
Citation: Jing, C.; Zhang, H.; Liu, Y.;

Zhang, J. Adaptive Super-Twisting

Sliding Mode Control for Robot

Manipulators with Input Saturation.

Sensors 2024, 24, 2783. https://

doi.org/10.3390/s24092783

Academic Editor: Enrico Meli

Received: 31 March 2024

Revised: 13 April 2024

Accepted: 25 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Adaptive Super-Twisting Sliding Mode Control for Robot
Manipulators with Input Saturation
Chenghu Jing 1,2,* , Hui Zhang 3, Yafeng Liu 2 and Jing Zhang 4

1 Henan Key Laboratory of Superhard Abrasives and Grinding Equipment, Henan University of Technology,
Zhengzhou 450001, China

2 School of Mechanical and Electronic Engineering, Henan University of Technology, Zhengzhou 450001, China;
yfliu@haut.edu.cn

3 School of Electrical Engineering and Automation, Henan University of Technology, Zhengzhou 450001, China;
huizh2021@haut.edu.cn

4 National Wuhu Robot Industry Achievement Transformation Center, Wuhu 241000, China;
2220910113@stu.ahpu.edu.cn

* Correspondence: chhjing@haut.edu.cn

Abstract: The paper investigates a modified adaptive super-twisting sliding mode control (ASTSMC)
for robotic manipulators with input saturation. To avoid singular perturbation while increasing the
convergence rate, a modified sliding mode surface (SMS) is developed in this method. Using the
proposed SMS, an ASTSMC is developed for robot manipulators, which not only achieves strong
robustness but also ensures finite-time convergence. The boundary of lumped uncertainties cannot
be easily obtained. A modified adaptive law is developed such that the boundaries of time-varying
disturbance and its derivative are not required. Considering input saturation in practical cases,
an ASTSMC with saturation compensation is proposed to reduce the effect of input saturation on
tracking performances of robot manipulators. The finite-time convergence of the proposed scheme is
analyzed. Through comparative simulations against two other sliding mode control schemes, the
proposed method has been validated to possess strong adaptability, effectively adjusting control
gains; simultaneously, it demonstrates robustness against disturbances and uncertainties.

Keywords: robot manipulators; robust adaptive; super twisting; sliding mode; input saturation;
finite time

1. Introduction

Robot manipulators have extensive application in various fields, such as the man-
ufacturing industry [1], sorting systems [2], quadruped robots [3], and rehabilitation ex-
oskeletons [4]. Recently, its trajectory-tracking control has received significant attention
from researchers. Because of its easy implementation in practice, proportional-integral-
derivative (PID) control was used for robot manipulators [5]. However, PID control cannot
make dynamic systems achieve the required performances when the required performances
are high, or the operating conditions often vary. Designing a high-performance trajectory-
tracking control of robot manipulators is challenging due to their highly coupled and
nonlinear features [6]. In addition, nonlinear friction, parameter variations, unmodelled
dynamics, payload variations, and external disturbances always exist in the robotic sys-
tem [7,8], which adversely affect the desired control performances. To achieve the good
performance of robot manipulators under different operating conditions, there is no doubt
that advanced control schemes insensitive to various disturbances are absolutely necessary.
Various advanced approaches such as computed torque control [9], robust disturbance-
rejection control [10], model predictive control [11], robust adaptive control [12], intelligent
control method [13], sliding mode control (SMC) [14], and so on were investigated for the
control of robotic manipulators.
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Recently, SMC has been widely studied for various systems with uncertainties and
external disturbances because of its strong robustness against various disturbances, guar-
anteed stability, fast response, and reasonable computational simplicity [15]. In [16,17],
SMC was studied for robot manipulators. In [18,19], the adaptive law was introduced into
SMC to estimate unknown parameters or gains of robot manipulators, which could avoid
choosing large coefficients of the switching term. However, SMC adopts linear SMS on
which the state variables usually converge to equilibrium points asymptotically as time
tends to infinity. To increase the convergence rate, terminal SMC (TSMC) was studied
for robot manipulators [20]. However, TSMC has a smaller convergence rate when state
variables are far from equilibrium points. The fast TSMC (FTSMC) was proposed for
robot manipulators to achieve fast transient convergence whether state variables are near
or far from equilibriums [21]. It can be found that there exists a singularity problem in
both TSMC and FTSMC [22]. Nonsingular TSMC (NTSMC) was proposed to solve the
problem. In [23], a global NTSMC was proposed for n-link rigid manipulators to achieve
finite time convergence. In the work, a terminal SMS was proposed to avoid singularity.
In [24], an adaptive nonsingular FTSMC was presented for uncertain dynamic systems. In
this control scheme, an adaptive parameter-tuning approach was used for the unknown
bounds of uncertainties, such that the boundary of the uncertainties and disturbances was
not required in advance. Then, this control scheme was applied to robot manipulators to
verify its effectiveness. The discontinuous term could cause the chattering. The boundary
layer approach is one of the common methods to reduce the chattering. However, it loses
the finite time convergence in the boundary layer. In [25], a continuous TSMC scheme
for robot manipulators is proposed. A fast continuous reaching law was used instead of
discontinuous reaching law for chattering-free. However, the errors could not converge
to zero in finite time owing to the bounded uncertainties. In [26], Mondal addressed an
adaptive second-order TSMC for robot manipulators in which an adaptive method was
used to obtain the estimation of the bound of disturbances. In this technique, the derivative
of the control law is designed according to the framework of TSMC. Then, the final control
law was obtained after integration, which makes the control law continuous. This control
technique is chattering-free. Second-order SMC (SOSMC) is the most common approach
among high-order SMC that possesses robustness against disturbance and uncertainty and
alleviates the chattering phenomenon if appropriately used [27].

For SOSMC, the super-twisting algorithm (STA) is a promising technology. It only
requires the measurement of SMS [28]. A lot of works on STA have been conducted [29–33].
Kali developed an SMC scheme based on the time-delay estimation for the control of
uncertain robotic manipulators [34]. In this presented controller, the time-delay estimation
was applied to obtain an estimation of uncertainties, and standard STA was designed to
eliminate estimation errors and strengthen system robustness. In [35], a robust super-twisting
SMC (STSMC) of robotic systems was developed. This control approach adopted prescribed
performance control to ensure the tracking performance of robotic systems. However, the two
approaches required that the upper bound of the disturbance’s derivative could be obtained.
An adaptive control based on global STSMC was proposed for n-link robot manipulators in [36].
However, the authors only analyzed the stability of adaptive global sliding mode control, while
stability analysis of adaptive global STSMC was not presented.

In the above-mentioned works, the input saturation constraint of robot manipulators
is not considered. Some works were conducted to eliminate the effect of input saturation on
control systems [37,38]. This work will investigate the adaptive STSMC for the finite-time
tracking control of robot manipulators with input saturation. In comparison with the
previous works, the main contributions of the work are demonstrated as:

(1) A novel SMS is proposed to obtain fast convergence and avoid singular problems.
(2) An ASTSMC for robot manipulators is developed and analyzed, which could achieve

finite-time convergence, strong robustness, good adaptability, and high accuracy.
(3) An ASTSMC with saturation compensation (ASTSMCSC) is presented, which could

improve the tracking performances of robot manipulators with input saturation.
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2. Dynamic Model

The dynamics of a series multiple-joint robot manipulator are expressed by

M0(q)
..
q + C0

(
q,

.
q
) .
q + G0(q) = τ + ∆, (1)

where M0(q) denotes the inertia matrix, q = [q1, q2, · · · , qn]
T is the angular position, τ is

the control torque, C0
(
q,

.
q
)

denotes the Coriolis-centrifugal matrix, ∆ denotes the distur-
bances, and G0(q) denotes the gravitational vector. Here, n denotes the number of joints of
robot manipulators.

Remark 1. M0(q), C0
(
q,

.
q
)

and G0(q) denote the nominal values. The uncertainties are
integrated into the disturbance ∆.

Assumption 1 ([26,34]). The disturbance ∆ and its derivative are bounded.

3. Adaptive Super-Twisting Sliding Mode Control

For robotic manipulators, the objective of trajectory tracking control is to make the
trajectory q track the reference trajectory qd. Let e = q − qd denote the tracking error. A
novel fast SMS is presented as

s =
.
e + h̄1e + ℘(e)

℘(e) = h̄2µ(e)sigα(e)
, (2)

where h̄1 = diag{ℏ11,ℏ12, · · · ,ℏ1n} and h̄2 = diag{ℏ21,ℏ22, · · · ,ℏ2n} are diagonal matrices
with strictly positive real elements, 0 < α < 1 is a constant, s = [s1, s2, · · · , sn]

T , sigα(e) =[
|e1|αsign(e1), · · · , |en|αsign(en)

]T , µ(e) = diag{µ(e1), · · · , µ(en)} ∈ Rn×n. Here, µ(ei) is
defined as

µ(ei) =

1 , |ei|1−α ≥ θi

sin
(

π
2
|ei |1−α

θi

)
, |ei|1−α < θi

, (3)

where θi is a small and positive design parameter.
Reorganize Equation (1) as

..
q = M−1

0 (q)
(
τ − C0

(
q,

.
q
) .
q − G0(q)

)
+ fd, (4)

where fd = M−1
0 (q)∆.

Assumption 2. The disturbance fd is continuously changing, i.e., there exists a constant γi2 > 0

such that
∣∣∣ .
f di

∣∣∣ ≤ γi2, where
.
f di represents the i-th element of the vector

.
fd.

Remark 2. In many real-world mechanical systems, disturbances typically evolve smoothly over
time rather than manifesting as instantaneous jumps, except perhaps in instances influenced by
extreme events or noise. Therefore, this paper does not consider sudden disturbance.

Using Equations (2) and (4), one obtains

.
s =

..
e + h̄1

.
e +

.
℘(e)

=
..
q − ..

qd + h̄1
.
e +

.
℘(e)

= M−1
0 (q)

(
τ − C0

(
q,

.
q
) .
q − G0(q)

)
+ fd −

..
qd + h̄1

.
e +

.
℘(e)

, (5)

where
.
℘(e) denotes the derivative of ℘(e), and its element

.
℘(ei) is provided by
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.
℘(ei) =


αℏ2i|ei|α−1 .

ei , |ei|1−α ≥ θi

αℏ2i sin
(

π
2
|ei |1−α

θi

)
|ei|α−1 .

ei + cos
(

π
2
|ei |1−α

θi

)
ℏ2iπ(1−α)

2θi

.
ei , |ei|1−α < θi and ei ̸= 0

ℏ2iπ
2θi

.
ei , ei = 0

, (6)

Inspired by the work [29], according to Equation (5), a modified ASTSMC is developed as

τ = C0
(
q,

.
q
) .
q + G0(q) + M0(q)

..
qd − M0(q)

(
h̄1

.
e +

.
℘(e)

)
+M0(q)

(
−k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L s + δ

)
.
δ = −k3Lsign(s)− k4L2s

, (7)

where k1 = diag{k11, · · · , k1n}, k2 = diag{k21, · · · , k2n}, k3 = diag{k31, · · · , k3n} and
k4 = diag{k41, · · · , k4n} are control gains, and L is an adaptive coefficient, sig

1
2 (s) =[

|s1|
1
2 sign(s1), · · · , |sn|

1
2 sign(sn)

]T
, and sign(s) = [sign(s1), · · · , sign(sn)]

T . For the adap-
tive coefficient L, the adaptive law is designed as

.
L =

{
rsign(∥s∥ − σ) , L ≥ Lmin

κ , L < Lmin
, (8)

where r, σ, κ, and Lmin are positive constants.

Remark 3. In comparison with the work [29], the modified ASTSMC (7) possesses two significant
features. On the one hand, an additional item

.
Ls/L is added to the control law. On the other hand,

adaptive law is modified and improved: (1) adaptive rate can be automatically adjusted in terms
of sliding mode variable, rather than a constant; (2) a dead zone is introduced into adaptive law to
avoid some effects of noise, discretization, and imperfections in the application; (3) the minimum
value Lmin is introduced to prevent the adaptive coefficient from becoming too small.

In view of Equations (5) and (7), one obtains

.
s = −k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L

s + δ + fd, (9)

Defining a new vector sI = δ + fd, the dynamic system (9) is expressed as

.
s = −k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L s + sI

.
sI = −k3Lsign(s)− k4L2s +

.
fd

, (10)

Theorem 1. Considering the model (4), the controller (7) with adaptive law (8) guarantees that a
practical sliding-mode domain, i.e., |si| ≤ δi1 could be established if the control gains k1i, k2i, k3i,
and k4i are properly selected such that

9k2
1k2

2 + 8k2
2k3 < 4k3k4, (11)

Proof of Theorem 1. The dynamic system (10) is expressed as

.
si = −k1i

√
Lsig

1
2 (si)− k2iLsi −

.
L
L si + sIi

.
sIi = −k3iLsign(si)− k4iL2si +

.
f di

, (12)
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For the convenience of proof, an auxiliary vector is defined as

η = [η1, η2, η3]
T =

[√
Lsig

1
2 (si), Lsi, sIi

]T
, (13)

Thus, the system (12) is rewritten as

.
η = − L

2|η1|

 k1i 0 −1
0 2k1i 0

2k3i 0 0

η− L

0.5k2i 0 0
0 k2i 1
0 k4i 0

η+

 0
0
.
f di

, (14)

Next, we need to prove that the vector η converges to a bounded domain. A Lyapunov
function is considered as

V1 =
1
2

ηTP1η, (15)

where P1 is a positive definite symmetric matrix, and it is written as

P1 =

4k3 + k2
1 k1k2 −k1

k1k2 2k4 + k2
2 −k2

−k1 −k2 2

, (16)

From the definition (13), it follows that V1 is a function of si and sIi. the Lyapunov
function V1 in Equation (15) is everywhere continuous in the set ℜ1 =

{
(si, sIi) ∈ R2n

}
.

A set is defined as ℜ1 =
{
(si, sIi) ∈ R2n : si = 0

}
. Then, V1 is differentiable everywhere

except in the set ℜ1. It is not difficult to verify that V1 is not only positive definite but
also radially unbounded. According to previous works [30], the derivative of V1 can be
organized as

.
V1 ≤ − L

2|η1|
ηTΩ1η− LηTΛ1η+

.
f diη

Tψ1, (17)

where ψ1 =
[
−k1i −k2i 2

]T , Ω1 and Λ1 are matrices, and they are calculated as

Ω1 = k1i

 k2
1i + 2k3i 0 −k1i

0 k2
2i + 2k4i −3k2i

−k1i −3k2i 1


Λ1 = k2i

 2k2
1i + k3i 0 0

0 k2
2i + k4i −k2i

0 −k2i 1

 , (18)

To guarantee that Ω1 and Λ1 are positive definite, the condition (11) can be obtained.
That is to say, Ω1 and Λ1 are positive definite if the control gains k1i, k2i, k3i, and k4i are
properly selected to satisfy the condition (11).

Recall the following inequalities

λmin(P1)∥η∥2 ≤ ηTP1η = 2V1 ≤ λmax(P1)∥η∥2

λmin(Ω1)∥η∥2 ≤ ηTΩ1η ≤ λmax(Ω1)∥η∥2

λmin(Λ1)∥η∥2 ≤ ηTΛ1η ≤ λmax(Λ1)∥η∥2
, (19)

From the inequality (19), it follows that

2λmin(Ω1)
λmax(P1)

V1 ≤ ηTΩ1η ≤ 2λmax(Ω1)
λmin(P1)

V1
2λmin(Λ1)

λmax(P1)
V1 ≤ ηTΛ1η ≤ 2λmax(Λ1)

λmin(P1)
V1

|η1| ≤ ∥η∥ ≤
√

2
λmin(P1)

V
1
2

1

, (20)



Sensors 2024, 24, 2783 6 of 15

Substituting the inequalities (19) and (20) into the inequality (17) yields

.
V1 ≤ − L

2
√

2
λmin(P1)

V
1
2

1

2λmin(Ω1)
λmax(P1)

V1 − L
2λmin(Λ1)

λmax(P1)
V1 + γi2∥ψ1∥∥ηT∥

≤ −L
√

λmin(P1)λmin(Ω1)√
2λmax(P1)

V
1
2

1 − L 2λmin(Λ1)
λmax(P1)

V1 + γi2∥ψ1∥
√

2
λmin(P1)

V
1
2

1

= −(Lλ11 − λ12)V
1
2

1 − Lλ13V1

, (21)

where λ11 =

√
λmin(P1)λmin(Ω1)√

2λmax(P1)
, λ12 = γi2∥ψ1∥

√
2

λmin(P1)
, and λ13 =

2λmin(λ1)
λmax(P1)

.

First, the adaptive law is not considered, i.e., L is a constant. Obviously, if control
gains k1i, k2i, k3i, k4i, and L are properly selected to satisfy the constraint Lλ11 − λ12 > 0, it
is concluded from Lemma 1 in [29] that the states of the dynamic system (12) converge to
zero. However, λ12 is unknown due to the unknown boundary γi2. Parameter tuning is
extremely difficult.

Therefore, the adaptive law (8) is adopted. When |si| > σ and L ≥ Lmin, the adaptive
law becomes

.
L = r > 0. Then, the adaptive coefficient L starts to increase until the

constraint Lλ11 − λ12 > 0 is met, which guarantees the finite time stability of the dynamic
system (12). Then, si converges to the domain |si| ≤ δi1. When si converges to the domain
|si| ≤ σ, the adaptive law becomes

.
L = −r < 0. The adaptive coefficient L starts to descend.

When the coefficient L descends to a certain extent, the finite time stability is destroyed.
Once the coefficient L is less than the predesigned minimum value Lmin, the adaptive law
becomes

.
L = κ > 0, which guarantees that the coefficient L starts immediately to increase.

So, L must be larger than the parameter Lmin. Due to the decrease of the coefficient L, |si|
may become larger than the predesigned value σ. Then, the adaptive coefficient L starts
again to increase until the stability of the dynamic system (12) is ensured. Therefore, it is
concluded that si always stays in larger regions where |si| ≤ δi1. □

Remark 4 ([30,32]). The generalized Lyapunov theorem only requires continuity and not differentiability
of the Lyapunov function V1 along the solution trajectories. ℜ′

1 =
{
(si, sIi) ∈ R2n : si = 0, sIi = 0

}
is

an equilibrium of the differential Equation (12). From Equation (12), if (si, sIi) ∈ ℜ1\ℜ′
1, then

si = 0 and
.
si = sIi ̸= 0. Therefore, at least one component si will monotonically cross zero

unless (si, sIi) stay in the set ℜ′
1.

Theorem 2. When si = 0, the tracking error ei converges into a bounded region
W1 =

{
ei : |ei|1−α ≤ θi

}
in finite time, and converges asymptotically to zero.

Proof of Theorem 2. When si = 0, from the sliding mode variable (2), one obtains

.
ei + ℏ1iei + ℏ2iµ(ei)|ei|αsign(ei) = 0, (22)

Consider the Lyapunov function

Ve =
1
2

eT
i ei, (23)

Making use of Equation (22), the derivative of Ve is expressed by

.
Ve = eT

i
.
ei

= eT
i
[
−ℏ1iei − ℏ2iµ(ei)|ei|αsign(ei)

]
≤ −ℏ1ie2

i − ℏ2iµ(ei)|ei|α+1

= −2ℏ1iVe − 2
α+1

2 ℏ2iµ(ei)V
α+1

2
e

, (24)
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When |ei|1−α ≥ θi, the Lyapunov function Ve satisfies
.

Ve ≤ −2ℏ1iVe − 2
α+1

2 ℏ2iV
α+1

2
e .

Therefore, the tracking error ei converges into a bounded region |ei|1−α ≤ θi in finite
time. Evidently, the region could be very small by turning down the constant θi. When
|ei|1−α < θi the Lyapunov function Ve satisfies

.
Ve ≤ −2ℏ1iVe, the Equation (22) is still

asymptotically stable. So, the tracking error ei can asymptotically converge to zero. □

Remark 5. The convergence of ei when the real SMS si = 0 is analyzed. If the real sliding mode
region W2 = {si : |si| ≤ δi1} is established, the tracking error ei can converge into a small bounded
region in finite time, but not zero.

4. Adaptive Super-Twisting Control with Saturation Compensation

The control law (7) cannot be directly put into use due to the torque limitations. In
fact, the control torque τ is subject to the constraint τl ≤ τ ≤ τu, where τl and τu represent
the upper and lower bounds of the input constraint, respectively. Thus, the actual control
input τ could be defined as

τ =


τu, if τ > τu

τ, if τl ≤ τ ≤ τu

τl , if τ < τl

, (25)

where τ denotes the desired control law that is designed without considering input con-
straints. Once the input saturation occurs, the tracking error e will increase such that the
system trajectories will be away from SMS, which ruins the control performance under the
control law (7). To handle input saturation (25), an auxiliary dynamic system is designed as

.
χ = −aχ + τ̃, (26)

where τ̃ = τ − τ denotes the error of control input due to input saturation, and a =
diag{a1, · · · , an} ∈ Rn×n is the coefficient diagonal matrix.

An auxiliary vector is defined as

s = s − χ, (27)

Using the dynamic system (5), the dynamics of vector s is provided as

.
s =

.
s − .

χ

= M−1
0 (q)

(
τ − C0

(
q,

.
q
) .
q − G0(q)

)
+ fd −

..
qd + h̄1

.
e +

.
℘(e)− .

χ
, (28)

Considering the input constraint (25), the control provided in (7) is modified as

τ = C0
(
q,

.
q
) .
q + G0(q) + M0(q)

..
qd − M0(q)

(
h̄1

.
e +

.
℘(e)

)
− M0(q)aχ

+M0(q)
(
−k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L

s +
¯
δ

)
.
δ = −k3Lsign(s)− k4L2s

, (29)

with the modified adaptive law

.
L =

{
rsign(∥s∥ − σ) , L ≥ Lmin

κ , L < Lmin
, (30)

The architecture of the proposed ASTSMCSC is shown in Figure 1.
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In view of the dynamic system (28) and control law (29), the dynamics of SMS are
provided as

.
s = −k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L

s + δ + fd, (31)

Defining an auxiliary vector sI =
¯
δ + fd, the dynamic system (31) is expressed as

.
s = −k1

√
Lsig

1
2 (s)− k2Ls −

.
L
L

s + sI
.
sI = −k3Lsign(s)− k4L2s +

.
fd

, (32)

The dynamic system (32) is expressed in scalar form as

.
si = −k1i

√
Lsig

1
2 (si)− k2iLsi −

.
L
L

si + sIi
.
sIi = −k3iLsign(si)− k4iL

2si +
.
f di

, (33)

The principle framework of the control method proposed in this article is shown in
Figure 1.
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Figure 1. The proposed control architecture for robot systems with input saturation.

Theorem 3. Considering the dynamic system (4) with the input saturation constraint (25) under
Assumptions ~1–3, the control law (29) with the auxiliary dynamic system (26) and the adaptive
law (30) can ensure the closed-loop system globally uniformly ultimately bounded, if the control
gains k1i, k2i, k3i, and k4i are properly selected to satisfy the condition (11).

Proof of Theorem 3. For the convenience of proof, a vector is defined as

ω = [ω1, ω2]
T =

[√
Lsig

1
2 (si), Lsi, sIi

]T
, (34)

Next, we need to prove that the vector converges to a bounded domain. To this end, a
Lyapunov function is considered as

V2 =
1
2

ωTP1ω, (35)

From the definition (34), it follows that V2 is a function of si and sIi. The Lyapunov
function V2 is everywhere continuous in the set ℜ2 =

{
(si, sIi) ∈ R2n

}
. A set is defined

as ℜ2 =
{
(si, sIi) ∈ R2n : si = 0

}
. Then, the Lyapunov function V2 is differentiable every-

where except in the set ℜ2. It is not difficult to verify that the Lyapunov function V2 is not
only positive definite but also radially unbounded.
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Using the primary analysis utilized in the proof of Theorem 1, the derivative of V2 is
provided by

.
V2 ≤ −

(
Lλ21 − λ22

)
V

1
2

2 −
(

Lλ23 − λ24
)
V2, (36)

where λ21 =

√
λmin(P1)λmin(Ω1)√

2λmax(P1)
, λ22 = γi2∥ψ1∥

√
2

λmin(P1)
, λ23 = 2λmin(Λ1)

λmax(P1)
, and λ24 =

2ςi∥Φ∥
λmin(P1)

. □

Remark 6. The actual control input τ is bounded because of the constraint (25). In practical
application, the system should be controllable even if input saturation occurs. The desired control
input τ should ensure the stability of the closed-loop system, and be considered to be bounded.
Otherwise, the designed control inputs τ and τ is meaningless. The assumption has been used
in [37,38].

Similar to Theorem 1, when |si| > σ and L ≥ Lmin, the adaptive law becomes
.
L = r > 0. It means that the adaptive coefficient L starts to increase until the constraints
Lλ21 − λ22 > 0 and Lλ23 − λ24 > 0 are met, which ensures the finite time stability of the dy-
namic system (33). Therefore, the sliding mode variable si always converges to a bounded
region |si| ≤ δi1, where δi1 is a positive constant. Obviously, the auxiliary dynamic system
(26) is uniformly ultimately bounded. So, the state χ is bounded. From Equation (27) and
Remark 6, it is concluded that s always converges to a bounded region. And the error ei is
driven into a bounded region. □

Remark 7 ([30,32]). The generalized Lyapunov theorem only requires continuity and not differentiability
of the Lyapunov function V2 along the solution trajectories. ℜ′

2 =
{
(si, sIi) ∈ R2n : si = 0, sIi = 0

}
is

an equilibrium of the differential Equation (33). From Equation (33), if (si, sIi) ∈ ℜ1\ℜ′
1,

then si = 0 and
.
si = sIi ̸= 0. Therefore, at least one component si will monotonically cross

zero unless (si, sIi) stay in the set ℜ′
2.

Remark 8. When the designed control law (29) is not saturated (i.e., τ̃ = 0), the auxiliary dynamic
system (26) is asymptotically stable (i.e., χ → 0 as t → ∞ ). The designed controller (29) is almost
the same as the controller (7) without considering saturation constraints. When the designed control
law (29) is saturated (i.e., τ̃ = 0), the state χ in the auxiliary dynamic system (26) varies with the
change of τ̃ and reduce the effect of the saturation constraint on the control performance.

5. Simulations

In this section, a series of two-joint robot manipulators is used as an example. Its
dynamic model is expressed as[

M11 M12
M12 M11

][ ..
q1..
q2

]
+

[
−C11

.
q1 −2C11

.
q1

0 C11
.
q2

][ .
q1.
q2

]
+

[
G1g
G2g

]
=

[
τ1
τ2

]
+

[
τ1d
τ2d

]
, (37)

where M11 = (m1 + m2)l2
1 + m2l2

2 + 2m2l1l2 cos(q2) + J1, C11 = m2l1l2 sin(q2), M12 =
m2l2

2 + m2l1l2 cos(q2), G1 = (m1 + m2)l1 cos(q2) + m2l2 cos(q1 + q2), M22 = m2l2
2 + J2, and

G2 = m2l2 cos(q1 + q2). The parameters are set to m1 = 0.5 kg, m2 = 1.5 kg, l1 = 1 m,
l2 = 0.8 m, J1 = 5 kg·m2 and J2 = 5 kg·m2.

To confirm the performance of the presented technique, the following simulations are
implemented to verify the state convergence on the SMS, robustness against uncertainties
and disturbances, adaptive law, and control performance in the presence of input saturation,
respectively.
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5.1. Convergence of States on the Sliding Mode Surface

First, the convergence of states on the proposed SMS is verified. To this end, the fast
terminal SMS s =

.
e + c1e + c2eb1/b2 is chosen as a reference for comparison, where there

are positive constants satisfying constraints b2 > b1 and b2 = 2m + 1, m = 1, 2, 3, · · · . The
parameters are provided as c1 = 1, c2 = 1, b1 = 1, b2 = 3, and α = 1

3 . Let e(0) = 2 as the
initial state of the error e. When the SMS is reached, the dynamic convergence process
of e and

.
e is provided in Figure 2. From Figure 2, it shows that the two sliding-mode

surfaces could be very close when the constant θ is small enough. It is recognized that
there exists a singularity when State e equals to zero for the fast terminal SMS. In the
proposed SMS, the function µ(e) is introduced to avoid this case. By choosing a very small
value of θ, the proposed SMS is very close to the fast terminal SMS and does not cause
the singular problem. Choosing a small value of θ is helpful to accelerate the convergence
rate. In the actual implementation, the error may change around zero due to noise, friction,
disturbance, and others, which could cause chattering. Choosing a large value of θ is
helpful in suppressing chattering.
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5.2. Robustness against Uncertainties and Disturbances

Next, to verify the advantage of the developed ASTSMC, comparisons are performed
with the adaptive NFTSMC (ANFTSMC) in [26] and the adaptive nonlinear SMC (ANSMC)
studied in [36]. ANFTSMC for the robotic system (37) is provided by

s = e + l1sigβ1(e) + l2sigβ2
( .
e
)

τ = τeq + τasw

τeq = C0
(
q,

.
q
) .
q + G0(q) + M0(q)

..
qd −

M0(q)
β2l2

∣∣ .
e
∣∣2−β2

(
1 + β1l1|e|β1−1

)
sign

( .
e
)

τasw = M0(q)
[
−hs −

(
b̂0 + b̂1∥q∥+ b̂2∥

.
q∥2

)
sign(s)

]
.
b̂0 = λ0∥s∥∥ .

e∥β2−1
.
b̂1 = λ1∥s∥∥ .

e∥β2−1∥q∥
.
b̂2 = λ2∥s∥∥ .

e∥β2−1∥ .
q∥2

, (38)

ANSMC for the robotic system (37) is provided as

s = G
( .
e + ρe

)
τ = τ′

0 + τ′
1 + τ′

2
τ′

0 = C0
(
q,

.
q
) .
q + G0(q) + M0(q)

..
qdsign(s)

τ′
1 = −M0(q)ρ

.
e

τ′
2 = M0(q)GT(−ς1s − δ̂sign(s)

)
.
δ̂ = ς2∥sGT∥

, (39)

The nominal values of system parameters are set as m10 = 0.3, m20 = 1, J10 =
3, J20 = 3, l10 = 1.0, and l20 = 0.8. The initial states of the system are assumed as
q1(0) = 0.7, q2(0) = −0.1,

.
q1(0) = 0, and

.
q2(0) = 0. The disturbances and desired

signals are provided by τd1 = 8 sin(t) + 0.5 sin(200πt), τd2 = 6 cos(2t) + 0.5 sin(200πt),
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qd1 = 0.5 cos(0.1 × 2πt), and qd2 = 0.4 sin(0.1 × 2πt). The gains of controllers are listed in
Table 1. Figure 3 provides the responding simulation results in the presence of uncertainties
and disturbances.

Table 1. Parameters of controllers.

Section Parameters

ASTTSMC α = 0.5, θ1 = θ2 = 0.1, L0 = 1, κ = 2, Lmin = 0.1, r = 10,
h̄1 = h̄2 = diag{1, 1}, k1 = k2 = k3 = k4 = diag{1, 1}

ANFTSMC l1 = l2 = diag{0.1, 0.1}, β1 = 2, β2 = 1.5, h = diag{5, 5},
λ0 = λ1 = 50, λ2 = 20

ANSMC ρ = diag{5, 5}, G = diag{1, 1},
ς1 = diag{20, 20}, ς2 = diag{10, 10}
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Figure 3. Tracking performance of robotic system with uncertainties and disturbances: (a) Position
tracking of Joint 1; (b) Tracking error of Joint 1; (c) Position tracking of Joint 2; (d) Tracking error of
Joint 2; (e) Control torque of Joint 1; (f) Control torque of Joint 2.

Figure 3a–d shows that the proposed ASTSMC achieves the highest tracking accuracy
than others in the presence of uncertainties and disturbances. It indicates that the developed
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ASTSMC is robust to various disturbances. Figure 3e,f provides control inputs of these
controllers. They have control inputs with the same magnitude. However, the control input
of the proposed ASTSMC is smoothest, which indicates that the developed controller is
chattering free.

5.3. Adaptive Law

To validate the superiority of the presented adaptive method, a recently presented
adaptive law [29] is used for comparison. The adaptive law is provided as

.
L
′
=

{
r , ∥s∥ > 0
0 , ∥s∥ = 0

, (40)

Figure 4 provides the adaptive coefficients of the simulation in Section 5.2. Figure 5
shows that the presented adaptive law (8) can increase or decrease the control gains
in terms of tracking errors. The adaptive law (40) increases the control gains all the
time until the tracking error converges to zero and the adaptive coefficient stays at its
maximum value. This case does not show the merits of the proposed method. A uniformly
distributed stochastic noise signal is considered in the simulation. The feedback angular
positions q1 and q2 are provided to the noise whose value is between −1.0 × 10−3 rad and
+1.0 × 10−3 rad. Figure 6 presents the corresponding simulation results. Practically, tracking
errors cannot converge zero due to violent noise, as shown in Figure 5a. Figure 5b confirms
that the adaptive law (40) is increasing all the time since tracking errors are not zero, which
makes the adaptive coefficient very large and decreases tracking performance. Thus, the
proposed adaptive law has strong robustness and adaptability.
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5.4. Control Performance in Presence of Input Saturation

In this section, the simulation will be implemented to further demonstrate ASTSMCSC.
The initial values of states in Equation (37) are assumed as q1(0) = 0.3, q2(0) = 0.2,
.
q1(0) = 0 and

.
q2(0) = 0. The input saturation constraint is set as

τ =


35, if τ > 35
τ, if − 35 ≤ τ ≤ 35
−35, if τ < −35

, (41)

The control parameters of the ASTSMCSC (29) are the same as those of the ASTSMC (7).
Other parameter is set as a = diag{5, 5}. The desired signals are provided as
qd1 = 1.25 − (7/5)e−t + (7/20)e−4t and qd2 = 1.25 + e−t − (1/4)e−4t. Figure 6 presents
the responding simulation results in the presence of the input saturation constraint. The
control inputs are large since the initial states are far from the reference trajectories. As
shown in Figure 6c,d, the control inputs are saturated at the beginning of the simulation.
The proposed ASTSMCSC (29) adopts the saturation compensation to reduce the effect of
input saturation constraint on tracking the performance of the system. It can be seen from
Figure 6a,b that the proposed ASTSMCSC (29) could achieve a better tracking performance
in the presence of input saturation constraint than the proposed ASTSMC. The control
performance of ASTSMC becomes bad since the control inputs are saturated.

6. Conclusions

This paper investigates the trajectory control of series multiple-joint robot manipula-
tors without input saturation and with input saturation. For robotic manipulators with
uncertainties and disturbances, an ASTSMC is proposed, which improves tracking per-
formance. In the presented control approach, a novel fast SMS is presented. It not only
approximates the traditional fast terminal sliding surface infinitely but also avoids singular-
ity problems. A modified adaptive law is introduced such that the disturbance/uncertainty
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with an unknown bounded derivative is handled by the proposed control approach. Con-
sidering input saturation in practical cases, an ASTSMCSC is proposed. When there is no
input saturation, like the proposed control of robot manipulators without input saturation,
it can achieve high tracking accuracy, strong robustness, and adaptability. When there
exists input saturation, this control approach can reduce the effect of input saturation on the
tracking performance of robot manipulators. A large number of simulations demonstrate
the effectiveness of the theory and the developed approach.
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