Artificial Intelligence Methods for Smart Cities
1. Introduction
2. Overview of Published Articles
Funding
Conflicts of Interest
List of Contributions
- Bassetti, E.; Luciani, A.; Panizzi, E. Re-Orienting Smartphone-Collected Car Motion Data Using Least-Squares Estimation and Machine Learning. Sensors 2022, 22, 1606. https://doi.org/10.3390/s22041606.
- Sadli, R.; Afkir, M.; Hadid, A.; Rivenq, A.; Taleb-Ahmed, A. Map-Matching-Based Localization Using Camera and Low-Cost GPS for Lane-Level Accuracy. Sensors 2022, 22, 2434. https://doi.org/10.3390/s22072434.
- Noh, B.; Park, H.; Lee, S.; Nam, Se. Vision-Based Pedestrian’s Crossing Risky Behavior Extraction and Analysis for Intelligent Mobility Safety System. Sensors 2022, 22, 3451. https://doi.org/10.3390/s22093451.
- Ingle, P.Y.; Kim, Yo. Real-Time Abnormal Object Detection for Video Surveillance in Smart Cities. Sensors 2022, 22, 3862. https://doi.org/10.3390/s22103862.
- Chen, J.; Yan, M.; Zhu, F.; Xu, J.; Li, H.; Sun, X. Fatigue Driving Detection Method Based on Combination of BP Neural Network and Time Cumulative Effect. Sensors 2022, 22, 4717. https://doi.org/10.3390/s22134717.
- Nadeem, A.; Ashraf, M.; Qadeer, N.; Rizwan, K.; Mehmood, A.; Alzahrani, A.; Noor, F.; Abbasi, Q.H. Tracking Missing Person in Large Crowd Gathering Using Intelligent Video Surveillance. Sensors 2022, 22, 5270. https://doi.org/10.3390/s22145270.
- Ismail, L.; Buyya, R. Artificial Intelligence Applications and Self-Learning 6G Networks for Smart Cities Digital Ecosystems: Taxonomy, Challenges, and Future Directions. Sensors 2022, 22, 5750. https://doi.org/10.3390/s22155750.
- Lan, D.T.; Yoon, S. Trajectory Clustering-Based Anomaly Detection in Indoor Human Movement. Sensors 2023, 23, 3318. https://doi.org/10.3390/s23063318.
- Abbasi, A.; Queirós, S.F.; da Costa, N.M.C.; Fonseca, J.C.; Borges, J. Sensor Fusion Approach for Multiple Human Motion Detection for Indoor Surveillance Use-Case. Sensors 2023, 23, 3993. https://doi.org/10.3390/s23083993.
- Hayee, S.; Hussain, F.; Yousaf, M.H. A Novel FDLSR-Based Technique for View-Independent Vehicle Make and Model Recognition. Sensors 2023, 23, 7920. https://doi.org/10.3390/s23187920.
References
- Kunzmann, K.R. Smart cities: A new paradigm of urban development. Crios 2014, 4, 9–20. [Google Scholar]
- Yin, C.; Xiong, Z.; Chen, H.; Wang, J.; Cooper, D.; David, B. A literature survey on smart cities. Sci. China. Inf. Sci. 2015, 58, 1–18. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Herath, H.; Mittal, M. Adoption of artificial intelligence in smart cities: A comprehensive review. Int. J. Inf. Manag. Data Insights 2022, 2, 100076. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Kim, T.h.; Ramos, C.; Mohammed, S. Smart City and IoT. Future Gener. Comput. Syst. 2017, 76, 159–162. [Google Scholar] [CrossRef]
- Alloqmani, A.; Abushark, Y.B.; Khan, A.I. Anomaly detection of breast cancer using deep learning. Arab. J. Sci. Eng. 2023, 48, 10977–11002. [Google Scholar] [CrossRef] [PubMed]
- Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; Fookes, C. Deep learning for medical anomaly detection—A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Wei, Q.; Ren, Y.; Hou, R.; Shi, B.; Lo, J.Y.; Carin, L. Anomaly detection for medical images based on a one-class classification. In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis. SPIE, Houston, TX, USA, 12–15 February 2018; Volume 10575, pp. 375–380. [Google Scholar]
- Raghavan, P.; El Gayar, N. Fraud detection using machine learning and deep learning. In Proceedings of the 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December 2019; pp. 334–339. [Google Scholar]
- Yaseen, A. The Role of Machine Learning in Network Anomaly Detection for Cybersecurity. Sage Sci. Rev. Appl. Mach. Learn. 2023, 6, 16–34. [Google Scholar]
- Teoh, T.; Chiew, G.; Franco, E.J.; Ng, P.; Benjamin, M.; Goh, Y. Anomaly detection in cyber security attacks on networks using MLP deep learning. In Proceedings of the 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Shah Alam, Malaysia, 11–12 July 2018; pp. 1–5. [Google Scholar]
- Yang, W.; Wang, R.; Wang, B. Detection of anomaly stock price based on time series deep learning models. In Proceedings of the 2020 Management Science Informatization and Economic Innovation Development Conference (MSIEID), Guangzhou, China, 18–20 December 2020; pp. 110–114. [Google Scholar]
- Carta, S.; Consoli, S.; Piras, L.; Podda, A.S.; Recupero, D.R. Event detection in finance using hierarchical clustering algorithms on news and tweets. PeerJ Comput. Sci. 2021, 7, e438. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Liu, S.; Zhang, H.; Gong, D. Person anomaly detection-based videos surveillance system in urban integrated pipe gallery. Build. Res. Inf. 2021, 49, 55–68. [Google Scholar] [CrossRef]
- Islam, M.; Dukyil, A.S.; Alyahya, S.; Habib, S. An IoT enable anomaly detection system for smart city surveillance. Sensors 2023, 23, 2358. [Google Scholar] [CrossRef] [PubMed]
- Aboah, A. A vision-based system for traffic anomaly detection using deep learning and decision trees. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4207–4212. [Google Scholar]
- Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An unsupervised deep learning model for early network traffic anomaly detection. IEEE Access 2020, 8, 30387–30399. [Google Scholar] [CrossRef]
- Atzori, A.; Barra, S.; Carta, S.; Fenu, G.; Podda, A.S. HEIMDALL: An AI-based infrastructure for traffic monitoring and anomalies detection. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 154–159. [Google Scholar]
- Ilyas, Z.; Aziz, Z.; Qasim, T.; Bhatti, N.; Hayat, M.F. A hybrid deep network based approach for crowd anomaly detection. Multimed. Tools Appl. 2021, 80, 24053–24067. [Google Scholar] [CrossRef]
- Bamaqa, A.; Sedky, M.; Bosakowski, T.; Bastaki, B.B.; Alshammari, N.O. SIMCD: SIMulated crowd data for anomaly detection and prediction. Expert Syst. Appl. 2022, 203, 117475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podda, A.S.; Carta, S.; Barra, S. Artificial Intelligence Methods for Smart Cities. Sensors 2024, 24, 2615. https://doi.org/10.3390/s24082615
Podda AS, Carta S, Barra S. Artificial Intelligence Methods for Smart Cities. Sensors. 2024; 24(8):2615. https://doi.org/10.3390/s24082615
Chicago/Turabian StylePodda, Alessandro Sebastian, Salvatore Carta, and Silvio Barra. 2024. "Artificial Intelligence Methods for Smart Cities" Sensors 24, no. 8: 2615. https://doi.org/10.3390/s24082615
APA StylePodda, A. S., Carta, S., & Barra, S. (2024). Artificial Intelligence Methods for Smart Cities. Sensors, 24(8), 2615. https://doi.org/10.3390/s24082615