Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Information
2.2. Experimental Setup and EMG Recording
2.3. EMG Preprocessing
2.4. Muscle Synergy Extraction
2.5. Muscle Synergy Clustering
2.6. Proportion of Inhibitory Components
2.7. Modulation on Individual Inhibitory Components
3. Results
3.1. Clustered Synergies
3.2. Changes in Proportion Related to Ages, Expertise and Styles
3.3. Modulation of Inhibitory Components across Styles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMG | Electromyography |
RLVM | Rectified Latent Variable Model |
CNS | Central Nervous System |
NMF | Non-negative Matrix Factorization |
TrapMaj | Trapezius Major |
Infrasp | Infraspinatus |
DeltA | Anterior part of Deltoids |
DeltM | Medial part of Deltoids |
BicLong | Long Head of Biceps |
TrLat | Lateral Head of Triceps |
BrRad | Brachioradialis |
PronTer | Pronator Teres |
FlexCR | Flexor Carpi Radialus |
FlexCU | Flexor Carpi Ulnaris |
FlexDG | Flexor Digitorum |
ExtCRL | Extensor Carpi Radialis Longus |
ExtCU | Extensor Carpi Ulnaris |
ExtDG | Extensor Digitorum |
PLI | Power Line Interference |
ReLU | Rectified Linear Unit |
MML | Maximum Marginal Likelihood |
MA | Mutual Assignment |
References
- Bizzi, E.; Cheung, V.C. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Zelik, K.E.; La Scaleia, V.; Ivanenko, Y.P.; Lacquaniti, F. Can modular strategies simplify neural control of multidirectional human locomotion? J. Neurophysiol. 2014, 111, 1686–1702. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Yokoyama, H.; Sasaki, A.; Kato, T.; Nakazawa, K. Evidence for basic units of upper limb muscle synergies underlying a variety of complex human manipulations. J. Neurophysiol. 2022, 127, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Gizzi, L.; Ketabi, S.; Farina, D.; Kersting, U.G. Modular control of treadmill vs overground running. PLoS ONE 2016, 11, e0153307. [Google Scholar] [CrossRef]
- Chen, X.; Dong, X.; Feng, Y.; Jiao, Y.; Yu, J.; Song, Y.; Li, X.; Zhang, L.; Hou, P.; Xie, P. Muscle activation patterns and muscle synergies reflect different modes of coordination during upper extremity movement. Front. Hum. Neurosci. 2023, 16, 912440. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.R.; Clark, D.J.; Kautz, S.A. Modular control of human walking: A simulation study. J. Biomech. 2009, 42, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Neptune, R.R. Three-dimensional modular control of human walking. J. Biomech. 2012, 45, 2157–2163. [Google Scholar] [CrossRef]
- d’Avella, A.; Saltiel, P.; Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 2003, 6, 300–308. [Google Scholar] [CrossRef]
- d’Avella, A.; Giese, M.; Ivanenko, Y.P.; Schack, T.; Flash, T. Modularity in motor control: From muscle synergies to cognitive action representation. Front. Comput. Neurosci. 2015, 9, 126. [Google Scholar] [CrossRef]
- Scano, A.; Dardari, L.; Molteni, F.; Giberti, H.; d’Avella, A. A comprehensive spatial mapping of muscle synergies in highly variable upper-limb movements of healthy subjects. Front. Physiol. 2019, 10, 479352. [Google Scholar] [CrossRef]
- Yaserifar, M.; Oliveira, A.S. Inter-muscular coordination during running on grass, concrete and treadmill. Eur. J. Appl. Physiol. 2023, 123, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Pale, U.; Atzori, M.; Müller, H.; Scano, A. Variability of muscle synergies in hand grasps: Analysis of intra-and inter-session data. Sensors 2020, 20, 4297. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Liu, L.; Li, X.; Ma, Y. Characteristics of muscle synergy and anticipatory synergy adjustments strategy when cutting in different angles. Gait Posture 2024, 107, 114–120. [Google Scholar] [CrossRef]
- Baifa, Z.; Xinglong, Z.; Dongmei, L. Muscle coordination during archery shooting: A comparison of archers with different skill levels. Eur. J. Sport Sci. 2023, 23, 54–61. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Z.; Wen, H.; Liu, B.; Li, J.; d’Avella, A.; Scano, A. Muscle synergies for evaluating upper limb in clinical applications: A systematic review. Heliyon 2023, 9, e16202. [Google Scholar] [CrossRef]
- Ghislieri, M.; Lanotte, M.; Knaflitz, M.; Rizzi, L.; Agostini, V. Muscle synergies in Parkinson’s disease before and after the deep brain stimulation of the bilateral subthalamic nucleus. Sci. Rep. 2023, 13, 6997. [Google Scholar] [CrossRef]
- Ranaldi, S.; Gizzi, L.; Severini, G.; De Marchis, C. Optimal identification of muscle synergies from typical sit-to-stand clinical tests. IEEE Open J. Eng. Med. Biol. 2023, 4, 31–37. [Google Scholar] [CrossRef]
- Cheung, V.C.; Zheng, X.C.; Cheung, R.T.; Chan, R.H. Modulating the structure of motor variability for skill learning through specific muscle synergies in elderlies and young adults. IEEE Open J. Eng. Med. Biol. 2020, 1, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Irastorza-Landa, N.; García-Cossio, E.; Sarasola-Sanz, A.; Brötz, D.; Birbaumer, N.; Ramos-Murguialday, A. Functional synergy recruitment index as a reliable biomarker of motor function and recovery in chronic stroke patients. J. Neural Eng. 2021, 18, 046061. [Google Scholar] [CrossRef]
- Luo, X.; Wu, X.; Chen, L.; Zhao, Y.; Zhang, L.; Li, G.; Hou, W. Synergistic myoelectrical activities of forearm muscles improving robust recognition of multi-fingered gestures. Sensors 2019, 19, 610. [Google Scholar] [CrossRef]
- Mileti, I.; Zampogna, A.; Santuz, A.; Asci, F.; Del Prete, Z.; Arampatzis, A.; Palermo, E.; Suppa, A. Muscle synergies in Parkinson’s disease. Sensors 2020, 20, 3209. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, P.; Wyler-Duda, K.; D’Avella, A.; Tresch, M.C.; Bizzi, E. Muscle synergies encoded within the spinal cord: Evidence from focal intraspinal NMDA iontophoresis in the frog. J. Neurophysiol. 2001, 85, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.; Cheung, V.C.; Bizzi, E. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 2011, 106, 1363–1378. [Google Scholar] [CrossRef] [PubMed]
- Salmas, P.; Cheung, V.C. Gradient descent decomposition of force-field motor primitives optogenetically elicited for motor mapping of the murine lumbosacral spinal cord. Zool. Res. 2023, 44, 604. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Seki, K. Spinal interneurons facilitate coactivation of hand muscles during a precision grip task in monkeys. J. Neurosci. 2010, 30, 17041–17050. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Seki, K. Synaptic and functional linkages between spinal premotor interneurons and hand-muscle activity during precision grip. Front. Comput. Neurosci. 2013, 7, 40. [Google Scholar] [CrossRef]
- Cheung, V.C.; Seki, K. Approaches to revealing the neural basis of muscle synergies: A review and a critique. J. Neurophysiol. 2021, 125, 1580–1597. [Google Scholar] [CrossRef]
- Takei, T.; Confais, J.; Tomatsu, S.; Oya, T.; Seki, K. Neural basis for hand muscle synergies in the primate spinal cord. Proc. Natl. Acad. Sci. 2017, 114, 8643–8648. [Google Scholar] [CrossRef]
- Takei, T.; Seki, K. Spinal premotor interneurons mediate dynamic and static motor commands for precision grip in monkeys. J. Neurosci. 2013, 33, 8850–8860. [Google Scholar] [CrossRef] [PubMed]
- Fetz, E.E.; Cheney, P.D. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J. Neurophysiol. 1980, 44, 751–772. [Google Scholar] [CrossRef]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.W.; Lopes, M.C.; Settlage, R.E.; Valdez, G. Aging alters mechanisms underlying voluntary movements in spinal motor neurons of mice, primates, and humans. JCI Insight 2023, 8, e168448. [Google Scholar] [CrossRef] [PubMed]
- da Silva Costa, A.A.; Moraes, R.; Hortobágyi, T.; Sawers, A. Older adults reduce the complexity and efficiency of neuromuscular control to preserve walking balance. Exp. Gerontol. 2020, 140, 111050. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Caldwell, G.E. Muscle synergies are modified with improved task performance in skill learning. Hum. Mov. Sci. 2022, 83, 102946. [Google Scholar] [CrossRef] [PubMed]
- Escalona, M.J.; Bourbonnais, D.; Goyette, M.; Le Flem, D.; Duclos, C.; Gagnon, D.H. Effects of varying Overground walking speeds on lower-extremity muscle synergies in healthy individuals. Mot. Control 2021, 25, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Kerkman, J.N.; Bekius, A.; Boonstra, T.W.; Daffertshofer, A.; Dominici, N. Muscle synergies and coherence networks reflect different modes of coordination during walking. Front. Physiol. 2020, 11, 535096. [Google Scholar] [CrossRef]
- Li, W.C.; Moult, P.R. The control of locomotor frequency by excitation and inhibition. J. Neurosci. 2012, 32, 6220–6230. [Google Scholar] [CrossRef] [PubMed]
- Whiteway, M.R.; Butts, D.A. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings. J. Neurophysiol. 2017, 117, 919–936. [Google Scholar] [CrossRef] [PubMed]
- Whiteway, M.R.; Socha, K.; Bonin, V.; Butts, D.A. Characterizing the nonlinear structure of shared variability in cortical neuron populations using latent variable models. Neurons Behav. Data Anal. Theory 2019, 3. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779168/ (accessed on 18 March 2024).
- Palmerston, J.B.; Chan, R.H. Latent Variable Models Reconstruct Diversity of Neuronal Response to Drifting Gratings in Murine Visual Cortex. IEEE Access 2021, 9, 75741–75750. [Google Scholar] [CrossRef]
- Liu, J.; Whiteway, M.R.; Sheikhattar, A.; Butts, D.A.; Babadi, B.; Kanold, P.O. Parallel processing of sound dynamics across mouse auditory cortex via spatially patterned thalamic inputs and distinct areal intracortical circuits. Cell Rep. 2019, 27, 872–885. [Google Scholar] [CrossRef] [PubMed]
- Keshtkaran, M.R.; Yang, Z. A fast, robust algorithm for power line interference cancellation in neural recording. J. Neural Eng. 2014, 11, 026017. [Google Scholar] [CrossRef] [PubMed]
- Maier, M.A.; Perlmutter, S.I.; Fetz, E.E. Response patterns and force relations of monkey spinal interneurons during active wrist movement. J. Neurophysiol. 1998, 80, 2495–2513. [Google Scholar] [CrossRef] [PubMed]
- da Silva Costa, A.A.; Hortobágyi, T.; den Otter, R.; Sawers, A.; Moraes, R. Age, Cognitive Task, and Arm Position Differently Affect Muscle Synergy Recruitment but have Similar Effects on Walking Balance. Neuroscience 2023, 527, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; He, B.; Lau, K.Y.; Chan, P.P.; Liu, R.; Xie, J.J.; Ha, S.C.; Chen, C.Y.; Cheing, G.L.; Cheung, R.T.; et al. Age-related modifications of muscle synergies and their temporal activations for overground walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 2700–2709. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.C.; Ha, S.C.; Zhang-Lea, J.H.; Chan, Z.Y.; Teng, Y.; Yeung, G.; Wu, L.; Liang, D.; Cheung, R.T. Motor patterns of patients with spinal muscular atrophy suggestive of sensory and corticospinal contributions to the development of locomotor muscle synergies. J. Neurophysiol. 2024, 131, 338–359. [Google Scholar] [CrossRef] [PubMed]
- Cartier, T.; Rao, G.; Viehweger, E.; Vigouroux, L. Evolution of muscle coordination and mechanical output throughout four weeks of arm cranking submaximal training. J. Neurophysiol. 2023, 129, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, H.; Takasu, E.; Morimoto, T.; Nose, A. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Curr. Biol. 2014, 24, 2632–2642. [Google Scholar] [CrossRef]
- Liang, T.; Miao, H.; Wang, H.; Liu, X.; Liu, X. Surface electromyography-based analysis of the lower limb muscle network and muscle synergies at various gait speeds. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Lichtwark, G.A.; Schache, A.G.; Lin, Y.C.; Brown, N.A.; Pandy, M.G. In vivo behavior of the human soleus muscle with increasing walking and running speeds. J. Appl. Physiol. 2015, 118, 1266–1275. [Google Scholar] [CrossRef]
- Pette, D.; Staron, R.S. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 2000, 50, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Deng, H.; Samuel, O.W.; Cheung, V.; Xu, L.; Li, G. Modulation of muscle synergies for multiple forearm movements under variant force and arm position constraints. J. Neural Eng. 2020, 17, 026015. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Guo, X.; Xie, J.J.; Lau, K.Y.S.; Liu, R.; Mak, A.D.P.; Cheung, V.C.K.; Chan, R.H.M. Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations. Sensors 2024, 24, 2820. https://doi.org/10.3390/s24092820
Huang S, Guo X, Xie JJ, Lau KYS, Liu R, Mak ADP, Cheung VCK, Chan RHM. Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations. Sensors. 2024; 24(9):2820. https://doi.org/10.3390/s24092820
Chicago/Turabian StyleHuang, Subing, Xiaoyu Guo, Jodie J. Xie, Kelvin Y. S. Lau, Richard Liu, Arthur D. P. Mak, Vincent C. K. Cheung, and Rosa H. M. Chan. 2024. "Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations" Sensors 24, no. 9: 2820. https://doi.org/10.3390/s24092820
APA StyleHuang, S., Guo, X., Xie, J. J., Lau, K. Y. S., Liu, R., Mak, A. D. P., Cheung, V. C. K., & Chan, R. H. M. (2024). Rectified Latent Variable Model-Based EMG Factorization of Inhibitory Muscle Synergy Components Related to Aging, Expertise and Force–Tempo Variations. Sensors, 24(9), 2820. https://doi.org/10.3390/s24092820