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Abstract: The electronic nose is a non-invasive technology suitable for the analysis of edible oils.
One of the practical applications in the olive oil industry is the classification of virgin oils based on
their sensory characteristics. Notwithstanding that this technology, at this stage, cannot realistically
replace the currently used methods, it is fruitful for a preliminary analysis of the oil quality. This
work makes use of this technology to develop a methodology for the detection of the threshold by
which an extra-virgin olive oil (EVOO) drops into the virgin olive oil (VOO) category. With this aim,
two features were studied: the level of fruitiness level and the type of defect. The results showed a
greater influence of the level of fruitiness than the type of defect in the determination of the detection
threshold. Furthermore, three of the sensors (S2, S7 and S9) of the commercial e-nose PEN3 were
identified as the most discriminating in the classification between EVOO and VOO oils.

Keywords: e-nose; fruitiness; quality assessment; EVOO; VOO

1. Introduction

Virgin olive oil (VOO) consumption has greatly increased over the past few years and
this trend is expected to continue. One of the drivers behind this change is the proven
scientific evidence about its benefits for human health [1]. Boosted by the consumers’
demand for a better quality product, its production is being marked by the growing
importance of extra-virgin olive oil (EVOO), an oil of supreme quality [2]. It has also
increased the demand for virgin olive oil (VOO), a second category of olive oil that has
a moderate presence of defects [3]. Both categories have nutritional properties that are
lacking in other refined oils such as olive oil (OO), or seed oils (sunflower, canola, rapeseed,
palm) [4].

This has led to a greater interest in understanding the sensory quality of virgin oil, its
positive attributes and the potential faults in the whole chain of the productive process, since
these could reduce the product quality [5]. In addition, it should be noted that throughout
the campaign, the condition of the fruit varies, and this results in the production of oils
with different qualities: EVOO, VOO and lampante (LOO). In the case of the third quality
category, the LOO, this cannot be consumed directly due to the huge presence of defects,
which are related to the deplorable state of the olive fruit or to the mishandling of the fruit
or oils [6].

Mixing between EVOO and VOO is a common practice to increase company profitabil-
ity or to achieve an olive oil with a special flavour. The labelling of these mixtures will
depend on the detection or not of a defect in the oil by the official panel.

Currently, the quality of olive oil is evaluated in accordance with European legislation,
in which classes or categories of oils are established by chemical analyses accompanied by
organoleptic sensory analyses [7]. Sensory analyses of olive oils have to be carried out by
both smell and taste assessments by means of a panel test. It is composed of a group of 8 to
12 trained persons, who identify and measure the different positive and negative sensations
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perceived according to codified rules and under controlled conditions. This methodology is
expensive, and their results are delayed by days or weeks due to the impossibility of tasting
more than 36 samples per day, which is utterly insufficient to comply with the requirements
throughout the season [8].

In view of the above, there is a need to develop accurate instrumental techniques
capable of performing measurements in real-time and of generating the same information
as a panel in a reproducible and stable way in order to assess the quality of the VOOs
rapidly and efficiently [9,10].

An alternative analytical approach, which meets the above needs, can be performed us-
ing an electronic nose. This technology is able to produce a response from the entire volatile
fraction simultaneously, generating a signal according to the volatile’s intensity [11–13]. It
requires a previous training step, which is fundamental to the experimental design, and
the use of machine learning techniques to generate the correct interpretation of the volatile
fingerprint [14].

Studies have demonstrated the capability of the e-nose in olive oil quality assess-
ment, showing good performance when separating the VOOs (EVOO and VOO) from
the LOO [8,15–18]. This means that it is a technology suitable for detecting a high level
of defects, above 3.5/10, in olive oils. However, the detection of a low concentration of
defects in oils, below 3.5/10, is a challenge not only for an electronic nose but also for an
officially trained panellist [19]. This concentration of defects corresponds to the classifica-
tion between EVOO and VOO, and scientific contributions are beginning to be made in this
regard [20].

Researchers claim that the type of defect could be one of the main factors affecting
the correct classification between EVOO and VOO [21–23]. In [21], it was suggested that
positive attributes present in the oils could also interfere with the classification results.
The most important was the fruitiness, reminiscent of olive fruit in healthy conditions,
which presents as a complex mixture of volatiles capable of displaying a wide variety of
aromas [24]. In relation to this attribute, recent work with an e-nose explored the prediction
of the level of fruitiness in VOOs with highly accurate results [25]. In addition, a lab-made
e-nose presented a great performance for fruitiness intensity discrimination in EVOOs [26].

The foregoing indicates that the e-nose is a promising technology for olive oil quality
determination, and further studies should be designed to analyse to what extent the
fruitiness attribute could influence measurements by this sensor. In this context, the novelty
of the work presented in this paper resides in the detection of the threshold by which a
higher-category oil, EVOO, passes into a lower category, i.e., VOO, due to the identification
of defects by a commercial e-nose. Also analysed is how the level of fruitiness of EVOO
influences the final detection threshold when mixing. Furthermore, the study considers
the influence of certain kind of defects, present in the VOOs, in the estimation of the
detection threshold.

The rest of the paper is organized as follows: the next section details the materials and
methods employed to obtain the results discussed in Section 3. The paper ends with the
conclusions presented in Section 4.

2. Materials and Methods

A commercial electronic nose was used to measure various samples of EVOO and
VOO, hereafter called pure samples. This sensor was also used to measure mixtures of
EVOOs with different percentages of VOOs, hereafter called dilutions. The origin of the
pure samples, how the dilutions were prepared and how the data were acquired and further
processed are detailed below.



Sensors 2024, 24, 2565 3 of 19

2.1. Olive Oil Pure Samples

Six olive oil samples, stored in 500 mL dark-coloured bottles, were provided by the
accredited laboratory CM Europa S.L., located in the province of Jaén (Spain). Samples were
required to be similar in terms of chemical characteristics. This avoided any interference
in the attributes studied, the level of fruitiness and the type of defect. According to the
chemical analysis of the selected oils for this study, all of them belonged to the extra-virgin
class. However, the organoleptic analysis distinguished between two types of oil classes
(Table 1).

Table 1. Sensory characterisation followed by the method described (IOC, 2018).

Quality Code Fruitiness Level Defect Level Type of Defect

EVOO H1 5.7 - -

EVOO H2 5.6 - -

EVOO L1 3.3 - -

EVOO L2 3.2 - -

VOO D1 2.4 2.5 Musty–Mouldy

VOO D2 2.4 2.4 Fusty–Muddy

According to the organoleptic analysis, and in compliance with the European legisla-
tion [7], all of them had a level of fruitiness above zero, which is a positive attribute and
must be present in all categories of VOOs. Four of the samples were EVOOs, which also
had to contain zero defects. The other two remaining samples belonged to the VOO class,
characterized by the presence of a defect level above 0 but below 3.5.

Among the four EVOOs, there were notable differences in the level of fruitiness. Those
with a level above 5.5 were considered very fruity and labelled as H1 and H2. On the
contrary, those with a level below 3.5 were considered low fruity and labelled as L1 and L2.
This difference in fruitiness is one of the factors studied in this research.

In order not to interfere with the experiment, the level of fruitiness of the two VOOs
was very low and similar for both. The main difference between the VOO samples was the
type of defect in each of them. The one with a musty-type defect was designated D1, while
the one with a fusty-type defect was designated D2. The musty defect is a characteristic
flavour of oils obtained from olives that have been piled under humid conditions for several
days, with the consequence of the development of various kinds of fungi [24]. The fusty
defect occurs when harvested olives are stored incorrectly and for a longer period than
advisable. It is the characteristic flavour of oils obtained from olives in an advanced stage
of fermentation [24].

2.2. Olive Oil Mixtures and Dilutions

For the experimental study, a total of 192 samples were used. These were created from
six matrix oils with different organoleptic characteristics to check to what extent the e-nose
could recognize them as an EVOO or a VOO. Each of the four EVOOs was mixed with each
of the two VOOs. The result was eight different mixtures (Table 2).

Table 2. Combinations between the EVOOs and VOOs for the set of mixtures.

EVOO

H1 H2 L1 L2

VOO
D1 H1D1 H2D1 L1D1 L2D1

D2 H1D2 H2D2 L1D2 L2D2
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For each of the mixtures, a set of serial dilutions was prepared in descending propor-
tions according to Table 3, following the proposal of [23] Lerma García et al., 2010. Each of
the dilutions, together with the pure samples needed to create them, was designated as
a sample. Each sample was stored in a 13.5 mL glass vial, and the total amount per vial
was 5 g of oil, leaving half of the vial space free for volatile compounds (VOCs). In order
to keep the samples well preserved before the measurement procedure, vials were sealed
with a hermetic rubber cup and stored in the dark in a 21 ◦C room.

Table 3. Details of the dilution series to create the different samples.

Identifier Proportion
Result

VOO EVOO

S1 2.5 g EVOO + 2.5 g VOO 50% 50%

S2 2.5 g S1 + 2.5 g EVOO 25% 75%

S3 2.5 g S2 + 2.5 g EVOO 12.5% 87.5%

S4 2.5 g S3 + 2.5 g EVOO 6.25% 93.75%

S5 2.5 g S4 + 2.5 g EVOO 3.12% 96.88%

S6 2.5 g S5 + 2.5 g EVOO 1.56% 98.44%

S7 2.5 g S6 + 2.5 g EVOO 0.78% 99.22%

S8 2.5 g S7 + 2.5 g EVOO 0.39% 99.61%

S9 2.5 g S1 + 2.5 g VOO 75% 25%

S10 2.5 g S9 + 2.5 g VOO 87.5% 12.5%

S11 5 g EVOO 0% 100%

S12 5 g VOO 100% 0%

For each of the mixtures in Table 2, a set of dilutions was made according to the
proportions shown in Table 3. This made a total of 96 samples (12 samples × 8 mixtures).
To increase the accuracy, a complete replication of the 96 samples was created. Therefore,
the final number of samples considered in this experiment was 192 (32 pure samples plus
160 dilution samples).

2.3. Instrumentation and Working Conditions

The analysis of the headspace of each vial was performed using an electronic nose
model, PEN3 (Airsense Analytics GmbH, Schwerin, Germany), with the integrated software
Win Muster v. 1.6.2. This device has a gas sampling unit with a maximum flow rate of
600 mL/min and an integrated sensor array composed of 10 different thermo-regulated
(200–500 ◦C) metal oxide thick film sensors (MOS) sensitive to different classes of chemical
compounds. Specifically, the MOSs and the sensing capability of each of them are as follows:
S1 (aromatics), S2 (broad-range), S3 (aromatics and ammonia), S4 (hydrogen), S5 (alkanes
or aliphatics and less-polar compounds), S6 (broad methane), S7 (sulphur and terpenes), S8
(broad alcohols and aromatics), S9 (sulphur chlorinate) and S10 (methane aliphatic) [11].

The order in which the samples were measured by the e-nose was selected randomly.
To standardise the measuring conditions, vials were opened ten minutes before measure-
ment to free all the VOCs already present. After that, at five minutes before measurement,
the vials were completely sealed with a pierceable silicon/Teflon layer (in a similar proce-
dure as that described in [15,23].

The vials were put under a warm bath conditioned to 40 ◦C for one minute before
taking the measurement. This process increased the oil temperature up to 28–29 ◦C,
ensuring the appropriate volatilization of all the potential VOCs. The time period was
chosen after several assays, which not only improved the VOC signal but also shortened
the measurement time compared with other related studies [11,21,23]. This avoided a long
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time of exposure to air and temperature, which are oxidative factors that could interfere
with and lead to the deterioration of oil aromas. Finally, the room temperature was always
kept between 22 ◦C and 23 ◦C.

Since the pure oil samples were frozen before the dilutions were made, they had
almost no moisture, and only a purifying filter for external odours was need. The filter
used was a vial glass of 100 mL, filled with activated carbon. This type of filter cleans the
external air that flows directly into the e-nose sensor chamber. The cleaning stage lasts 60 s
and was performed just before each sample measurement.

After the air passes through the activated-carbon filter, it flows through the headspace
of the vial and then into the array or sensors. When the sample volatile compounds reacts
with the sensing film of the sensor, an oxygen exchange occurs, resulting in a change
of electrical conductivity that is detectable by a transducer element (electrode) attached
to each sensor. The signal response of each sensor was set for 60 s and sampled and
recorded every second. The air flow rate for the cleaning and measurement stages was
400 mL/min. Figure 1a shows the experimental set-up of the electronic nose used in the
sample measurements, and Figure 1b shows its structural diagram.
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Figure 1. (a) Experimental set-up of the electronic nose used in sample measurements (1 = tested
sample; 2 = activated-carbon filter; 3 = water heater; 4 = data acquisition software; 5 = PEN3 e-
nose). (b) Structural diagram of the electronic nose system. The blue arrows indicate the air flow
in the chamber cleaning phase; the green lines indicate the air flow in the measurement process;
the red arrows show the electronic signals exchanged between the sensor chamber and the PEN3
microcontroller; finally, the grey arrows indicate the data exchanged between the microcontroller and
the PC.

2.4. Data Analysis

As mentioned before, the e-nose is made up of 10 MOS-type sensors. Due to the
measurement process, 60 data points were available for each oil sample. These values were
normalized based on the final resistance value of the cleaning phase. The acquired data set
was normalized in the hypermatrix xn,s,t according to Equation (1).

xn,s,t =
RMP

n,s,t

RCP
n,s,60

(1)

where RMP
n,s,t is the electrical resistance value during the measurement phase (MP) of sample

n, obtained from sensor s at time t. And RCP
n,s,60 is the final value of the electrical resistance

acquired during the cleaning phase (CP).
Next, a total of 6 features (Equation (2)) were computed for each oil sample and sensor.

These were obtained from the hypermatrix xn,s,t as follows: the maximum value, the sum
of all the values, the minimum value, the difference between the maximum value and the
minimum value, the final value and the average value.
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vn,s, f =



vn,s,1 = max(xn,s,t)

vn,s,2 = ∑60
t=1(xn,s,t)

vn,s,3 = min(xn,s,t)

vn,s,4 = max(xn,s,t)− min(xn,s,t)

vn,s,5 = xn,s,60

vn,s,6 = ∑60
t=1(xn,s,t)

60



(2)

The next step was to identify the most discriminating features, that is, those that
provide more information about the quality of the oil. For this, two groups were created:
the first group was formed by the hypermatrix corresponding to the measurements applied
to the pure samples of EVOO (vEVOO

n,s, f ), and a second group was made up of the hypermatrix

corresponding to the measurements of the pure VOO samples (vVOO
n,s, f ). Considering these

two groups, a one-way ANOVA test was applied. This test enables us to find out whether
different groups of an independent variable have different effects on the response variable.
In our case, the response variable was the quality label of the oil. Then, ANOVA compares
the variation between classes to the variation within classes. If the ratio of the between-class
variation to the within-class variation is significantly high, then we can conclude that the
class means are significantly different from each other. This was measured using a test
statistic that has an F-distribution with (k − 1, N − k) degrees of freedom (Equation (3)).

Fs, f =

SSRs, f
k−1

SSEs, f
N−k

(3)

where SSR (Equation (4)) is the sum of squares due to the between-classes effect (variation
between classes), SSE (Equation (5)) is the sum of squared errors (variation within classes),
k is the number of groups and N is the total number of observations

SSRs, f = ∑2
c=1

(
ȳ.,c,s, f − ȳ.,.,s, f

)2
(4)

SSEs, f = ∑32
n=1 ∑2

c=1

(
yn,c,s, f − ȳ.,c,s, f

)2
(5)

where:
yn,1,s, f = vEVOO

n,s, f (6)

yn,2,s, f = vVOO
n,s, f (7)

ȳ.,1,s, f =
∑16

n=1 vEVOO
n,s, f

16
(8)

ȳ.,2,s, f =
∑16

n=1 vVOO
n,s, f

16
(9)

ȳ.,.,s, f =
∑16

n=1 vEVOO
n,s, f + ∑16

n=1 vVOO
n,s, f

32
(10)

If the p-value for the F-statistic is smaller than the significance level, then the test
rejects the null hypothesis that all group means are equal and concludes that at least one
of the group means is different from the others. In our case, significant features were



Sensors 2024, 24, 2565 8 of 19

considered when the p-value was less than 0.01. The sensors that obtained the highest
number of significant features were selected to build the classification model.

The classification model used for the other 160 dilution samples’ classification was
a nominal-type decision tree. A decision tree is a flowchart-like structure in which each
internal node represents a “test” on an attribute, each branch represents the outcome of
the test and each leaf node represents a class label. The paths from root to leaf represent
classification rules. The performance of the classifier was evaluated using a leave-one-out
cross-validation based on k-fold cross-validation, with k being the size of the dataset. K-fold
cross-validation is a procedure used to estimate the performance of a machine learning
algorithm when making predictions on data not considered during model training. This
means that k-fold cross-validation involves fitting and evaluating k models. This, in turn,
provides k estimates of a model’s performance on the dataset.

Figure 2 shows the design of the classifier, and part of the next section will describe
details of the training and the evaluation of the classification model. It can be seen that
the model was initially trained with the 32 pure oil samples and finally used to predict the
class of the 160 mixtures.
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3. Results and Discussion

This section presents and comments on the results obtained for the assessment of the
pure samples and the olive oil dilutions.

3.1. Quality Assessment of Pure Samples

To identify the most discriminant characteristics between VOO and EVOO, the ANOVA
test was applied to the characteristics extracted from the e-nose measurements performed
on the pure samples. Two parameters were obtained as a result of this test: the F-statistic
(Figure 3) and the statistical significance p (Figure 4).
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The F statistic is related to the separability of the classes, and the higher the value, the
greater the discriminatory potential. Figure 3a shows that sensor 2 is the sensor with the
highest number of features with high discriminatory potential, followed by sensor 9 and
sensor 7 (Figure 3b). Furthermore, the feature with the highest value is number 4 of sensor
2, which corresponds to the sum of the complete response of the same sensor and reaches
an F-statistic close to 50 (p < 0.01).

Each value of the F-statistic has an associated level of statistical significance, i.e., a
p-value. Small p-values confirm that the feature has a high discriminatory potential. To
select the most useful sensors in the VOO vs EVOO classification task, the p-value was
used. So, the sensors with the highest number of significant features (p-value equal to or
less than 0.01) were selected to build the classifier. Figure 4 shows that the sensors that
obtained the highest number of significant features were 2, 7 and 9, all of them with five
features with a p-value lower than 0.01.

This selection is in line with several research studies in which sensor S2 seems to be
key in the detection of fruity aromas [25,27,28]. Regarding the second selected sensor, S7,
it has been proven that its high performance in olive oil quality assessment is probably
related to the presence of defects [20,25]. Finally, the third sensor chosen, S9, appears to be
important in differentiating according to varietal aromatic characteristics [28] and also in
relation to the defect detection [25].

The value of the features extracted from the former sensors is shown in Figure 5. It can
be seen that feature number 3 is not useful for separating the two classes of oils. Sensor 7 is
also presented as the most discriminative between classes (greater distance between the
vertices of the triangles); the better performance for this sensor was also presented in [11],
and this same sensor also seemed to have greater activation toward other fruit volatiles
such as from berries and mandarins [27,28].
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Figure 5. Comparison of the characteristics extracted from the e-nose response for the three most
discriminative sensors in the task of classifying between virgin olive oils (yellow line) and extra-virgin
olive oils (green line). The numbers indicate the resistance value obtained by each sensor normalized
based on the final resistance value of the cleaning phase.

Finally, the five significant characteristics (1, 2, 4, 5 and 6) of each of the three sensors
considered most discriminating (S2, S7 and S9) were selected. These 15 features were used
to evaluate the performance of a classifier based on a decision tree. It was assessed in
terms of true positive (TP) rate. The TP rate is the percentage of observations that have
been assigned to an evaluated class when they truly belong to that class. The result, after
applying the methodology, was a TP rate of 100%, which means that all the 32 pure samples
were correctly classified between EVOO and VOO. This is a good result, as most previous
studies had failed to segregate between these classes [8,21]. Furthermore, these results are
an improvement on those presented by [20] Martínez Gila et al., 2019, where they attained
an up to 85% classification accuracy among the EVOO, VOO and LOO categories.



Sensors 2024, 24, 2565 12 of 19

3.2. Detection and Quantification of Olive Oil Dilutions

Once the classifier was fully designed and validated with the pure samples, it was
tested on the 160 olive oil dilutions. The purpose of this study was twofold. First, how
the e-nose can detect the threshold by which an olive oil is classified as EVOO or VOO
was studied. Second, we analysed how the fruity aroma and the types of defects present
in the VOOs could interfere in this threshold. Under the hypothesis that an EVOO mixed
with a VOO already has a potentially detectable defect, it is considered from now on that a
mixture is correctly classified as a VOO according to the classification model executed by
the electronic nose.

For the first study, all the olive oil dilutions were considered, without segregation by
fruitiness or defect type. Figure 6 shows the classification results.
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Most of the samples were classified as VOOs for dilutions above 50%. In fact, 14 of
the 16 samples were labelled as VOOs for 75% and 87.5% dilutions. In the case of the
50% dilutions, 11 of the 16 samples were labelled as VOOs. As was to be expected, the
number of samples labelled as a VOO was lower as the amount of VOO decreases in the
dilution. For the 25% and 12.5% dilutions, 5 and 4 of the 16 samples were classified as
VOOs, respectively.

Results also indicate that the e-nose can be sensitive to even a small quantity of defects,
e.g., in the case of dilutions less than 12.5%. For dilutions of 1.54%, 3.12% and 6.25%, 1 of
the 16 samples was identified as a VOO. To conclude with this analysis, none of the samples
were identified as VOOs for the 0.78% dilutions, and 2 out of 16 samples were labelled as
VOOs for the 0.39% dilutions. The latter case may be due to the threshold tolerance of the
classification model.

The classification results shown in Figure 7 highlight the clear influence of the degree
of fruitiness on the quality assessment of olive oils. Dilutions prepared with L1 and L2
EVOO samples (Figure 7a) had better results in the classification.

For the 75% and 87.5% dilutions, the eight oils were labelled as VOO, and for the
50% dilutions, seven of the eight samples were correctly classified. As was the case when
analysing all the samples, even dilutions with a small amount of VOO were properly
labelled.
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This happened in percentages below 12.5%, where one of the eight dilutions was
labelled as VOO. The detection threshold worsened for dilutions with highly fruity EVOOs.
Six of the eight samples were correctly classified for the 75% and 87.5% dilutions. All the
dilutions below 50% were classified as EVOO except for one sample from the 0.39% dilution
(Figure 7b). Similar to the results shown in the previous figure, this issue may be due to the
threshold tolerance of the classification model.

The influence of the defect type in the detection threshold can be analysed on the basis
of the results shown in Figure 8. The e-nose is more reliable in detecting the musty defect,
as it exhibits a linear response (Figure 8a). The detection started with the 3.12% dilutions,
and for percentages above a 25% dilution, more than half the samples were labelled as
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VOO. From the analysis of Figure 8b, it can be inferred that a VOO with a fusty defect
is slightly easier to mask in a mixture. Indeed, eight samples with VOO (musty defect)
concentrations lower than 50% were detected as VOO, while in the case of VOO with a
fusty defect, the number was five.
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Finally, the interactions between the degree of fruitiness in EVOO and the types of
defects in VOO are shown in Figure 9. As already stated in the discussion of Figure 7, the
degree of fruitiness had a great influence on the olive oil quality assessment. Dilutions of
EVOOs with a high level of fruitiness (Figure 9a,b) showed a similar response, regardless of
the type of defect in the VOO. The opposite is true in the case of dilutions with EVOOs with
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a low degree of fruitiness. Dilutions with VOO with a musty defect (Figure 9c) were sensed
in a higher number of samples than those ones with a fusty defect (Figure 9d). In particular,
it was detected from 3.12% dilutions. As shown in Figure 8b, the e-nose displayed random
behaviour for dilutions below 12.5%. The same effect can be seen in Figure 9d.
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It is worth noting that the intensity of the defects in the VOOs utilized for the dilutions
was 2.5 or below. Other research studies devoted to detecting defects in virgin olive oils
with the e-nose technology have analysed dilutions produced with VOOs with a much
higher intensity of defects. These were always above 3.5, and in some of cases, were 6.9
or even 9 [16,22,23]. In light of the results presented, it can be safely concluded that our
methodology is an improvement on these previous works as the success rate in the pure
samples’ classification, using VOOs with a low defect intensity, was 100%.

Another important finding from this study is the analysis of how the degree of fruiti-
ness of EVOOs affects the attainment of the detection threshold. In an earlier study [16],
it was suggested that a defective oil could be added in a 10% proportion to an EVOO to
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increase the company profits without risking defect detection by an official panel test. This
study has demonstrated that this percentage could be higher or even lower depending
on the degree of fruitiness of the EVOO and the type of defect of the VOO utilized for
the mixture.

4. Conclusions

The results of this study have demonstrated the feasibility of using a commercial
electronic nose model for the rapid screening of the quality of olive oil produced. By
performing this assessment at-line or on-line, oil mills could store the produced oil in tanks
with other oils of similar quality. This practice increases the company’s profitability, as the
potential quality of the oil is not reduced, and it can be sold at a better price. Knowing the
threshold at which an oil will be classified as EVOO or VOO is essential when mixing.

Also, this has been the first study to identify which sensors of a general-purpose
e-nose are more discriminative for olive oil quality assessment. With this information, a
classification model was designed with a success rate of 100%. The olive oil samples were
characterised by different levels of fruitiness, in the case of EVOOs, and by the different
types of defects, at a very low intensity, that affected the VOOs. The identification of
the most discriminative sensors for olive oil quality (S2, S7 and S9) could also be very
interesting for the construction of low-cost specific-purpose electronic noses. This valuable
information could reduce the overall cost of the device, as it is directly related to the number
of sensors included in it.

Finally, this work has analysed how the level of fruitiness of EVOOs and certain types
of defects present in the VOOs influence the threshold above which the quality of the
olive oil is set. In order to analyse the influences of fruitiness and defects on the detection
threshold, a set of dilutions between pure oil samples was created. From the analysis of the
dilutions, it can be concluded that the quantity of VOO in the mixture can be higher for
those samples prepared with EVOOs with a high level of fruitiness. It was possible to add
up to 25% of the VOO to the mixture without it being identified by the sensor. For the two
types of defects affecting VOOs, the musty defect was the easier to detect. The e-nose had a
linear response for this type of defect. In addition, samples of dilutions with only 3.12% of
VOO in a EVOO with a low degree of fruitiness were labelled as VOO.

Although the results acquired are positive, the proposed methodology is dependent
on the experimental set-up used. To transfer the knowledge acquired in a future industrial
facility, it will be interesting to investigate deep neural network models combined with
transfer learning methods.

Author Contributions: Conceptualization, D.M.M.G. and S.S.M.; methodology, D.M.M.G. and
J.P.N.S.; software, S.S.M. and S.I.R.; validation, D.M.M.G. and J.P.N.S.; formal analysis, S.S.M.;
investigation, J.P.N.S., D.M.M.G., S.S.M. and S.I.R.; resources, D.M.M.G.; data curation, J.P.N.S.;
writing—original draft preparation, J.P.N.S., D.M.M.G., S.S.M. and S.I.R.; writing—review and editing,
J.P.N.S., D.M.M.G., S.S.M. and S.I.R.; visualization, S.S.M.; supervision, S.S.M.; project administration,
S.S.M.; funding acquisition, D.M.M.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially funded by the Spanish Ministry of Science and Innovation
under the projects PID2019-110291RB-I00 and PDC2022-133995-I00. Also by the I+D+i project within
the cooperative framework of FEDER-Andalucía, with the FEDER code A1123060E00010 and refer-
ence 1380776.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the Picualia oil mill and the CM Europa
laboratory for their collaboration.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2024, 24, 2565 18 of 19

References
1. Kaufman-Shriqui, V.; Navarro, D.A.; Salem, H.; Boaz, M. Mediterranean Diet and Health–A Narrative Review. Funct. Foods Health

Dis. 2022, 12, 479–487. [CrossRef]
2. Ríos-Reina, R.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Contribution of Specific Volatile Markers to Green and

Ripe Fruity Attributes in Extra Virgin Olive Oils Studied with Three Analytical Methods. Food Chem. 2022, 399, 133942. [CrossRef]
[PubMed]

3. Navarro, J.S.; Satorres, S.M.; Martínez, D.M.G.; Gómez, J.O.; Gámez, J.G. Fast and Reliable Determination of Virgin Olive Oil
Quality by Fruit Inspection Using Computer Vision. Sensors 2018, 18, 3826. [CrossRef]

4. Sanmartin, C.; Taglieri, I.; Macaluso, M.; Sgherri, C.; Ascrizzi, R.; Flamini, G.; Venturi, F.; Quartacci, M.F.; Luro, F.; Curk, F.;
et al. Cold-Pressing Olive Oil in the Presence of Cryomacerated Leaves of Olea or Citrus: Nutraceutical and Sensorial Features.
Molecules 2019, 24, 2625. [CrossRef]

5. Satorres, S.; Illana Rico, S.; Cano Marchal, P.; Martínez Gila, D.M.; Gómez Ortega, J. Zero Defect Manufacturing in the Food
Industry: Virgin Olive Oil Production. Appl. Sci. 2022, 12, 5184. [CrossRef]

6. Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive Oil Volatile Compounds, Flavour
Development and Quality: A Critical Review. Food Chem. 2007, 100, 273–286. [CrossRef]

7. Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.;
et al. Olive Oil Quality and Authenticity: A Review of Current EU Legislation, Standards, Relevant Methods of Analyses, Their
Drawbacks and Recommendations for the Future. Trends Food Sci. Technol. 2020, 105, 483–493. [CrossRef]

8. Escuderos, M.E.; García, M.; Jiménez, A.; Horrillo, M.C. Edible and Non-Edible Olive Oils Discrimination by the Application of a
Sensory Olfactory System Based on Tin Dioxide Sensors. Food Chem. 2013, 136, 1154–1159. [CrossRef] [PubMed]

9. Cosio, M.S.; Romano, A.; Scampicchio, M. Olive Oil and Electronic Nose; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN
9780128002438.

10. Modesti, M.; Tonacci, A.; Sansone, F.; Billeci, L.; Bellincontro, A.; Cacopardo, G.; Sanmartin, C.; Taglieri, I.; Venturi, F. E-Senses,
Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. Chemosensors
2022, 10, 244. [CrossRef]

11. Xu, L.; Yu, X.; Liu, L.; Zhang, R. A Novel Method for Qualitative Analysis of Edible Oil Oxidation Using an Electronic Nose. Food
Chem. 2016, 202, 229–235. [CrossRef]

12. Sun, H.; Hua, Z.; Yin, C.; Li, F.; Shi, Y. Geographical Traceability of Soybean: An Electronic Nose Coupled with an Effective Deep
Learning Method. Food Chem. 2024, 440, 138207. [CrossRef] [PubMed]

13. Rahimzadeh, H.; Sadeghi, M.; Mireei, S.A.; Ghasemi-Varnamkhasti, M. Unsupervised Modelling of Rice Aroma Change during
Ageing Based on Electronic Nose Coupled with Bio-Inspired Algorithms. Biosyst. Eng. 2022, 216, 132–146. [CrossRef]

14. Martínez Gila, D.M.; Sanmartin, C.; Navarro Soto, J.; Mencarelli, F.; Gómez Ortega, J.; Gámez García, J. Classification of Olive
Fruits and Oils Based on Their Fatty Acid Ethyl Esters Content Using Electronic Nose Technology. J. Food Meas. Charact. 2021, 15,
5427–5438. [CrossRef]

15. Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization
and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [CrossRef]

16. Harzalli, U.; Rodrigues, N.; Veloso, A.C.A.; Dias, L.G.; Pereira, J.A.; Oueslati, S.; Peres, A.M. A Taste Sensor Device for Unmasking
Admixing of Rancid or Winey-Vinegary Olive Oil to Extra Virgin Olive Oil. Comput. Electron. Agric. 2018, 144, 222–231. [CrossRef]

17. Kishimoto, N. Identification of Specific Odour Markers in Oil from Diseased Olive Fruits Using an Electronic Nose. Chem. Eng.
Trans. 2018, 68, 301–306.

18. Oates, M.J.; Fox, P.; Sanchez-Rodriguez, L.; Carbonell-Barrachina, Á.A.; Ruiz-Canales, A. DFT Based Classification of Olive Oil
Type Using a Sinusoidally Heated, Low Cost Electronic Nose. Comput. Electron. Agric. 2018, 155, 348–358. [CrossRef]

19. Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Calvo, A.; Busto, O. Prediction of Olive Oil Sensory Descriptors Using
Instrumental Data Fusion and Partial Least Squares (PLS) Regression. Talanta 2016, 155, 116–123. [CrossRef]

20. Martínez Gila, D.M.; Gámez García, J.; Bellincontro, A.; Mencarelli, F.; Gómez Ortega, J. Fast Tool Based on Electronic Nose to
Predict Olive Fruit Quality after Harvest. Postharvest Biol. Technol. 2019, 160, 111058. [CrossRef]

21. Cano, M.; Roales, J.; Castillero, P.; Mendoza, P.; Calero, A.M.; Jiménez-Ot, C.; Pedrosa, J.M. Improving the Training and Data
Processing of an Electronic Olfactory System for the Classification of Virgin Olive Oil into Quality Categories. Sens. Actuators B
Chem. 2011, 160, 916–922. [CrossRef]

22. García-González, D.; Aparicio, R. Detection of Defective Virgin Olive Oils by Metal-Oxide Sensors. Eur. Food Res. Technol. 2002,
215, 118–123. [CrossRef]

23. Lerma-García, M.J.; Cerretani, L.; Cevoli, C.; Simó-Alfonso, E.F.; Bendini, A.; Toschi, T.G. Use of Electronic Nose to Determine
Defect Percentage in Oils. Comparison with Sensory Panel Results. Sens. Actuators B Chem. 2010, 147, 283–289. [CrossRef]

24. Angerosa, F. Sensory Quality of Olives Oils. In Handbook of Olive Oil: Analysis and Properties; Hardwood, J., Aparicio, R., Eds.;
Aspen Publichers Inc.: Gaithersburg, MD, USA, 2000; pp. 355–392. ISBN 0-83421633-7.

25. Cano Marchal, P.; Sanmartin, C.; Satorres Martínez, S.; Gómez Ortega, J.; Mencarelli, F.; Gamez García, J. Prediction of Fruity
Aroma Intensity and Defect Presence in Virgin Olive Oil Using an Electronic Nose. Sensors 2021, 21, 2298. [CrossRef] [PubMed]

https://doi.org/10.31989/ffhd.v12i9.989
https://doi.org/10.1016/j.foodchem.2022.133942
https://www.ncbi.nlm.nih.gov/pubmed/36037685
https://doi.org/10.3390/s18113826
https://doi.org/10.3390/molecules24142625
https://doi.org/10.3390/app12105184
https://doi.org/10.1016/j.foodchem.2005.09.059
https://doi.org/10.1016/j.tifs.2019.02.025
https://doi.org/10.1016/j.foodchem.2012.09.051
https://www.ncbi.nlm.nih.gov/pubmed/23194508
https://doi.org/10.3390/chemosensors10070244
https://doi.org/10.1016/j.foodchem.2016.01.144
https://doi.org/10.1016/j.foodchem.2023.138207
https://www.ncbi.nlm.nih.gov/pubmed/38104451
https://doi.org/10.1016/j.biosystemseng.2022.02.010
https://doi.org/10.1007/s11694-021-01103-5
https://doi.org/10.1016/j.talanta.2018.01.096
https://doi.org/10.1016/j.compag.2017.12.016
https://doi.org/10.1016/j.compag.2018.10.026
https://doi.org/10.1016/j.talanta.2016.04.040
https://doi.org/10.1016/j.postharvbio.2019.111058
https://doi.org/10.1016/j.snb.2011.09.002
https://doi.org/10.1007/s00217-002-0527-9
https://doi.org/10.1016/j.snb.2010.03.058
https://doi.org/10.3390/s21072298
https://www.ncbi.nlm.nih.gov/pubmed/33806002


Sensors 2024, 24, 2565 19 of 19

26. Teixeira, G.G.; Dias, L.G.; Rodrigues, N.; Marx, I.M.G.; Ana, C.; Veloso, A.; Pereira, A. Talanta Application of a Lab-Made
Electronic Nose for Extra Virgin Olive Oils Commercial Classification According to the Perceived Fruitiness Intensity. Talanta
2021, 226, 122122. [CrossRef] [PubMed]

27. Li, Q.; Yu, X.; Xu, L.; Gao, J.M. Novel Method for the Producing Area Identification of Zhongning Goji Berries by Electronic Nose.
Food Chem. 2017, 221, 1113–1119. [CrossRef]

28. Qiu, S.; Wang, J.; Du, D. Assessment of High Pressure Processed Mandarin Juice in the Headspace by Using Electronic Nose and
Chemometric Analysis. Innov. Food Sci. Emerg. Technol. 2017, 42, 33–41. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.talanta.2021.122122
https://www.ncbi.nlm.nih.gov/pubmed/33676677
https://doi.org/10.1016/j.foodchem.2016.11.049
https://doi.org/10.1016/j.ifset.2017.05.003

	Introduction 
	Materials and Methods 
	Olive Oil Pure Samples 
	Olive Oil Mixtures and Dilutions 
	Instrumentation and Working Conditions 
	Data Analysis 

	Results and Discussion 
	Quality Assessment of Pure Samples 
	Detection and Quantification of Olive Oil Dilutions 

	Conclusions 
	References

