channel .basicQos (2) ;
//Definition of callback

DeliverCallback deliverCallback = (consumerTag, delivery) -> {
if (timerWaitTime != null)
reset () ;
try { processMessage(new String(delivery.getBody (), "UTF-8"));
if (maxMessages !'= 0){
maxMessagescont ++;
if (maxMessages == maxMessagescont) end();
}
if (numMessages !'= 0){
numMessagescont ++;
if (numMessages == numMessagescont) {
doWork () ;
numMessagescont = 0;
}
}
}
catch (Exception e) {e.printStackTrace(); 1}
}s
consTag = channel.basicConsume (queueName, true, deliverCallback,

consumerTag -> {});

private void end() throws Exception {
channel .basicCancel (consTag) ;
channel . queueDelete (queueName) ;
channel.close () ;
connection.close () ;
if (timerWaitTime !'= null) timerWaitTime.cancel () ;
if (timerTimeRep !'= null) timerTimeRep.cancel ();
if (finalexec) doWork () ;
System.exit (0) ;






media/file10.jpg
Message
Broker

Publish data in topic test

Su

[Subscriber|
A y





media/file7.png
22

public class Algorithm implements Runnable {
LinkedBlockingQueue <EpiSchema> data;
private final static String log_filename = "output.txt";
public Algorithm(LinkedBlockingQueue<EpiSchema> data){
this.data = data;
+

@0verride
public void run() {

ArraylList<String> category = new
ArraylList<String>(Arrays.asList("bg_network", "nfv_mano",
"vnf_chain", "experiment"));

ArraylList<String> origin = new ArraylList<String>(Arrays.asList("UE",
"RAN", "5GC", "EPC", "main data server", "edge"));

try {

PrintWriter outputFile = new PrintWriter (new
FileWriter (log_filename, true));
for (EpiSchema message : data) {

if ('category.contains(message.getCategory())) A
outputFile.println("***Invalid or missing category**x");
outputFile.println(message.toString());

}

if (message.getTestbedId() == null)
outputFile.println("***Missing testbed IDx*x*x*x");

for (Data d : message.getData()) {
if (d.getType() == null || d.getTimestamp() == null ||
lorigin.contains(d.getOrigin())) {
outputFile.println("***Missing one or more required data
arguments**x") ;
break;

}
/*Print rest of message content to outputFilex/
}
outputFile.close () ;
} catch (Exception e) { e.printStackTrace();}
}






media/file33.png
Experience with Internet of Things technologies
10 responses

5 (50%)

3 (30%)

1 (10%) 1 (10%)

Experience using loT communication protocols
10 responses

4 (40%)

3 (30%)

2 (20%)

1 (10%)

0 (0%)





media/file16.jpg
FexroRY






media/file0.png





media/file22.jpg





media/file17.png
FLEXTORY
User

Generate
FLEX-Consumer

FLEXTORY

Define
Message Format

Define Processing

JSON schema

Upload Algorithm
class

Upload

algorithm

ext. p.

Select Protocol

N
<<include>> -

N
N

Compile

Java Compiler

FLEX-Consumer

Template | Dependencies

ext. p.

Select AMQP
Protocol

Sel