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Abstract: Nitrogen oxides (NOx), primarily generated from combustion processes, pose significant
health and environmental risks. To improve the coordination of measures against excessive NOx

emissions, it is necessary to effectively monitor ambient NOx concentrations, which requires the
development of precise and cost-efficient detection methods. This study focuses on developing
a microwave- or radio frequency (RF)-based gas dosimeter for NOx detection and addresses the
optimization of the dosimeter design by examining the dielectric properties of LTCC-based (Low-
Temperature Co-fired Ceramics) sensor substrates and barium-based NOx storage materials. The
measurements taken utilizing the Microwave Cavity Perturbation (MCP) method revealed that
these materials exhibit more pronounced changes in dielectric losses when storing NOx at elevated
temperatures. Consequently, operating such a dosimeter at high temperatures (above 300 ◦C) is
recommended to maximize the sensor signal. To evaluate their high-temperature applicability, LTCC
substrates were analyzed by measuring their dielectric losses at temperatures up to 600 ◦C. In terms
of NOx storage materials, coating barium on high-surface-area alumina resolved issues related to
limited NOx adsorption in pure barium carbonate powders. Additionally, the adsorption of both NO
and NO2 was enabled by the application of a platinum catalyst. The change in dielectric losses, which
provides the main signal for an RF-based gas dosimeter, only depends on the stored amount of NOx

and not on the specific type of nitrogen oxide. Although the change in dielectric losses increases with
the temperature, the maximum storage capacity of the material decreases significantly. In addition, at
temperatures above 350 ◦C, NOx is mostly weakly bound, so it will desorb in the absence of NOx.
Therefore, in the future development of a reliable RF-based NOx dosimeter, the trade-off between the
sensor signal strength and adsorption behavior must be addressed.

Keywords: dosimeter; radio frequency (RF); LTCC; NOx; gas sensor; Microwave Cavity Perturbation;
dielectric properties

1. Introduction

Nitrogen monoxide (NO) and nitrogen dioxide (NO2) are byproducts from the combus-
tion of fossil fuels or renewable resources. These nitrogen oxides (NOx) have been identified
as a direct threat to human health and the environment. NOx emissions consist primarily
of NO, which is subsequently oxidized in the atmosphere to form the more harmful NO2.
To protect human health, a 1-h limit value for a NO2 concentration of 200 µg/m3 (or about
105 ppb) was introduced in the European Union in 2008 (Directive 2008/50/EC) [1]. This
threshold may not be exceeded more than 18 times in a given calendar year. Additionally,
an annual limit value of 40 µg/m3 (about 21 ppb) has been set, with 30 µg/m3 being
considered critical for vegetation. In Germany, approximately 500 automated measuring
stations [2], such as chemiluminescence detectors (CLDs) [3], monitor NO2 concentrations
to ensure air quality. However, conventional gas analysis systems are both bulky and
expensive. Furthermore, conducting an accurate assessment of compliance with limit
values over long periods of time, particularly at low concentrations, is challenging due to

Sensors 2024, 24, 2951. https://doi.org/10.3390/s24092951 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092951
https://doi.org/10.3390/s24092951
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8529-4121
https://orcid.org/0000-0001-7563-0662
https://orcid.org/0000-0001-7063-9828
https://orcid.org/0000-0001-7622-0120
https://doi.org/10.3390/s24092951
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092951?type=check_update&version=2


Sensors 2024, 24, 2951 2 of 19

zero-point drifts, non-linearity, and signal noise [4–6]. Conversely, gas dosimeters that rely
on the diffusion-limited enrichment of a sensitive material are well suited for determining
the average value of exposure over a given period [7]. Developing more cost-efficient and
accurate gas analysis devices would greatly contribute to monitoring the impact of nitrogen
oxide on our ecosystem.

For this purpose, a dosimeter capable of measuring average NOx concentrations over
long time periods is being developed. Previous dosimeters for such applications were
often based on measuring the resistivity of a sensitive material, such as potassium or
manganese [7]. However, the choice of possible materials is limited to those with high
electrical conductivity. For instance, the use of barium carbonate (BaCO3) in resistive NOx
dosimetry is hindered by its thermally activated electrical conductivity that is six orders
of magnitude lower compared to that of potassium carbonate (K2CO3), which, in turn,
has to be stabilized due to its hygroscopic sensitivity on electrical properties [8,9]. An
emerging alternative is the use of microwaves, i.e., radio frequency (RF) electromagnetic
waves, to detect a change in the dielectric properties of a gas-sensitive material. As studies
on barium-based catalysts have shown, RF sensors can be used to deduce the amount of
stored NOx in NOx storage catalysts [10]. However, such a system must be miniaturized
for application in indoor air monitoring. Therefore, many planar microwave gas sensors
have been investigated in recent years [11–23]. Studies have analyzed how a sensitive
material affects the propagation of electromagnetic waves around transmission lines, such
as microstrips or striplines. To detect this effect, the material is often applied in the area
of a resonance structure, which allows the sensor to be evaluated in terms of the resonant
frequency or quality factor.

Our study aims to optimize the design of such an RF-based dosimeter by analyzing
the dielectric properties of different sensor substrates that are suitable for high-temperature
applications as well as the properties of barium-based NOx storage materials during the
storage of nitrogen oxides, building on the initial analyses presented in [24]. This research
is crucial for the further development of efficient and reliable NOx monitoring systems,
which are essential for environmental protection and public health.

2. The Working Principle of the RF-Based NOx Gas Dosimeter

To gain a deeper understanding of the parameters to be considered in the development
of a planar RF dosimeter, this section explains the fundamental operating principle of such
a sensor.

Unlike conventional gas sensors, gas dosimeters do not measure the analyte con-
centration, but rather the amount of analyte that has accumulated since the start of the
measurement cycle. Since even the smallest analyte concentrations contribute to the sensor
signal change, gas dosimeters are particularly suitable for the long-term detection of highly
diluted analytes, e.g., for the monitoring of air quality limits, especially since immission
limits are also given as doses [7]. The measured dose D depends on the time-varying gas
concentration c(t) according to Equation (1).

D =
∫ tend

0
c(t)dt (1)

In addition, by differentiating the dosimeter signal, it is also possible to draw conclu-
sions about the gas concentration [25]. Figure 1 illustrates the operating principle of a gas
dosimeter using a sensitive layer. Suitable sensitive materials are adsorbers that incorporate
analyte molecules and change at least one physical property that can be measured as a
sensor signal, such as electrical resistance or permittivity, as the accumulation progresses.
However, since the amount of adsorbed gas in a sensitive material is limited, a regeneration
cycle must be conducted periodically to desorb the gas to be detected [26]. This desorption
can be accomplished thermally, for example, by heating the sensor and the sensitive mate-
rial to a temperature at which the analyte gas cannot be permanently stored. Zeolites, for
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example, exhibit this type of behavior when storing ammonia [27], as well as barium-based
materials in automotive catalysts during NOx storage [28].
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Figure 1. The operating principle of a gas dosimeter with a sensitive layer as an adsorbent: the
scheme and sensor response |SR| (blue) in correlation with the analyte concentration c (grey) for the
accumulation and regeneration period. Adapted from [7].

To dosimetrically measure NOx using an RF sensor, the dielectric properties of the
storage material have to change depending on the amount of stored NOx. In practice,
the dielectric properties of a material can only be measured by placing it on a planar
transmission line, while the use of a resonance method allows for higher accuracy and
sensitivity. From the characteristic parameters of the excited resonance mode (resonant
frequency and/or quality factor), the dielectric properties of the sensitive material and,
thus, the dosimeter signal, can be derived.

A simple form of such a planar resonance structure can be a ring coupled through an
air gap to a straight excitation line, which is then connected to a network analyzer. This can
then generate standing electromagnetic waves on the ring structure at certain frequencies,
which depend on the characteristic length Lch of the ring, which is approximately its mean
circumference and the effective permittivity εeff of the surrounding material, as described
in Equation (2) [29]. Besides the fundamental resonance mode, higher ones can also be
excited at multiple n of its frequency.

fres = n· c
Lch
√

εeff
(2)

The materials characterized in this paper will be used for upcoming measurements in
a multilayer sensor setup, similar to that shown in Figure 2, using a simple ring resonance
structure. To achieve a high sensor signal, a thickness of several hundred micrometers
for the sensitive layer is advisable. The reason for this is the dependence of the resonant
frequency on the effective complex permittivity (Equation (3)), which, in turn, is determined
by the dielectric properties of the materials surrounding the conductor and the electric field
there [30].

ε = ε′ − jε′′ (3)

For the realization of such a structure, it is possible to obtain different configurations
of the transmission line. The calculations of the line losses shown in this paper are based on
the stripline configuration, which is defined by a conductor track shielded on both sides by
a ground plane. An alternative is to use a coated microstrip configuration with no ground
at the top of the sensor [31]. In the case of the stripline, the effective permittivity used to
design the transmission line is equal to the substrate permittivity, allowing for a simple
calculation of the optimal line width. In the previous microstrip design, determining the
geometric properties of the conductor required the consideration of additional effects such
as dispersion [12].
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Figure 2. A schematic setup of the planar RF-based NOx dosimeter with a substrate length of 48.0 mm,
a thickness of 1.5 mm, and a width of 6.3 mm at the front (the width increases to 14.0 mm at the
mounting location). The heating structure is not the topic of this paper and will be presented in detail
in future publications. Adapted from [24].

Nevertheless, for both transmission lines, their width cannot be chosen arbitrarily,
since it determines the characteristic impedance in conjunction with the dielectric properties
of the substrate and the sensor material [32]. A change in the width can thereby influence
the coupling of the resonance structure and, thus, the quality of the resonance [33].

In addition, the substrate must be suitable with losses that are low enough to allow
for the excitation of an evaluable resonance signal. For this reason, the dielectric properties
of the material used as the sensor substrate must be known for the dimensioning of
the dosimeter sensor. In addition, a heating structure will be integrated to adjust the
temperature of the storage material. This will allow for regeneration through the thermal
desorption of the adsorbed gas and can enhance the adsorption characteristics of the storage
material, which are often temperature-dependent. Its adsorption and desorption behaviors
are also investigated in this study to precisely design a heater for the optimal temperature
range at a later stage.

3. Development of Sensor Materials
3.1. Sensor Substrate

The change in the sensor design compared to [34] lies in a multilayer substrate struc-
ture. Due to the easier processability, LTCC (Low-Temperature Co-fired Ceramic) is used
as the sensor substrate instead of alumina.

In addition to DuPont GreenTape 951 [35], which is frequently used in sensor de-
velopment, low-loss DuPont GreenTape 9K7 [36], which was specially developed for
high-frequency applications, is also examined in this work regarding its suitability for the
dosimeter to be developed. To ensure the sufficient stability of the sensor, it will consist of
a total of four layers, each with a thickness of 254 µm.

Therefore, in order to determine the shrinkage characteristics for the oven to be used
for sensor production, platelets were fabricated that, like the finished sensor, consist of four
layers and have a diameter of 10 mm in the unfired state. They are shown in Figure 3. These
samples were also used to determine the dielectric properties of the LTCC in Section 4.1,
whereby 20 stacked platelets were measured together to increase the accuracy of the used
measurement system, as described in Section 3.3. The dimensions of the platelets were
measured after the firing process on a total of 30 platelets. This resulted in the shrinkage
values shown in Table 1, which are within the shrinkage tolerance of the data sheet values.



Sensors 2024, 24, 2951 5 of 19Sensors 2024, 24, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 3. LTCC materials DuPont 9K7 (left) and 951 (right). Manufactured platelets that were used 
to measure dielectric properties and shrinkage behavior. 

Table 1. The shrinkage of the LTCC green tapes DuPont 951 and 9K7 in the layer plane (x,y-direc-
tion) as well as along the layer thickness (z-direction); besides the measured values, the data sheet 
values are also given. 

LTCC 
x,y-Shrinkage z-Shrinkage 

Measured In the Literature Measured In the Literature 
9K7 7.8% ± 0.3% 9.1% ± 0.3% 12.2% ± 1.2% 11.8% ± 0.5% 
951 12.4% ± 0.2% 12.7% ± 0.3% 16.9% ± 1.6% 15.0% ± 0.5% 

3.2. NOx Storage Materials 
For an RF dosimeter to detect the NOx loading of its storage material, it must change 

its permittivity or its dielectric losses. This change occurs in barium-based materials due 
to the conversion of carbonate to nitrate during NOx storage. These materials are fre-
quently used in automotive storage catalysts [37–40], where previous measurements with 
an RF-based system have already shown that NOx storage can be easily detected [10], 
which is why they shall be used to develop the sensor materials. 

Nitrogen oxides are stored in barium-based materials by adsorbing NO2 in an oxi-
dizing environment by releasing CO2 (Equation (4)) [41,42]. 

BaCO3 + 2 NO2 + ½ O2 ⟷ BaሺNO3ሻ2 + CO2 (4)

However, incorporation and, therefore, the possibility to detect the current pollutant 
dose is not limited to NO2. It should also be possible to detect NO. Therefore, it is neces-
sary to oxidize it to NO2, which can be achieved at catalytically active platinum sites on 
the surface of the storage material (Equation (5)) [40,42–44]. For a sufficiently fast oxida-
tion of NO, however, a sensor temperature of at least 200 °C is required [45]. 

2 NO + O2 → 2 NO2 (5)

The formed nitrides decompose at higher temperatures, allowing the sensor material 
to be regenerated [7,46]. A decrease in the storage capacity is typically observed above 300 
°C [47]. According to Equation (4), CO2 must be present to restore the carbonate state of 
the storage material when releasing nitrogen oxides. Nevertheless, even in CO2-free at-
mospheres, nitrogen oxides will still be released. However, the storage material will not 
be present as a carbonate but as hydroxide (e.g., Ba(OH)2) or oxide (e.g., BaO) [46,48]. 

Since our goal is to develop an air quality sensor, the dielectric properties of the sen-
sor material in the “unloaded” and “loaded” states must be known in order to estimate 
the potential sensor signal. For this purpose, the material properties of pure barium car-
bonate (BaCO3) and barium nitrate (Ba(NO3)2) (both supplied by Merck and with a purity 
of >99%, shown in Figure 4) were first determined in this paper. 

For the preparation of a NOx dosimeter material allowing for high storage rates as 
well as a high absolute storage quantity, a high surface area lanthanum-stabilized γ-alu-
mina (Sasol Puralox SCFa-140 L3) was chosen, onto which a barium coating was applied. 
This was carried out by infiltrating the carrier substrate with barium acetate Ba(CH3COO)2 
(also supplied by Merck and with a purity of >99%) dissolved in water. After drying the 
powder at 110 °C, it was calcined at 550 °C for four hours in air, forming a barium 
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Table 1. The shrinkage of the LTCC green tapes DuPont 951 and 9K7 in the layer plane (x,y-direction)
as well as along the layer thickness (z-direction); besides the measured values, the data sheet values
are also given.

LTCC
x,y-Shrinkage z-Shrinkage

Measured In the Literature Measured In the Literature

9K7 7.8% ± 0.3% 9.1% ± 0.3% 12.2% ± 1.2% 11.8% ± 0.5%

951 12.4% ± 0.2% 12.7% ± 0.3% 16.9% ± 1.6% 15.0% ± 0.5%

3.2. NOx Storage Materials

For an RF dosimeter to detect the NOx loading of its storage material, it must change
its permittivity or its dielectric losses. This change occurs in barium-based materials due to
the conversion of carbonate to nitrate during NOx storage. These materials are frequently
used in automotive storage catalysts [37–40], where previous measurements with an RF-
based system have already shown that NOx storage can be easily detected [10], which is
why they shall be used to develop the sensor materials.

Nitrogen oxides are stored in barium-based materials by adsorbing NO2 in an oxidiz-
ing environment by releasing CO2 (Equation (4)) [41,42].

BaCO3 + 2 NO2+½ O2 ←→ Ba(NO3)2 + CO2 (4)

However, incorporation and, therefore, the possibility to detect the current pollutant
dose is not limited to NO2. It should also be possible to detect NO. Therefore, it is necessary
to oxidize it to NO2, which can be achieved at catalytically active platinum sites on the
surface of the storage material (Equation (5)) [40,42–44]. For a sufficiently fast oxidation of
NO, however, a sensor temperature of at least 200 ◦C is required [45].

2 NO+ O2 → 2 NO2 (5)

The formed nitrides decompose at higher temperatures, allowing the sensor material
to be regenerated [7,46]. A decrease in the storage capacity is typically observed above
300 ◦C [47]. According to Equation (4), CO2 must be present to restore the carbonate state
of the storage material when releasing nitrogen oxides. Nevertheless, even in CO2-free
atmospheres, nitrogen oxides will still be released. However, the storage material will not
be present as a carbonate but as hydroxide (e.g., Ba(OH)2) or oxide (e.g., BaO) [46,48].

Since our goal is to develop an air quality sensor, the dielectric properties of the sensor
material in the “unloaded” and “loaded” states must be known in order to estimate the
potential sensor signal. For this purpose, the material properties of pure barium carbonate
(BaCO3) and barium nitrate (Ba(NO3)2) (both supplied by Merck and with a purity of >99%,
shown in Figure 4) were first determined in this paper.
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For the preparation of a NOx dosimeter material allowing for high storage rates as well
as a high absolute storage quantity, a high surface area lanthanum-stabilized γ-alumina
(Sasol Puralox SCFa-140 L3) was chosen, onto which a barium coating was applied. This
was carried out by infiltrating the carrier substrate with barium acetate Ba(CH3COO)2 (also
supplied by Merck and with a purity of >99%) dissolved in water. After drying the powder
at 110 ◦C, it was calcined at 550 ◦C for four hours in air, forming a barium carbonate due to
the CO2 in the atmosphere [46]. In this study, powders with three different loadings were
prepared, corresponding to barium carbonate weight percentages of 5.6 wt.%, 11.2 wt.%,
and 16.9 wt.%, respectively.

These powders were analyzed regarding their Brunauer–Emmett–Teller (BET) surface
area (Table 2). Pure BaCO3 has a notably lower surface area compared to all barium-coated
alumina samples by a factor of more than 25. Compared to the uncoated alumina, however,
the surface area decreased with an increasing barium carbonate content. Nevertheless,
the sample with the highest barium carbonate coating of 16.9 wt.% was selected for the
investigations regarding the dielectric behavior. Since the available BET surface area was
only slightly reduced compared to the other barium carbonate loadings (−27% compared to
the 5.6 wt.% and−10% compared to the 11.2 wt.% sample), the higher absolute loading may
have led to a higher storage capability, which could have resulted in a more pronounced
change in the dielectric properties. However, for the dosimeter application, it should be
noted that a faster NOx storage due to a larger surface area being available for adsorption
could have increased the sensitivity to low NOx concentrations, and therefore, a different
BaCO3 loading may be preferable for further sensor development.

Table 2. BET analysis of pure BaCO3 and highly porous alumina coated with different amounts of
barium carbonate.

Material BET Surface/m2/g

BaCO3 1.7
5.6 wt.% BaCO3 @ Al2O3 63

11.2 wt.% BaCO3 @ Al2O3 57
16.9 wt.% BaCO3 @ Al2O3 46

γ-Al2O3 72

To ensure that the sensor material was not only sensitive to NO2 but also to NO, the
oxidation reactions needed to be catalytically enhanced. For this purpose, platinum was
deposited on the dosimeter material. This was realized by adding tetraamine platinum(II)
chloride dissolved in water (supplied by Merck; the pure platinum content is approx.
55 wt.% according to the manufacturer) to the powder in an amount of 1 wt.% relative
to the mass of the barium-coated powder. After renewed drying, this was reduced to
elemental platinum by a two-hour annealing process at 500 ◦C under forming gas (5% H2
in N2). Consequently, the elemental platinum loading was approx. 0.6 wt.%. The weight
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percentage of barium carbonate remained almost unchanged due to the small amount
of platinum.

3.3. The Determination of Dielectric Properties Using the MCP Method

To achieve an optimized signal sensitivity, it was necessary to design the geometry of
the resonance structure based on the dielectric properties of the LTCC substrate and the
barium-based NOx storage material. These properties can be determined by the Microwave
Cavity Perturbation (MCP) method using a setup described earlier by Dietrich et al. [49], as
explained in detail by Steiner et al. when measuring porous powder samples [50]. In the
MCP method, a sample is placed within a cylindrical cavity that allows for the excitation
of electromagnetic resonances. Due to the dielectric properties of the sample, a shift in
the resonant frequency ∆ f and in the inverse quality factor ∆(1/Q) occurs. These shifts
can then be utilized, according to Equations (6) and (7), to derive the permittivity ε′ and
the dielectric losses ε′′ , which are composed of polarization and conductivity losses, of the
material sample.

∆ f ∼
(
ε′ − 1

)
(6)

∆
(

1
Q

)
∼ ε′′ (7)

These correlations are only valid if the electromagnetic field within the resonator is
minimally disturbed by the introduction of the sample. For samples with large volumes
or high dielectric losses, this condition is not met. Nonetheless, it is possible to account
for these perturbations by implementing corrections. The correction in [50], which ad-
dresses depolarization behavior and field distribution, allowed, for example, a precise
determination of the effective properties of ceria–zirconia powders [51]. In cases where the
samples are porous, the properties of the bulk material can be determined by considering
the influence of air on the effective material properties using mixing rules [52,53].

For the determination of the electric properties of the LTCC samples, the application
of mixing rules was not necessary since the samples were dense. However, all examined
NOx storage materials were in powder form with an air content of around 90 vol.%. This
was determined by comparing the bulk volume inside the MCP setup with the particle
volume measured with a gas pycnometer (Micromeritics AccuPyc 1330). The amount of
powder introduced into the MCP setup was 290 mg for the coated barium samples, and a
larger sample quantity of 665 mg was chosen for the pure barium carbonate samples in
order to increase the accuracy of the measurement procedure, despite resulting in longer
adsorption times, since only a small change in the dielectric properties was expected due to
the expected limited NOx storage behavior. To derive the bulk properties of the samples,
we employed the Wiener mixing rule, which assumes a linear relationship between the air
fraction and the dielectric properties [53,54]. Although it is unknown whether this mixing
rule actually applies to the measured materials, it still allows for a comparison of their
storage and release behaviors as all samples had almost the same air content.

The used measurement setup, as described in detail in [49], allows for the dielec-
tric properties of samples to be determined at temperatures up to 600 ◦C. The sample
temperature T is determined by calculating the average value obtained from two type K
thermocouples. These thermocouples are placed inside the sample tube but outside the
resonator cavity to avoid interference with the resonance. Additionally, the NOx storage
materials can be exposed to different gas atmospheres over the entire temperature range,
allowing for measurements to be taken during both NOx storage and regeneration. The
barium acetate-based materials were flushed with a constant total flow rate of 500 mL/min.
For the pure barium carbonate, a slightly lower flow rate of 400 mL/min was set to prevent
the fluidization of the powder sample. Mass flow controllers (MFCs) were used to create an
atmosphere of 20 vol.% oxygen in nitrogen. In addition, adjustable concentrations of NO
and NO2 can be added to investigate the storage capacity of the material. To then enable
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the desorption of the previously stored NOx, the powder was heated to over 550 ◦C, which
will also be achieved in the sensor setup being developed.

To determine the dielectric properties, the parameters of the resonance mode TM010
(located at a frequency of approximately 1.18 GHz) were analyzed. Therefore, the S-
parameter S21 was measured using a vector network analyzer (VNA, MS46322B, Anritsu,
Atsugi, Kanagawa Prefecture, Japan) and evaluated in terms of the resonant frequency and
quality factor using the methods described in [55–57]. A calibration measurement with an
empty sample tube was performed prior to each material sample. This step is necessary
because the MCP method uses the resonant parameter shift caused by the insertion of the
materials to determine their dielectric properties.

4. Dielectric Properties of Sensor Materials
4.1. LTCC Substrate

To verify the suitability of the substrate materials for their application in a high
temperature sensor, the two different types of LTCC (DuPont 951 and DuPont 9K7) were
analyzed regarding the impacts of their dielectric losses on the transmission behavior of the
striplines used for the RF dosimeter. To minimize the attenuation of the measured resonance
mode within the temperature range preferred for NOx storage, it is recommended to use a
substrate with lower losses. The loss factor tan δ describes the ratio of ε′′ to ε′. According
to the manufacturer’s data sheet [36], the 9K7 is designed for high-frequency applications
and has a low loss factor of only 0.001 at 10 GHz compared to 0.014 for the DuPont 951.
It is important to note that these values are specific to room temperature. Knowing the
temperature-dependent behaviors of the material properties is crucial for operating the
sensor over a wide temperature range.

The values for the real part of the permittivity ε′ and the loss factor, tan δ, were
previously measured by the MCP method in [24] and are shown in Figure 5 in a temperature
range from 20 to 600 ◦C. Regarding the permittivity, the measured values for both LTCC
materials are almost independent of its temperature and vary between 3.6 and 4.0 for 9K7
and between 4.1 and 4.4 for 951. The DuPont 951 therefore has a higher dielectric constant
than the 9K7, as indicated in the data sheet. However, the measured absolute values are
significantly lower than the data sheet values. A possible reason for this discrepancy could
be dispersion effects, as the data sheet values are given for a higher frequency of 10 GHz.
While dispersion effects could also affect dielectric losses, the measured data reveal a strong
dependence on temperature, as is typical for ceramic materials. The losses of both LTCC
materials increase non-linearly with the temperature, but at different rates. Contrary to its
intended use, DuPont 9K7 exhibits higher dielectric losses than DuPont 951 at temperatures
exceeding 500 ◦C. At room temperature, the data sheet value for DuPont 951 (at a frequency
of 10 GHz) is 0.014, which is substantially above the measured value of 0.0028. For 9K7,
the data sheet value of 0.001 is close to the experimental value of 0.0007. Considering the
scope of the RF dosimeter, which is primarily intended to operate within a temperature
range of 200 to 400 ◦C (cf. Section 4.2), DuPont 9K7 is still the preferred substrate for this
application due to its lower losses in the temperature range.

To further evaluate the impact of substrate losses on stripline transmission characteris-
tics, their total losses were theoretically calculated using the equations given in [58]. The
total losses also depend, to a small extent, on the permittivity of the substrate. As the sensor
to be developed is intended to operate at frequencies close to the 10 GHz value of the data
sheet permittivity, the data sheet values were used for the theoretical calculations instead
of the measured values. Figure 6 illustrates these losses calculated for both examined
substrates, based on their loss factors, and highlights the previously measured loss values
for the substrates at 200 and 400 ◦C. However, transmission line losses originate not only
from dielectric losses within the substrate, but also from the limited conductivity of the
stripline conductor itself. These losses can also be calculated theoretically and are shown in
Figure 6.
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Figure 5. (a) Permittivity ε′ and (b) loss factor tan δ of different LTCC materials measured at 1.18 GHz
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Figure 6. The calculated transmission losses for a stripline with a four-layer LTCC substrate in the
fired state as a function of the loss factor, tan δ, of a substrate with (a) ε′ = 7.8, which is the data sheet
value for the 951 LTCC at 10 GHz and room temperature and (b) ε′ = 7.1, which is the data sheet
value for the 9K7 LTCC at 10 GHz and room temperature. The measured loss factors for DuPont 951
and 9K7 at temperatures of 200 and 400 ◦C are also marked.

In the NOx dosimeter to be developed, the losses were calculated for the case of four
LTCC layers surrounding the stripline, which was dimensioned for a wave impedance of
50 Ω. The transmission line was assumed to be screen-printed using the recommended
gold-based conductor, DuPont LL505. The losses caused by this effect can be calculated
based on the data sheet value for its minimum conductivity of 5 Ω/□.

The resulting losses not only depend on the loss factor, tan δ, of the substrates, but also
on permittivity and geometry, which are different for both substrates due to their shrinkage
behavior and their compositions. Therefore, the calculated values for DuPont 951 and
9K7 are slightly different. However, the influence of the substrate loss factor remains the
primary influence. Moreover, the calculations reveal that conductor losses only slightly
contribute to the total losses of the transmission line in the temperature ranges in which
the sensor operates, even with the lower loss of 9K7. A comparison of the two LTCC films
shows that at a temperature of 200 ◦C, the 951 has twice the transmission losses, and at
400 ◦C, there are still losses higher than 40%. Thus, this theoretical analysis validates the
choice of 9K7 LTCC for the desired NOx gas dosimeter application.

4.2. Barium-Based Gas Dosimeter Material
4.2.1. Pure Barium Carbonate

Following the examination of the LTCC-based sensor substrates, the dielectric behavior
of the NOx-sensitive barium-based material is to be investigated. The first step is to analyze
the complex permittivity range of the storage material with and without NOx loading. For
this purpose, the dielectric properties of barium carbonate (BaCO3) and barium nitrate
(Ba(NO3)2) were measured from room temperature to 500 ◦C using the MCP method. In
addition to the dielectric losses already shown in [24], the permittivity of both materials
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is now also given. Furthermore, although the loss values in [24] were obtained using a
mixing rule with an exponential approach, the values are now calculated using the Wiener
mixing rule, as described in Section 3.3.

As can be seen in Figure 7a, the permittivity of the two materials differs slightly. Nitrate
generally exhibits higher polarization effects, although the difference is only marginal at
room temperature. However, with an increasing temperature, the difference becomes
more pronounced as the permittivity of nitrate rises from 3.6 to 4.6 until a temperature of
400 ◦C is reached, while the ε′ value of carbonate remains almost unchanged at 3.5. Only at
temperatures above 400 ◦C does the permittivity of barium carbonate also increase. Despite
the small expected change due to the incorporation of NOx, such changes in permittivity
can be easily detected with an RF-based gas dosimeter via the resonant frequency. For
example, similar large permittivity changes occur in ammonia-adsorbing zeolites [59] and
have been measured with the RF sensor used in [34]. However, this only applies if a
large fraction of the barium carbonate is converted to nitrate when the storage material is
exposed to NOx.
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Figure 7. (a) Permittivity ε′ and (b) dielectric losses ε′′ of barium-based NOx storage materials
depending on their temperature T (blue: BaCO3; red: Ba(NO3)2).

If this is not the case, the RF dosimeter can still evaluate the quality factor of its
resonance. This resonance parameter mainly depends on the dielectric losses of the sensitive
material and is therefore dependent on the present barium compound, especially at higher
temperatures. Thus, Figure 7b shows that at room temperature, both nitrate and carbonate
have almost equal losses of less than 0.01. However, the value of ε′′ of BaCO3 increases only
slightly with the temperature and remains below 0.05, while that of Ba(NO3)2 increases
strongly (almost exponentially). Therefore, at 200 ◦C, the losses of barium nitrate are
8 times higher, and at 400 ◦C, they exceed those of barium carbonate by more than 20 times.
Due to the significant difference between the two barium compounds, operating at high
temperatures could result in a larger sensor response for the RF gas dosimeter. However,
limitations such as the NOx adsorption behavior must be taken into account, especially
for dosimeter applications, as discussed in the following sections. In addition, the signal
quality may decrease with an increasing temperature due to higher losses of the LTCC
substrate, which will be the subject of further research.

As with permittivity, the changes in dielectric losses and the sensor signal strength
depend on the storage capability of the material. However, for pure barium carbonate, the
surface area is very small, as shown in Table 2. This poses a problem because nitrogen
oxides are stored near the surface of the material [45,60]. Therefore, a larger surface area
is advantageous for detecting the NOx dose present with a sufficient change in complex
permittivity.

Despite the small surface area of the barium carbonate, its storage capacity should be
analyzed as a reference value for barium-coated materials. For this purpose, the powder
was exposed to a concentration of 200 ppm NO2 at a constant sample temperature. No
investigations were carried out on the storage behavior of NO, as the catalytic component
necessary for oxidation to NO2 is not present in barium carbonate. Once the material was
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saturated, the NO2 dosing was first stopped to allow for the analysis of the desorption
of weakly bound NOx, which was adsorbed due to the absence of NO2 partial pressure.
Afterward, the remaining stored NOx (strongly bound NOx) was removed by heating the
sample to 550 ◦C.

Figure 8 displays the temporal course of the experiment conducted at 417 ◦C. The NOx
concentration downstream of the barium carbonate was measured using FTIR (cNOx,out). In
addition, the NOx concentration was measured without a material sample to consider time
delays in the concentration curve compared to the values dosed by the MFCs (cNOx,empty).
The storage utilization xBa,NOx was calculated in an integrative manner from the resulting
concentration difference related to the proportion of BaCO3 in the sample nBaCO3 according
to Equation (8).

.
VGas represents the total volume flow through the sample, and Vmol,Gas

represents the molar volume of the gas.

xBa,NOx =
∫ tend

0
(cNOx,empty(t)− cNOx,out(t))·

.
VGas(t)
Vmol,Gas

dt· 1
2·nBaCO3

(8)

The above indicates which portion of the barium carbonate molecules was converted to
nitrate due to NOx incorporation. However, due to integration errors caused by deviations
in the measured gas concentration of only a few ppm, the calculated storage utilization did
not reach zero after the thermal desorption process. To correct this issue, a constant factor
was applied to the measured NOx,out concentration throughout the measurement sequence.
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Figure 8. The storage and regeneration behavior of pure BaCO3 over time; (a) the NOx concentration
cNOx without (dashed line) and with (solid line) the storage material measured by FTIR downstream
of the MCP setup as well as the temperature T of the storage material (green line); (b) the storage
utilization xBa,NOx calculated based on an integration of the measured nitrogen oxide concentration;
(c) the permittivity ε′ and dielectric losses ε′′ of the storage material.

As expected, hardly any NOx was stored due to the small surface area. A maximum
of 0.17% of the barium carbonate was converted to nitrate. This low storage capacity is
also reflected in the dielectric properties. No change in permittivity can be associated
with NOx storage. Larger changes in the measured ε′ only occurred during temperature
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changes. However, this was most likely not due to a change in the material properties,
but rather an incorrect determination of the resonant parameter shift as a result of a non-
stationary temperature distribution within the MCP setup. The dielectric losses, on the
other hand, increased by more than a factor of 2 from 0.0032 to 0.0079 between 70 min and
250 min. However, due to the small absolute losses, this change is only slightly pronounced
compared to the signal noise. The thermal desorption of the stored NOx can also be easily
identified in the loss data. Due to the increased temperature, the dielectric losses initially
increased by a factor of two. However, due to the desorption of NOx, the losses decreased
rapidly and reached a stationary value after 30 min. When the sample temperature was
lowered back to around 400 ◦C, the losses then returned to the pre-loading values.

A more detailed analysis of the relationship between the complex permittivity and
stored NOx is provided in Figure 9. The figure includes an additional measurement at a
lower temperature of 308 ◦C, which shows a slightly higher maximum storage capacity.
However, the dielectric losses do not exceed those of the 417 ◦C measurement due to
the lower losses of the formed nitrate. At both temperatures, there was only a slight
desorption of weakly bound NOx when the NO2 dosage was switched off, which also did
not change the almost linear load-dependent behavior of the dielectric losses. Although
losses increased significantly during NOx loading, it was difficult to derive xBa,NOx due to
the low signal-to-noise ratio, as the noise amounted to around 25% of the maximum loss
change. Regarding permittivity, as already assumed from the individual measurement in
Figure 8, at 417 ◦C, no clear conclusion can be drawn about the nitrogen oxide loading.
When measuring at lower temperatures, the permittivity increased slightly over large areas
of the loading phase. However, during this measurement, shortly after the start of NOx
loading, a strong change in the measured permittivity occurred, caused by a disturbance of
the gas volume flow, resulting in an inaccuracy in the temperature measurement required
for the MCP evaluation.
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Figure 9. (a) The permittivity ε′ and (b) dielectric losses ε′′ of pure BaCO3 during the NOx storage
and the weakly bound desorption phases at different temperatures over the storage utilization
period xBa,NOx.

In general, due to the limited storage capacity of barium carbonate, it would be nearly
impossible for a sensor system to detect changes in material properties caused by nitrogen
oxide exposure. Therefore, in order to develop a sensitive NOx dosimeter, a material must
be found that exhibits a significantly larger change in complex permittivity due to an
increased storage rate.

4.2.2. Barium-Coated Alumina

We investigate whether the barium-coated material is suitable for such applications
due to its significantly higher surface area. Since platinum particles were added to this
material as oxidation catalysts, the storage material will not only be exposed to NO2 but
also to NO. The purpose of these experiments is to determine the maximum amount that
can be stored, the temperature-dependent behavior of the weakly bound NOx storage, and
whether the change in the dielectric properties is solely dependent on the amount of stored
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NOx. To analyze the latter point in more detail, the dosed nitrogen oxide concentration
gradually increased from 100 over 200 to 300 ppm during the loading phases. The thermal
desorption phase followed the same sequence as in the barium carbonate experiments.

Figure 10 exemplifies the storage behavior of the 16.9 wt.% barium carbonate-coated
material when exposed to NO2 at a temperature of 330 ◦C. In contrast to the pure barium
carbonate sample, significantly more nitrogen oxide is stored. As a result, the breakthrough
of nitrogen oxide through the powder sample bed (downstream of the powder) can be
detected only 15 min after the beginning of dosing. This is reflected in the storage capacity
determined in an integrative manner, which increases by up to 35% of the available barium,
which is more than 200 times that of pure barium carbonate. This increase in storage capac-
ity should result in a similar increase in sensitivity of the NOx dosimeter signal due to the
linear relationship with the dielectric properties. However, the slightly increased amount
of weakly bound NOx compared to pure carbonate poses a problem for the dosimeter
application because 20% of the stored NOx is released after the NO2 dosing is terminated.
Consequently, this effect implies that the dosimeter signal can only be interpreted if the
gas concentration is known, which can be determined by the temporal differentiation of
the measured material parameters [61]. The increase in the NO2 concentration also has a
small effect on the storage capacity. At the end of the 200 ppm dosage, no additional NOx
can be adsorbed. However, increasing the concentration to 300 ppm results in a further 2%
increase in the storage capacity. To show the exact influence on the operation of a dosimeter
based on this material, further investigations would have to be carried out, focusing on the
storage capacity at low NOx concentrations down to a few ppm.
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Figure 10. The storage behavior of the storage material with 16.9 wt.% barium carbonate coating
over time during exposure to NO2; (a) the NOx concentration cNOx without (dashed line) and with
(solid line) the storage material measured by FTIR downstream of the MCP setup as well as the
temperature T of the storage material (green line); (b) the calculated storage utilization xBa,NOx based
on an integration of the measured nitrogen oxide concentration; (c) the permittivity ε′ and dielectric
losses ε′′ of the storage material.

As expected from the storage behavior, the dielectric properties of the storage material
exhibit significantly larger changes than those of pure barium carbonate. However, the
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permittivity cannot be accurately determined due to a temporal drift of the underlying
resonant frequency that occurs before the start of the loading phase and continues until
after thermal desorption. After this point, a constant permittivity could be measured. This
behavior was observed in all measurements conducted. The dielectric losses, however, did
not face this problem and increased by a factor of more than 4, from 0.03 to 0.14. Although
the increase factor in ε′′ is only twice that of pure barium carbonate due to the increased
losses in the unloaded state, it is accompanied by a significantly improved signal-to-noise
ratio. Both material parameters also reflect the gradual increase in NOx storage due to the
increased NO2 dosage.

Figure 11 confirms that the material parameters depend only on the stored NOx and not
on the actual NOx concentration by showing a linear relation of ε′ and ε′′ versus the storage
utilization xBa,NOx across different temperatures (330 ◦C, 380 ◦C, and 430 ◦C). The diagram
not only includes the material properties during NO2 dosing, but also shows a comparison
with the material behavior during NO incorporation, where NO has to be oxidized with
the aid of the platinum catalyst. In general, the linear relationship between the material
properties and the amount of stored NOx (expressed by xBa,NOx) holds for all temperatures
and stored NOx species. Due to the permanent temporal drift of the resonant frequency
and, therefore, of the resulting permittivity in all measurements, no clear conclusion can be
drawn about the temperature and nitrogen oxide-dependent behavior of the permittivity.
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Figure 11. (a) The permittivity ε′ and (b) dielectric losses ε′′ of the storage material with 16.9 wt.%
barium carbonate coating during NO (pale color tone) as well as NO2 (bold color) storage at different
temperatures over the calculated storage utilization xBa,NOx.

These issues, however, did not affect the independent measurement of the quality
factor and the resulting dielectric losses. In addition to the linear increase in ε′′ , none of the
measurements showed hysteresis behavior during the desorption of the weakly bound NOx.
The sensitivity of the dielectric losses increases with the temperature from 0.31%/%Ba,NOx
at 330 ◦C to 0.73%/%Ba,NOx at 430 ◦C (calculated by linear regression based on NO2 storage).
This is consistent with the characterization of the base materials in Figure 7, where a similar
increase in the loss difference between nitrate and carbonate was measured.

The comparison of NO and NO2 storage shows no significant difference in loss sensi-
tivity, as NO is oxidized by the oxygen present in the gas stream at the catalytically active
platinum sites and stored as NO2. However, the maximum storage capacity for dosed NO
is significantly reduced, especially at low temperatures. This reduction can be explained
by the reduced catalytic activity of the platinum sites at temperatures below 350 ◦C [45].
Therefore, not all of the dosed NO can be oxidized to NO2, resulting in a reduced partial
pressure of NO2. As previously determined by the variation in the dosed nitrogen oxide
concentration, this affects the maximum storage quantity.

Since the storage capacity and, in particular, the amount of strongly and weakly
bound NOx affect the functionality of the dosimeter, they were analyzed in more detail as a
function of the material temperature. Figure 12 depicts the total storage capacity, defined
as the value of xBa,NOx at the end of the NOx storage phase, during NO2 and NO exposure
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as well as strongly and weakly bound NOx. The definitions of these terms are visually
depicted in Figure 10.
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Figure 12. The temperature-dependent NOx storage behavior of the material with 16.9 wt.% barium
carbonate coating for (a) NO2 dosing and for (b) NO dosing; besides the total storage utilization
xBa,NOx, the proportions of strongly and weakly bonded NOx are also shown.

With the NO2 dosage, the resulting total storage capacity decreases significantly with
the temperature. However, compared to pure barium carbonate, a significantly higher mass
storage capacity can be achieved even at the highest investigated temperature of 430 ◦C.
This decrease in storage capacity is solely due to a reduced ability to form strongly bound
nitrogen oxides. In contrast, the absolute amount of weakly bound NOx remains constant.
The storage behavior during NO dosage generally follows a similar pattern. However, at
the lowest investigated temperature of 330 ◦C, the amounts of both weakly and strongly
bound NOx are reduced. The limitation caused by the oxidation of NO to NO2 leads to an
almost halved total storage capacity. This also means that, in contrast to NO2 dosing, the
amount that can be stored as weakly bound NOx decreases at low temperatures, so that at
330 ◦C, over 90% of the stored NOx is strongly bound. At higher temperatures, the storage
capacities for NO and NO2 become similar. At 430 ◦C, their behavior is almost identical.

Figure 13 illustrates the temperature dependence of the binding stability of the stored
gas by showing the strongly bound NOx as a percentage of the total stored amount, which
is relevant for the dosimeter behavior of a sensor. At all investigated temperatures, the
strongly bound fraction is higher for the detection of NO than for NO2 and is always above
55%. However, the difference decreases with an increasing temperature and is almost
negligible at 430 ◦C.
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To operate a dosimeter using this material, a trade-off must therefore be made between
the signal strength associated with the change in dielectric material properties due to stored
NOx, the absolute storage capacity, and the nitrogen oxide-dependent sensor response.
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Although a significant change in dielectric properties occurs at temperatures above 400 ◦C,
and NO and NO2 exhibit similar storage behavior, operation at 350 ◦C offers the advantage
of an increased maximum storage capacity and only a small amount of weakly bound NOx,
which would interfere with the evaluation of the dosimeter signal. Sensor operation at
either temperature may be suitable depending on the intended application. If the sensor
is to be operated in an environment with NO as well as NO2 concentrations, a higher
temperature is required. On the other hand, if only the presence of NO or NO2 is expected,
a higher storage capacity at lower temperatures may allow the sensor to operate longer
without the need for regeneration.

5. Conclusions

In response to the growing demand for accurate and efficient NOx monitoring, this
study started to develop an RF-based NOx gas dosimeter by focusing on the LTCC-based
sensor substrates as well as the barium-based materials used for NOx storage. By applying
the Microwave Cavity Perturbation method, the dielectric properties of these materials
were analyzed. Knowledge about these properties is necessary to support the design
process of the dosimeter’s development regarding an improved sensor signal.

In general, the investigations showed that a NOx dosimeter must be operated at high
temperatures to allow for a kinetically unrestricted NOx uptake. Therefore, a potential
sensor substrate for such an application would be LTCC, which also offers several manu-
facturing advantages, such as the possibility of a multilayer sensor design that includes a
heating structure. DuPont GreenTape 9K7, specifically designed for RF applications with
reduced dielectric losses at room temperature, was compared to DuPont GreenTape 951 in
a temperature range of up to 600 ◦C. Both exhibited a non-linear increase in dielectric loss
with the temperature, which is the primary contributor to transmission line attenuation.
At temperatures above 500 ◦C, the dielectric losses of DuPont 9K7 were found to exceed
those of DuPont 951. However, within the main operating temperature range for NOx
incorporation between 300 and 450 ◦C, the 9K7 material is still the preferred option.

In addition, this study focused on barium-based NOx storage materials and their gas
dosimeter signal, which is derived from the change in dielectric properties as the barium
carbonate is converted to nitrate during NOx storage. The difference in dielectric properties
between pure barium carbonate and nitrate increases with temperature, resulting in a
stronger dosimeter signal at higher temperatures. However, due to its low surface area
and, therefore, limited storage capability, pure barium carbonate cannot be used as a gas
dosimeter material. This issue could be addressed by coating high surface alumina with
barium carbonate. The addition of a catalytic platinum coating not only facilitated the
storage of both NO2 and NO gases, but also revealed that dielectric properties are solely
influenced by the amount of stored NOx (and not by the applied NOx concentration). While
the storage characteristics were similar for NO2 and NO with a constant amount of weak
bonds and a decrease in strong bonds with temperature, the maximum storage capacity
differed at low temperatures due to the limited catalytic effect of platinum, resulting in a
lower uptake of NO. However, at the highest temperature studied, 430 ◦C, there was no
difference in the storage behavior between the two nitrogen oxides.

Our research successfully identified the critical parameters that influence the design
and operation strategy of RF-based NOx dosimeters by elucidating the dielectric behavior
of LTCC substrates and barium-based NOx storage materials. Based on these results, a
functioning NOx dosimeter can now be developed and analyzed in future studies.
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